張俊奇 郭勇德
摘要:粘膠纖維改性作為改善纖維性能,賦予纖維功能性的方法,近年來受到了廣泛關注。通過改性可以賦予粘膠纖維抗菌、阻燃、導電、高吸附、磁性、抗炎、止血等功能,拓展了粘膠纖維應用領域。本文對粘膠纖維功能化改性方法進行了介紹,包括化學法中的接枝共聚、原位合成、化學交聯(lián)、氧化和醚化;物理法中的后整理、等離子體處理和共混;生物法中的酶處理等方法。討論了功能性粘膠纖維的應用及發(fā)展?jié)摿Γ云跒楣δ苄岳w維的研究及應用提供參考。
關鍵詞:粘膠纖維,改性,阻燃,抗菌,導電
中圖分類號:TS102.6
文獻標志碼:A
文章編號:1009-265X(2023)02-0218-12
粘膠纖維是紡織工業(yè)的重要原料,粘膠織物具有優(yōu)異的吸濕性、懸垂性、透氣性、抗靜電性以及良好的力學性能,廣泛應用于紡織品、服飾、醫(yī)療、衛(wèi)生護理等領域,在人們生活和生產(chǎn)中發(fā)揮著重要的作用。但由于粘膠纖維本身的特性,限制了其在相關領域的應用,如良好的吸濕性使織物易受潮從而造成細菌滋生,低極限氧指數(shù)(約為19%)使織物具有高易燃性等,為了解決這些問題,需要對粘膠纖維改性,改善纖維性能,賦予粘膠纖維抗菌性、阻燃性等,使其更好地應用于抗菌織物、阻燃織物等領域[1-2]。此外,粘膠纖維改性還可以賦予纖維如導電、高吸附、磁性、抗炎、止血等功能,進一步拓展粘膠纖維的應用領域[3-7]。
目前,粘膠纖維改性研究所涉及的方法較多,包括化學、物理、生物等手段,所涉及的機理也不盡相同。本文針對粘膠纖維改性的相關研究進行了陳述,并依據(jù)不同的反應機理對改性方法進行初步分類,以期為粘膠纖維的功能性改性提供一些新的方法和思路。
1化學法
粘膠纖維的化學成分是纖維素,纖維素是由葡萄糖基通過β-1,4-糖苷鍵相互連接而成,每個葡萄糖環(huán)上存在3個羥基,賦予粘膠纖維良好的化學反應活性[8]。粘膠纖維可通過接枝共聚,原位合成,化學交聯(lián)、氧化、醚化等方式進行化學改性,從而賦予粘膠纖維抗菌、阻燃、高吸附、導電、磁性等功能。
1.1接枝共聚
粘膠纖維的接枝共聚改性,是以纖維素結構中的表面活性羥基為接枝點,通過化學反應接枝共聚新的聚合物,從而賦予纖維特定的功能和特性。接枝共聚的方法,主要包括游離基引發(fā)接枝共聚、離子型聚合、縮合或加成接枝共聚[9]。從功能上劃分,接枝共聚可以賦予粘膠纖維阻燃、抗菌、高吸附性等性能。
粘膠纖維接枝共聚阻燃改性,可以在粘膠纖維表面接枝中間物質,通過中間物質與阻燃成分結合,也可以對粘膠纖維表面羥基氧化提供反應位點,再接枝阻燃成分。如Xu等[10]采用丙烯腈與粘膠纖維接枝共聚,再用水合肼和醋酸鋅進行化學改性,合成阻燃粘膠纖維,合成路線如圖1所示,該阻燃粘膠纖維在300 ℃后熱降解速率低于粘膠纖維,800 ℃時,焦渣從5.2%增加到50.4%,燃燒后保持了粘膠纖維的原始形態(tài),具有良好的熱穩(wěn)定性和成炭性能。
Wang等[11]將含磷、含氮單體2, 2-二甲基-1, 3-丙二醇丙烯酰胺甲氧基磷酸(DPAMP)接枝到粘膠纖維織物上,制備阻燃粘膠織物。合成路線如圖2所示,在起始階段,粘膠纖維的羥基被KMnO4氧化成醛基,Mn7+還原為Mn4+,同時,Mn4+與硫酸反應生成Mn3+和HSO4·,然后粘膠纖維與Mn4+和Mn3+在C-2或C-3位置產(chǎn)生自由基,進而引發(fā)與
DPAMP的接枝聚合,當接枝率8.7%時,極限氧指數(shù)為28.8%,具有較好的阻燃性,根據(jù)AATCC 61―2003 No. 1A標準洗滌后,極限氧指數(shù)基本無變化,具有較好的耐久性。
蘇昱等[12-13]首先通過纖維素酶、葡萄糖氧化酶對粘膠纖維進行羧甲基化改性,然后分別以鳥苷酸、三聚氰胺為阻燃功能片段,二環(huán)已基碳二亞胺為交聯(lián)劑合成了接枝鳥苷酸粘膠纖維、接枝三聚氰胺粘膠纖維,其中,鳥苷酸接枝率6.77%,極限氧指數(shù)29.94%,洗滌30次后,極限氧指數(shù)保持在29.1%,三聚氰胺接枝率5.57%,極限氧指數(shù)29.2%,接枝鳥苷酸粘膠纖維干態(tài)強度比原纖維增加7.3%,接枝三聚氰胺粘膠纖維干態(tài)強度增加20.99%。
粘膠纖維接枝共聚抗菌改性,可以在粘膠纖維表面接枝共聚中間物質,再進行抗菌成分負載。如Zheng等[14]首先在粘膠纖維表面進行丙烯酸接枝共聚,然后原位加載Ag納米顆粒制備了抗菌纖維,制備流程如圖3所示,通過控制AgNO3的濃度和AgNO3/檸檬酸三鈉(TSC)的比例可以調節(jié)Ag納米顆粒的裝載量,最佳條件為AgNO3質量濃度0.014 g/mL,檸檬酸三鈉質量濃度0.030 g/mL,該抗菌纖維在水溶液中具有Ag緩釋效果,48 h內Ag累計釋放量小于5%,對金黃色葡萄球菌具有良好的抗菌活性,多次洗滌后抗菌活性保持在90%以上。
粘膠纖維接枝共聚高吸附性改性,可以通過在粘膠纖維表面接枝中間物質,再與吸附劑結合的方式實現(xiàn)。如Wu等[4]將丙烯腈(An)接枝到粘膠纖維(VF)上,然后與三乙烯四胺(TETA)進行胺化,制備了一種CO2吸附材料,合成過程如圖4所示,接枝后的粘膠纖維是一種優(yōu)良的吸附劑,當接枝的胺含量為13.21 mmol/g時,改性粘膠纖維對CO2的動態(tài)吸附量最高,為4.35 mmol/g,經(jīng)10次吸附-解吸循環(huán)后,基本保持原有的吸附容量,具有良好的再生性能。
粘膠纖維接枝共聚染色性改性,由于粘膠纖維對疏水性染料上染率低,色牢度差,有學者通過對粘膠纖維改性從而獲得較好的染色性能。如劉伶等[15]通過檸檬酸對粘膠織物進行β-環(huán)糊精接枝改性,使其對疏水性姜黃素具有良好的染色性,原理為β-環(huán)糊精是由7個吡喃葡萄糖單元連接成錐形圓筒形狀,是優(yōu)良的疏水包覆壁材,通過檸檬酸使β-環(huán)糊精與粘膠織物產(chǎn)生酯化交聯(lián),接枝到織物上,在染色過程中,β-環(huán)糊精對姜黃素形成包合,從而提高織物的染色性能,染色織物K/S值為4.287,耐摩擦色牢度4級以上,耐皂洗色牢度3級以上。
1.2原位合成
粘膠纖維的原位合成改性主要是在粘膠纖維表面原位合成功能性顆粒,使功能性顆粒負載或沉積在纖維表面,從而賦予粘膠纖維功能性,如抗菌性、導電性等。
粘膠纖維原位合成抗菌改性,主要通過在粘膠纖維表面原位合成銀納米顆粒實現(xiàn)。如Rehan等[16] 在粘膠纖維上原位合成Ag/Ag2CO3和Ag/Ag3PO4,具體方法為:將粘膠纖維在硝酸銀溶液中超聲輻照,再浸漬到Na2CO3或Na2HPO4溶液中超聲輻照,將銀離子轉化成Ag2CO3或Ag3PO4納米粒子吸附到粘膠纖維上,然后UV光照產(chǎn)生Ag納米顆粒。改性后的粘膠纖維在可見光照射下,對水環(huán)境中亞甲基藍具有較好的光降解效果,8 h后,Ag/Ag3PO4和Ag/Ag2CO3改性粘膠纖維光催化效率分別為95%、82%;兩種改性纖維均具有良好的抑菌活性,對大腸桿菌、金黃色葡萄球菌抑菌活性均大于90%,對白色念珠菌抑菌活性大于50%;改性后粘膠纖維具有良好的紫外線屏蔽性能,Ag/Ag3PO4和Ag/Ag2CO3改性粘膠纖維紫外線防護系數(shù)(UPF)分別為234、259,均高于原始粘膠纖維的103。
Rehan等[17]還研究了通過微波加熱和多元醇促進銀納米顆粒原位嵌入到粘膠纖維中的方法,將粘膠纖維浸泡在硝酸銀溶液中,以乙二醇為還原劑,聚乙烯吡咯烷酮為穩(wěn)定劑,在微波加熱條件下,將粘膠纖維表面的Ag+還原為Ag納米顆粒。改性后的粘膠纖維顏色呈現(xiàn)金黃色,當AgNO3質量濃度50 mg/L時,改性粘膠纖維對大腸桿菌抑菌活性94.2%,同時,改性粘膠纖維對4-硝基苯胺和亞甲基藍染料的還原具有催化性。
劉杰等[18] 利用粘膠纖維本身的潛在還原性基團直接在纖維上原位自還原銀離子成單質銀,具體方法為將粘膠纖維浸泡在滲透劑JFC中,洗滌、除去油劑雜質,干燥后放入硝酸銀溶液中,85 ℃恒溫反應3 h,水洗,烘干,得到載銀粘膠纖維,載銀量為0.85 mg/g時,對大腸桿菌抑菌率97.6%,對金黃色葡萄球菌抑菌率99.9%,水洗50次后抑菌率仍保持90%以上。
Bu等[19]將單寧酸包覆在織物表面,再用AgNO3溶液處理,最后將低表面能1H, 1H, 2H, 2H全氟癸硫醇(PFDT)組裝在粘膠織物表面,制成超疏水抗菌織物,制備流程如圖5所示。單寧酸中豐富的兒茶酚具有較高的還原能力,將Ag離子還原為Ag納米顆粒,同時它易與金屬離子形成螯合,將原位形成的納米粒子牢牢固定在纖維表面。改性后粘膠織物水接觸角為155.1°,滑水角為3.2°,對大腸桿菌和金黃色葡萄球菌抑菌率大于99%,經(jīng)50次洗滌后,仍保持大于150°的接觸角以及對大腸桿菌和金黃色葡萄球菌大于97%的抑菌率。
粘膠纖維原位合成導電改性,通過將導電單體或顆粒在纖維表面原位聚合或沉積實現(xiàn)。如Wang等[3]以吡咯為單體,三氯化鐵為氧化劑,十二烷基苯磺酸鈉為摻雜劑,在粘膠纖維表面聚合聚吡咯,制備了導電聚吡咯/粘膠纖維復合材料,經(jīng)50次水洗后,導電性仍保持1.5 S/cm,該材料在導電紡織品、染料敏化太陽能電池、儲能材料、傳感器和水處理等領域具有潛在應用價值。Li等[20]采用原位聚合法制備聚苯胺/粘膠纖維,聚苯胺顆粒沉積在粘膠纖維表面,并沿粘膠纖維模板形成連續(xù)的網(wǎng)絡。聚苯胺賦予了纖維高導電性及較高的抗拉強度,聚苯胺對粘膠纖維具有良好的粘附性,洗滌50次后,電導率僅從2.71×10-3 S/cm下降到2.4×10-3 S/cm。
1.3化學交聯(lián)、氧化、醚化等
粘膠纖維表面的羥基具有反應活性,可通過化學交聯(lián)、氧化、醚化等反應改善纖維性能,賦予纖維功能性。
粘膠纖維化學交聯(lián)增強改性,粘膠纖維在潮濕條件下,強度會因其水敏性和無定形區(qū)的存在而降低,Sela等[21]通過交聯(lián)劑來改善粘膠纖維物理強度,通過化學交聯(lián),減少分子之間的自由運動,并降低吸水性和在水、堿中的膨脹,提高濕初始模量,如交聯(lián)劑Ruco-pur SLR(反應聚醚型)用量為10 g/L時,織物抗撕裂性從經(jīng)向4.0 N提高到11.66 N,緯向3.0 N提高到12.14 N。
粘膠纖維醚化改性,通過表面羥基的醚化反應引入功能性基團,如Zhang等[22]在堿性條件下,將粘膠纖維的羥基轉化為羥基陰離子,然后用2,3-環(huán)氧丙基三甲基氯化銨和氯乙酸鈉對粘膠纖維進行醚化改性,改性產(chǎn)物對甲基橙和亞甲基藍表現(xiàn)出良好的吸附性,亞甲基藍最大吸附量為1.483 mg/g,甲基橙最大吸附量為0.234 mg/g。Zhang等[23]以氫氧化鈉為催化劑,氯乙酸鈉為改性劑,通過醚化改性制備了陰離子改性粘膠纖維,然后在140 ℃水熱條件下,用支化聚乙烯亞胺(HPEI)在高壓反應釜中對陰離子粘膠纖維進行改性,得到兩性離子粘膠纖維,制備流程如圖6所示,該纖維經(jīng)pH為4.5或pH為10.5的溶液預處理后,可以選擇性吸附混合溶液中的陰離子染料或陽離子染料,所吸附的染料分別能在pH為10.5或4.5的水溶液中解吸,經(jīng)8次循環(huán)后解吸率保持在0.85以上。
粘膠纖維氧化改性,粘膠纖維表面羥基經(jīng)氧化后,可作為載體或反應位點,引入功能性基團。如Nikolic等[6]設計了一種具有生物活性的纖維材料,首先將粘膠織物用高碘酸鈉氧化產(chǎn)生醛基[24],然后作為載體通過牛血清白蛋白固定胰蛋白酶,當反應條件為0.4% NaIO4氧化120 min時,改性粘膠織物具有最佳胰蛋白酶負載活性,在4 ℃和25 ℃下保存60天,胰蛋白酶保持了初始活性的97.3%和83.8%。胰蛋白酶具有溶解壞死組織、抗炎、抗毒性、引流性能和穩(wěn)定的生物活性,改性后的纖維材料可作為生物醫(yī)學紡織材料應用于傷口治療等方面。Bazghaleh等[7]采用HNO3-Cu體系對粘膠纖維選擇性氧化,再用ZnCl2溶液離子改性,得到改性粘膠紗布,由于鋅離子是一種重要的止血介質,參與血液的阻滯,鋅離子的負載,賦予了紗布止血效果,經(jīng)測試,改性粘膠紗布紅細胞沉降時間較空白樣縮短了36%,具有較好的凝血功能,同時改性粘膠紗布對大腸桿菌和金黃色葡萄球菌具有較強的抑菌活性以及具有較好的生物降解性。
Biliuta等[5]將粘膠纖維采用TEMPO次氯酸鈉溴化鈉法氧化,在纖維表面引入一定量的負電荷基團作為磁性納米粒子的固定點,然后與制備的Fe3O4磁性粒子和油酸包覆的Fe3O4磁性粒子進行吸附從而制備纖維素基磁性材料,制備流程如圖7所示,改性后的粘膠纖維表現(xiàn)出超順磁性,油酸包覆Fe3O4改性粘膠纖維比飽和磁化值為0.05 emu/g,未經(jīng)油酸包覆Fe3O4改性粘膠纖維比飽和磁化值為0.24 emu/g。磁性粘膠纖維的潛在應用為醫(yī)學或技術領域,如制造安全紙。
2物理法
2.1后整理
織物后整理方法在賦予織物功能性方面占有很重要的地位,后整理方法簡便易行,在不改變原生產(chǎn)工藝流程以及設備的基礎上,只在后整理工藝中添加
相應的功能材料,即可使織物獲得所需要的功能[25]。
殼聚糖是一種多用途的親水多糖,由甲殼質脫乙酰反應制備,具有廣譜抗菌作用,對哺乳動物細胞具有低毒性[26-28],可用于抗菌衛(wèi)生用品或醫(yī)用紡織品等領域。如Fras等[29]通過后整理方式,將酸性殼聚糖直接吸附或反沉淀吸附到粘膠纖維表面,制備
了殼聚糖改性粘膠纖維,對革蘭氏陽性菌具有很好的抑菌作用(抑菌活性大于75%)。
抗氧化活性在治療過程中是一種很有價值的特性,可以減少炎癥反應的發(fā)生,殼聚糖抗氧化活性較差[30],對革蘭氏陰性菌抗菌效果也較差,基于此,Sauperl等[31]通過丁香酚對殼聚糖進行化學改性,并負載到粘膠纖維表面,賦予粘膠纖維優(yōu)異的抗氧化性,改性后粘膠纖維抗氧化活性從19%提高到60%,對革蘭氏陽性菌抑菌率95%,革蘭氏陰性菌抑菌率90%,真菌抑菌率92%。
Zemljicˇ等[32]通過將碘包裹在殼聚糖納米顆粒上,再經(jīng)過后整理負載到粘膠織物上,通過碘-殼聚糖的協(xié)同作用,賦予粘膠織物很強的抗菌和非常高的抗氧化活性,對金黃色葡萄球菌、大腸桿菌、白色念珠菌抑菌率達到100%,抗氧化活性大于40%。殼聚糖也被用于其他功能性改性,如Liu等[33]將殼聚糖修飾在雙醛粘膠纖維基體上,制備了一種高效的纖維基吸附劑,制備流程如圖8所示,所制備的改性粘膠纖維用于污水中貴金屬Au、Pd離子的選擇性分離,在最佳pH 2.0和3.0條件下,對Au(Ⅲ)和Pd(Ⅱ)最大吸附量達到322 mg/g和207 mg/g。Li[34]等采用植酸銨和殼聚糖作為環(huán)保型阻燃劑,通過浸漬的方式負載粘膠織物表面,提高了粘膠織物的阻燃和抗菌性能,制備流程如圖9所示,改性后粘膠織物極限氧指數(shù)為29%,對金黃色葡萄球菌和大腸桿菌的抗菌率均達到99.99%。張寧等[35]通過殼聚糖、明膠、二氧化鈦配制整理劑對粘膠織物整理,當二氧化鈦質量濃度為9.5 g/L時,粘膠織物紫外線防護系數(shù)UPF值達到75,對大腸桿菌、金黃色葡萄球菌抑菌率達到80%以上,但隨著水洗次數(shù)的增加,UPF值及抗菌性隨之下降。關昶等[36]通過殼聚糖對粘膠織物進行陽離子改性,提高粘膠纖維對酸性染料(亮藍色素)的上染效果,以硫酸鋁為媒染劑同浴媒染,染色織物色澤鮮艷,K/S值達到13.682,耐摩擦色牢度4~5級,耐皂洗色牢度3~4級。
除殼聚糖外,也可以采用其他材料通過后整理方式賦予粘膠織物功能性。如Lü等[37]合成了三氨基乙氧基環(huán)三磷腈(TAECTP)對粘膠織物進行后整理,獲得阻燃粘膠纖維,燃燒后纖維表面出現(xiàn)膨脹碳化涂層,纖維的初分解溫度比未處理的粘膠纖維提高了約30 ℃,極限氧指數(shù)達到33%以上。張超等[38]采用1,2,3,4-丁烷四羧酸作為交聯(lián)劑、超支化磷酰胺為阻燃劑對粘膠織物進行后整理,得到無甲醛耐久阻燃粘膠織物,極限氧指數(shù)達到29.1%,經(jīng)25次標準水洗后下降至24.8%,此外,整理后的織物強力和白度有所下降。
Wang等[39]以自制的陽離子明膠蛋白為助劑,對氫氧化鈉預處理后的粘膠織物整理,得到的粘膠織物對陰離子染料具有高吸收率和高脫色率,可用于印染廢水的脫色,也可用于防止淺色衣物在洗衣過程中水洗脫色。Heliopoulos等[40]用海藻酸鹽溶液對粘膠織物處理,再通過硫酸銅溶液整理,得到的粘膠/海藻酸鹽/銅織物具有良好的抗菌性能和防紫外線性能,紫外線防護系數(shù)UPF從3.0提高到11.79。Qu等[41]將石墨烯通過絲網(wǎng)印刷以及連續(xù)的軋壓干燥固化處理,在粘膠非織造布上創(chuàng)建了可控滲透深度的氧化石墨烯圖層,制備流程如圖10所示,處理后的材料具有較低的片材電阻(1.2~6.8 kΩ/sq)和良好的耐洗性,可用于傳感、可穿戴電子領域。
2.2等離子體處理
等離子體處理作為一種環(huán)保的物理改性方法,已廣泛應用于纖維的表面改性[42]。等離子體處理可以活化纖維表面,提高織物潤濕性,改善織物的吸附性能,Kramar [43]等采用介質阻擋放電(DBD)等離子體對粘膠織物處理,使羥端基轉化為羧基,然后用銀離子與銅離子對織物改性,提高了金屬離子與纖維素的相互作用,改性后的織物具有較好的抗菌活性。
不同的空氣介質對等離子體處理改性會產(chǎn)生不同的效果,Prysiazhnyi等[44]研究了在空氣、氮氣和氧氣等離子體中對粘膠織物進行介質阻擋放電預處理并對銀進行固定,發(fā)現(xiàn)采用氮氣等離子體處理,可以在纖維表面得到均勻的銀納米粒子,經(jīng)氧等離子體處理,纖維則以離子的形式吸附銀。
Kramar等[45]通過低壓氮氣DBD等離子體處理纖維,然后與銅離子結合,制備了功能疏水粘膠材料。制備方法如圖11所示,該方法通過等離子蝕刻去除大量的羥基,并將剩余極性基團與銅離子交聯(lián),削弱粘膠織物與水的相互作用,獲得了疏水材料,其靜態(tài)接觸角為130°,同時由于銅離子的殺菌作用,可賦予粘膠織物抗菌性能。
2.3共混法
物理共混法制備改性粘膠纖維,是將功能性物質與粘膠紡絲液混合,經(jīng)濕法紡絲制備。通過共混法可以賦予粘膠纖維抗菌、阻燃、護膚、高吸附性等功能。
共混法制備抗菌粘膠纖維,如Li等[46]在粘膠紡絲液中加入黨參粉和百里香精油微膠囊,賦予粘膠纖維抗菌、防霉、防螨等特性,對金黃色葡萄球菌、大腸桿菌、白色念珠菌抑菌率90%以上,對塵螨有滅殺效果,水洗20次后仍保持較好的抗菌、防螨性能。邱純利等[47]將甘草、丁香提取物和海泡石微粉作為功能劑,與粘膠紡絲液共混紡絲賦予粘膠纖維
抗菌、防霉、消臭功效,改性后粘膠纖維對金黃色葡萄球菌抑菌率達到99.81%,對黑曲霉防霉等級達1級,對氨水、醋酸、異戊酸消臭率分別為93%,97%,95%。田健澤[48]將綠茶油分散乳化到水中得到綠茶漿料,加入紡絲原液中紡絲制備出具有抗菌效果的綠茶粘膠纖維,當綠茶漿料加入量5%時,纖維對大腸桿菌、金黃色葡萄球菌、白色念珠菌抑菌率分別為97%,95%,99%。Liu等[49]將爐甘石分散在海藻酸鈉的堿性溶液中,然后用紡絲注射的方法與粘膠紡絲溶液混合,紡絲,制備了爐甘石/海藻酸鈉粘膠纖維,爐甘石主要由碳酸鋅(ZnCO3)組成,能部分吸收創(chuàng)面滲出物,具有抗腐蝕、收斂、消炎、止尿、保護創(chuàng)面等重要作用,同時還能抑制局部金黃色葡萄球菌的生長。
共混法制備驅蚊粘膠纖維,如林燕萍等[50]提取薰衣草、薄荷、香茅、青蒿植物精油,加入到粘膠紡絲液中紡絲,賦予粘膠纖維驅蚊效果,植物精油的添加會降低粘膠纖維的力學性能,添加量需控制在10%~15%。李勝國等[51]首先將除蟲菊酯乳化作為芯材,以β-環(huán)糊精為壁材制備除蟲菊酯/環(huán)糊精包合物,將包合物加入到粘膠紡絲原液中共混紡絲,得到驅蚊粘膠纖維,當包合物添加量達到25%時,對羽化后白紋伊蚊雌性成蟲驅避率為72.7%,驅蚊效果達到A級。
共混法制備阻燃粘膠纖維,如He等[52]合成了聚-雙(甲氧基乙氧基)磷腈(PMEP),與粘膠紡絲液共混制備阻燃纖維,當PMEP含量大于10%時,經(jīng)50次洗滌,粘膠纖維極限氧指數(shù)仍保持在28%以上。
除抗菌、阻燃功能外,可通過共混法賦予纖維特殊的服用性或保健性。如Wei等[53]制備了一種具有吸濕發(fā)熱功能的新型復合纖維,以角蛋白、棉漿為原料,以絲素蛋白為交聯(lián)劑,將角蛋白固定在纖維素上,采用濕法紡絲法制備了蛋白混合粘膠纖維?;诮堑鞍缀徒z素蛋白的吸濕發(fā)熱原理,賦予粘膠纖維自熱功能,改性后粘膠纖維吸濕率12.68%,自熱性能6.1 ℃/5 min,產(chǎn)品可用于功能性服裝材料領域。孟凱等[54]將蠶蛹蛋白液與粘膠液混合后紡絲,得到的纖維外層覆有蛋白質,賦予纖維良好的舒適性和親膚性,同時兼具懸垂性、抗皺性,纖維所含亮氨酸、絲氨酸、蘇氨酸具有護膚功能,丙氨酸能有效阻隔陽光輻射,具有緩解皮膚瘙癢等功效。劉長軍等[55]將鍺礦石粉體為添加劑,六聚磷酸鈉的氫氧化鈉溶液為分散劑,獲得鍺礦石粉體分散液,加入到粘膠紡絲原液中,經(jīng)紡絲制備功能性鍺粘膠短纖維,負離子濃度895個/cm3,遠紅外法向發(fā)射率為0.87,具有良好的釋放負離子性能和遠紅外性能,擁有促進細胞活化,減緩皮膚衰老的保健效果。
此外,通過共混法也可以賦予纖維抗靜電性、吸附性等。如李昌壘等[56]采用聚乙烯吡咯烷酮對超細石墨分散,經(jīng)過濾、脫泡后,采用紡前注射裝置加入到粘膠原液中,經(jīng)紡絲制備得到功能性超細石墨粘膠短纖維,表面比電阻為4×108 Ω/m2,靜電壓半衰期1.0 s,達到國家標準中抗靜電A級要求。郭君[57]將硅藻土混入粘膠原液中濕法紡絲制備了硅藻土改性粘膠纖維,改性后的粘膠纖維對甲醛和氨氣吸附率達到90%以上,可用于園林植物種植領域,用于去除土壤中的有害氣體。
3生物法
生物法主要采用生物酶處理粘膠纖維,如Akbari等[58]研究了酶處理粘膠纖維對水懸浮液細菌吸附能力的影響,酶解后粘膠樣品的含水率和結晶度均有所提高,細菌吸收性能顯著提高,對大腸桿菌吸附量從20.2%提高到37.9%,金黃色葡萄球菌吸附量從9.9%提高到23.2%。Jiang等[59]通過蠶蛹提取蠶蛹殼聚糖寡糖,利用β-葡萄糖酶對蠶蛹殼聚糖寡糖、粘膠纖維處理,制備了蠶蛹殼聚糖寡糖改性粘膠纖維,對陰離子染料具有更好的染色穩(wěn)定性,同時對大腸桿菌和金黃色葡萄球菌表現(xiàn)出良好的抗菌性能,連續(xù)洗滌100次后,改性粘膠纖維對大腸桿菌和金黃色葡萄球菌的抗菌性能分別為82.45%和75.76%。
4結語
粘膠纖維具有吸收性、柔軟型、親膚性等天然特性,多年來在紡織品、服飾、醫(yī)療、衛(wèi)生護理等領域發(fā)揮著重要的作用,目前,隨著國際上對環(huán)保解決方案的需求不斷增加,粘膠纖維作為可生物降解纖維,符合可持續(xù)發(fā)展和環(huán)保的需求,將獲得更多的發(fā)展機會。
差別化、功能化、高性能、綠色環(huán)保型產(chǎn)品的開發(fā)是粘膠纖維行業(yè)的主要發(fā)展的趨勢,阻燃、抗菌、導電、高吸附、磁性、抗炎、止血等功能性的開發(fā),將推動改性粘膠纖維在阻燃織物、醫(yī)用抗菌織物、可穿戴電子材料、功能性服飾、廢水處理材料、防紫外線織物、光催化材料等領域的應用,具有廣闊的市場前景。
參考文獻:
[1]EDWARDS J V, VIGO T L. Biologically Active Fibers in Health Care[M]. Washington: ACS Publications, 2001.
[2]LI X M, ZHANG K K, SHI R, et al. Enhanced flame-retardant properties of cellulose fibers by incorporation of acid-resistant magnesium-oxide microcapsules[J]. Carbo-hydrate Polymers, 2017, 176: 246-256.
[3]WANG N, LI G D, YU Z, et al. Conductive polypyrrole/viscose fiber composites[J]. Carbohydrate Polymers, 2015, 127: 332-339.
[4]WU Q H, CHEN S X, LUO S H, et al. Aminating modification of viscose fibers and their CO2 adsorption properties[J]. Journal of Applied Polymer Science, 2016, 133(1): 1-7.
[5]BILIUTA G, COSERI S. Magnetic cellulosic materials based on TEMPO-oxidized viscose fibers[J]. Cellulose, 2016, 23(6): 3407-3415.
[6]NIKOLIC T, MILANOVIC J, KRAMAR A, et al. Prepa-ration of cellulosic fibers with biological activity by immobi-lization of trypsin on periodate oxidized viscose fibers[J]. Cellulose, 2014, 21(3): 1369-1380.
[7]BAZGHALEH A A, DOGOLSAR M A. Preparation of degradable oxidized regenerated cellulose gauze by zinc modification on HNO3/Cu oxidized viscose fibers[J]. Fibers and Polymers, 2019, 20(6): 1125-1135.
[8]LEWIN M. Handbook of Fiber Chemistry[M]. Boca Raton: CRC Press, 2006: 586.
[9]楊淑蕙.植物纖維化學[M].北京:中國輕工業(yè)出版社,2001:206-207.
YANG Shuhui. Plant Fiber Chemistry[M]. Beijing: China Light Industry Press, 2001: 206-207.
[10]XU L, CHENG B W, REN Y L, et al. Facile synthesis and characterization of flame retardant viscose fiber via graft copolymerization and chemical modification[J]. Frontiers of Materials Science in China, 2010, 4(4): 402-406.
[11]WANG L H, REN Y L, WANG X L, et al. Fire retardant viscose fiber fabric produced by graft polymerization of phosphorus and nitrogen-containing monomer[J]. Cellulose, 2016, 23(4): 2689-2700.
[12]蘇昱,朱云陽,龍海,等.接枝鳥苷酸粘膠纖維合成及優(yōu)化工藝[J].化學研究與應用,2021,33(2):237-244.
SU Yu, ZHU Yunyang, LONG Hai, et al. Synthesis and optimization process of carboxylated viscose fiber grafted guanosine acid[J]. Chemical Research and Application, 2021, 33(2): 237-244.
[13]蘇昱,朱云陽,龍海,等.接枝三聚氰胺粘膠纖維的合成及優(yōu)化工藝[J].化學研究與應用,2020,32(8):1341-1348.
SU Yu, ZHU Yunyang, LONG Hai, et al. Synthesis method and optimization process of carboxylated adhesive fiber grafted melamine[J]. Chemical Research and Application, 2020, 32(8): 1341-1348.
[14]ZHENG J, SONG F, WANG X L, et al. In-situ synthesis, characterization and antimicrobial activity of viscose fiber loaded with silver nanoparticles[J]. Cellulose, 2014, 21(4): 3097-3105.
[15]劉伶,鮑毅,劉鑫鑫,等.Β-環(huán)糊精接枝改性粘膠織物及其姜黃素無水染色[J].毛紡科技,2020,48(12):32-37.
LIU Ling, BAO Yi, LIU Xinxin, et al. Beta-cyclodextrin grafted modified viscose fabric and its waterless dyeing of curcumin[J]. Wool Textile Journal, 2020, 48(12): 32-37.
[16]REHAN M, BARHOUM A, KHATTAB T A, et al. Colored, photocatalytic, antimicrobial and UV-protected viscose fibers decorated with Ag/Ag2CO3 and Ag/Ag3PO4 nanoparticles[J]. Cellulose, 2019, 26(9): 5437-5453.
[17]REHAN M, MOWAFI S, ALY S A, et al. Microwave-heating for in-situ Ag NPs preparation into viscose fibers[J]. European Polymer Journal, 2017, 86: 68-84.
[18]劉杰,高曉紅,劉其霞,等.載銀粘膠纖維的制備及其性能研究[J].棉紡織技術.2022,50(8):26-30.
LIU Jie, GAO Xiaohong, LIU Qixia, et al. Preparation and property study of silver loaded viscose fiber[J]. Cotton Textile Technology, 2022, 50(8): 26-30.
[19]BU Y M, ZHANG S Y, CAI Y J, et al. Fabrication of durable antibacterial and superhydrophobic textiles via in situ synthesis of silver nanoparticle on tannic acid-coated viscose textiles[J]. Cellulose, 2019, 26(3): 2109-2122.
[20]LI G D, YU Z, HAN N, et al. Preparation and properties of polyaniline/viscose fiber adducts[J]. Polymer Composites, 2017, 38(4): 782-788.
[21]SELA S K, NAYAB UL-HOSSAIN A. Effect of cross linking agents on the improvement of viscose fabric strength[J]. Journal of Engineering, 2019, 10(2): 119-126.
[22]ZHANG C X, REN J, MA Y M, et al. Preparation and adsorption properties of amphoteric viscose fiber[J]. Iranian Polymer Journal, 2018, 27(9): 635-644.
[23]ZHANG C X, LIU Y. Selective adsorption of zwitterionic viscose fiber treated with sodium chloroacetate and hyper-branched polyethylenimine[J]. Iranian Polymer Journal, 2020, 30: 57-65.
[24]NIKOLIC' T, HAJNRIH T, KRAMAR A, et al. Influence of periodate oxidation on sorption properties of viscose yarn[J]. Cellulose Chemistry and Technology, 2018, 52(5-6): 459-467.
[25]劉吉平.紡織科學中的納米技術[M].北京:中國紡織出版社,2003:380.
LIU Jiping. Nanotechnology in Textile Science[M]. Beijing: China Textile & Apparel Press, 2003: 380.
[26]KONG M, CHEN X G, XING K, et al. Antimicrobial properties of chitosan and mode of action: A state of the art review[J]. International Journal of Food Microbiology, 2010, 144(1): 51-63.
[27]RABEA E I, BADAWY M E T, STEVENS C V, et al. Chitosan as antimicrobial agent: Applications and mode of action[J]. Biomacromolecules, 2003, 4(6): 1457-1465.
[28]VERLEE A, MINCKE S, STEVENS C V. Recent developments in antibacterial and antifungal chitosan and its deriva-tives[J]. Carbohydrate Polymers, 2017, 164: 268-283.
[29]FRAS L, RISTIC' ?T, TKAVC T. Adsorption and antibac-terial activity of soluble and precipitated chitosan on cellulose viscose fibers[J]. Journal of Engineered Fibers and Fabrics, 2012, 7(1): 50-57.
[30]RUI L Y, XIE M H, HU B, et al. Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid[J]. Carbohydrate Polymers, 2017, 170: 206-216.
[31]SAUPERL O, ZEMLJIC L F, VALH J V, et al. Assessment of chemically and enzymatically modified chitosan with eugenol as a coating for viscose functiona-lization for potential medical use[J]. Textile Research Journal, 2021, 91(23/24): 2813-2832.
[32]ZEMLJICˇ L F, PERIN Z, AUPERL O, et al. Medical textiles based on viscose rayon fabrics coated with chitosan-encapsulated iodine: Antibacterial and antioxidant properties[J]. Textile Research Journal, 2018, 88(22): 2519-2531.
[33]LIU F L, HUA S, ZHOU L, et al. Development and characterization of chitosan functionalized dialdehyde viscose fiber for adsorption of Au (III) and Pd (II)[J]. International Journal of Biological Macromolecules, 2021, 173: 457-466.
[34]LI P, LIU C, WANG B, et al. Eco-friendly coating based on an intumescent flame-retardant system for viscose fabrics with multi-function properties: Flame retardancy, smoke suppression, and antibacterial properties[J]. Progress in Organic Coatings, 2021, 159: 106400.
[35]張寧,KESINEE S,EAKACHAT J.納米二氧化鈦對粘膠織物的整理工藝研究[J].毛紡科技,2020,48(10):42-45.
ZHANG Ning, KESINEE S, EAKACHAT J. Research of finishing technologies of viscose fabrics by nanometer titanium dioxide[J]. Wool Textile Journal, 2020, 48(10): 42-45.
[36]關昶,宋鈺,楊大鵬.陽離子改性粘膠織物的亮藍色素染色[J].印染,2020,46(2):18-22.
GUAN Chang, SONG Yu, YANG Dapeng. Dyeing of cationic modified viscose fabric with bright blue pigment[J]. China Dyeing & Finishing, 2020, 46(2): 18-22.
[37]L W F, LI Q S, ZHAO Z, et al. Preparation and characterization of flame-retardant viscose fiber treated with TAECTP[J]. Integrated Ferroelectrics, 2014, 151(1): 193-208.
[38]張超,蔣之銘,朱少彤,等.超支化磷酰胺在粘膠織物阻燃整理中的應用[J].紡織學報.2021,42(7):39-45.
ZHANG Chao, JIANG Zhiming, ZHU Shaotong, et al. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics[J]. Journal of Textile Research, 2021, 42(7): 39-45.
[39]WANG X Y, LIU Y J, LV R. Preparation of a kind of Non-Woven viscose colour absorbing material and research of its colour absorption properties[J]. Fibres & Textiles in Eastern Europe, 2019, 27(3): 71-77.
[40]HELIOPOULOS N S, KOUZILOS G N, GIARMENITIS A I, et al. Viscose fabric functionalized with copper and copper alginate treatment toward antibacterial and UV blocking properties[J]. Fibers and Polymers, 2020, 21(6): 1238-1250.
[41]QU J G, HE N F, PATIL S V, et al. Screen printing of graphene oxide patterns onto viscose nonwovens with tunable penetration depth and electrical conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14944-14951.
[42]HCKER H. Plasma treatment of textile fibers[J]. Pure and applied chemistry, 2002, 74(3): 423-427.
[43]KRAMAR A, PRYSIAZHNYI V, DOJCˇINOVIC' B, et al. Antimicrobial viscose fabric prepared by treatment in DBD and subsequent deposition of silver and copper ions: Investigation of plasma aging effect[J]. Surface and Coatings Technology, 2013, 234: 92-99.
[44]PRYSIAZHNYI V, KRAMAR A, DOJCINOVIC B, et al. Silver incorporation on viscose and cotton fibers after air, nitrogen and oxygen DBD plasma pretreatment[J]. Cellulose, 2013, 20(1): 315-325.
[45]KRAMAR A D, OBRADOVIC' B M, VESEL A, et al. Preparation of hydrophobic viscose fabric using nitrogen DBD and copper ions sorption[J]. Plasma Processes and Polymers, 2015, 12(10): 1095-1103.
[46]LI H M, YU H S. Multifunctional modification of viscose fiber using plant extracts formulations[J]. IOP Conference Series: Materials Science and Engineering. 2020, 768(2): 022040.
[47]邱純利,趙艷芹.抗菌防霉消臭粘膠纖維的性能研究[J].人造纖維,2020,50(1):2-5.
QIU Chunli, ZHAO Yanqin. Study on the properties of anti-bacterial, anti-mildew and deodorizing viscose fibers[J]. Artificial Fiber, 2020, 50(1): 2-5.
[48]田健澤.綠茶抗菌粘膠短纖維的紡制試驗[J].人造纖維,2021,51(1):2-4.
TIAN Jianze. Spinning test of green tea antibacterial viscose staple fiber[J]. Artificial Fiber, 2021, 51 (1): 2-4.
[49]LIU D Q, LIU Y, HAN S F, et al. Study on the calamine/sodium alginate modified viscose fiber[J]. Advanced Materials Research, 2012, 418: 192-195.
[50]林燕萍,楊陳,李永貴.幾種含植物精油粘膠纖維的紡制及性能測試[J].纖維素科學與技術,2020,28(3):39-43.
LIN Yanping, YANG Chen, LI Yonggui. Spinning and property test of several viscose fibers riched essential oil[J]. Journal of Cellulose Science and Technology, 2020, 28(3): 39-43.
[51]李勝國,安娜.驅蚊粘膠纖維的制備[J].人造纖維,2021,51(2):8-12.
LI Shengguo, AN Na. Preparation of mosquito-repellent viscose fiber[J]. Artificial Fiber, 2021, 51 (2): 8-12.
[52]HE Y F, CHEN Y, ZHENG Q K, et al. Preparation and properties of flame-retardant viscose fiber modified with poly [bis (methoxyethoxy) phosphazene][J]. Fibers and Polymers, 2015, 16(5): 1005-1011.
[53]WEI W, YOUBO D, ZHOU Z, et al. Preparation and characterization of protein/viscose fiber and its action in self-heating[J]. Journal of Applied Polymer Science, 2019, 136(10): 47146.
[54]孟凱,劉丞,王凱,等.蠶蛹蛋白改性粘膠纖維基本性能探究[J].廣東蠶業(yè),2021,55(10):10-11.
MENG Kai, LIU Cheng, WANG Kai, et al. Basic properties of silkworm pupa protein modified viscose fiber[J]. Guangdong Sericulture, 2021, 55(10): 10-11.
[55]劉長軍,李昌壘,王東,等.功能性鍺粘膠短纖維的制備及其性能研究[J].人造纖維,2020,50(5):2-5.
LIU Changjun, LI Changlei, WANG Dong, et al. Prepa-ration and properties of functional germanium viscose staple fiber[J]. Artificial Fiber, 2020, 50(5): 2-5.
[56]李昌壘,顏晶,劉長軍,等.功能性超細石墨粘膠短纖維的制備及性能研究[J].人造纖維,2020,50(2):2-6.
LI Changlei, YAN Jing, LIU Changjun, et al. Preparation and properties of functional superfine graphite viscose staple fiber[J]. Artificial Fiber, 2020, 50(2): 2-6.
[57]郭君.硅藻土改性粘膠纖維植物吸附層制備及性能[J].合成材料老化與應用,2021,50(3):112-114.
GUO Jun. Preparation and Properties of Diatomite Modified Viscose Fiber Plant Adsorption Layer[J]. Synthetic Materials Aging and Application, 2021, 50(3): 112-114.
[58]AKBARI M, DADADASHIAN F, KORDESTANI S S, et al. Enzymatic modification of regenerated cellulosic fabrics to improve bacteria sorption properties[J]. Journal of Biomedical Materials Research Part A, 2013, 101(6): 1734-1742.
[59]JIANG W, ZHOU X H, SU Y. Preparation of viscose fiber modified with silkworm pupa chitosan oligosaccharide by β-glucosaccharase[J]. Textile Research Journal, 2019, 89(21/22): 4461-4475.
Modification method of viscose fiber
ZHANG Junqi, GUO Yongde
(Xinlong Holding (Group) Co., Ltd., Chengmai 571924, China)
Abstract:
Viscose fiber is an important raw material in the textile industry and is widely used in textile, clothing, medical care, health care and other fields. In recent years, functional modification to endow viscose fiber with antibacterial, flame retardant, conductive, highly adsorptive, magnetic, anti-inflammatory, hemostatic functions, and and the like has received extensive attention.
There are many methods involved in the modification of viscose fiber, including chemical, physical and biological methods. For example, grafting the intermediate substances acrylonitrile or acrylic acid on the surface of the viscose fiber, giving the viscose fiber flame retardancy through the reaction of nitrile group with hydrazine hydrate and zinc acetate, giving the viscose fiber adsorption of CO2 through the reaction of nitrile group with triethylenetetramine, and giving the viscose fiber antibacterial properties by in-situ loading Ag nanoparticles on polyacrylic acid. It is also possible to oxidize hydroxyl groups to aldehyde groups generates radicals at the C-2 or C-3 positions, which in turn trigger graft copolymerization with the flame retardant component to impart flame retardancy to viscose fibers, etc. Loading Ag/Ag2CO3 or Ag/Ag3PO4 nanoparticles on the surface of the viscose fiber to give antibacterial activity and UV shielding properties to the viscose fiber; in-situ polymerization of polypyrrole on the surface of the viscose fiber to give electrical conductivity to the viscose fiber. Through crosslinking reaction to improve the physical strength of viscose fiber and reduce water absorption, etherification modification to improve the adsorption of dyes on viscose fiber, oxidation modification as a carrier or reaction site to introduce or load functional groups such as trypsin, zinc ions, magnetic nanoparticles, etc, to give anti-inflammatory, hemostatic, magnetic or other functions to viscose fiber.
Physical modification of viscose fiber. Modified chitosan, flame retardant, titanium dioxide, copper sulfate, etc, loaded onto the viscose fabric through finishing to give the fabric anti-bacterial, anti-oxidant activity, flame retardancy or UV protection. Viscose fabric treated by dielectric barrier discharge (DBD) plasma, and then modified with silver ions and copper ions on the fabric, giving the fabric antibacterial activity. Functional substances mixed with viscose spinning liquid, by wet spinning to give viscose fiber antibacterial, anti-mildew, deodorant, anti-inflammatory, or mosquito repellent, flame retardant, anti-static, moisture absorption and heat, skin care, release of negative ions and far-infrared properties or other functions.
Biological modification of viscose fiber. Such as using enzyme treatment to improve the adsorption capacity of viscose fiber to bacteria in aqueous suspension.
The development of differentiated, functional, high-performance, green and environmentally friendly products is the main development trend of viscose fiber industry. The development of functional viscose fabrics will promote the application of viscose fibers in the fields of flame retardant fabrics, medical antibacterial fabrics, wearable electronic materials, functional clothing, wastewater treatment materials, anti-ultraviolet fabrics, photocatalytic materials, etc, which has broad market prospects.
Keywords:
viscose fiber; modification; antiflaming; anti-bacteria; conduction
收稿日期:20220626
網(wǎng)絡出版日期:20221101
作者簡介:張俊奇(1989—),男,遼寧蓋州人,工程師,碩士,主要從事特種紙、非織造布方面的研究。