張?jiān)娬Z(yǔ) 李俐玫 朱芷逸
摘要:研究在光滑有界區(qū)域Ω中帶Navier-slip邊界條件的三維不可壓縮Boussinesq-MHD方程組解的存在性問(wèn)題.首先,運(yùn)用Galerkin近似法得到方程組弱解的全局存在性.其次在H1范數(shù)意義下,通過(guò)能量估計(jì)得到關(guān)于近似解的一致先驗(yàn)估計(jì),再結(jié)合標(biāo)準(zhǔn)的極限過(guò)程,Gronwall不等式以及初始條件等證明該方程組強(qiáng)解的局部存在唯一性.
關(guān)鍵詞:Boussinesq-MHD方程; Navier-slip邊界條件; Galerkin近似; 弱解; 強(qiáng)解
中圖分類號(hào):O175.29 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-8395(2023)05-0601-07
1預(yù)備知識(shí)
2主要結(jié)果與證明
3總結(jié)與展望
本文研究了在一般光滑有界區(qū)域中,三維不可壓縮Boussinesq-MHD方程組在Navier-slip邊界條件下解的存在性問(wèn)題,相較于Boussinesq方程組多了磁場(chǎng)耦合作用,在計(jì)算中也相對(duì)較復(fù)雜.本文需要通過(guò)Galerkin近似得到逼近解,并在此基礎(chǔ)上通過(guò)能量估計(jì)得到Boussinesq-MHD方程組的Galerkin截?cái)嘟釮1一致有界估計(jì),最后結(jié)合Gronwall不等式得到強(qiáng)解的局部存在性.
另外,可以進(jìn)一步考慮在Navier-slip邊界條件下三維不可壓縮Boussinesq-MHD方程組的粘性消失極限問(wèn)題及其相應(yīng)的衰減率問(wèn)題.
參考文獻(xiàn)
[1] BIAN D F, GUI G L. On 2-D Boussinesq equations for MHD convection with stratification effects[J]. Journal of Differential Equations,2016,261(3):1669-1711.
[2] 秦文迪. 一類二維MHD-Boussinesq方程組整體解的存在性[J]. 理論數(shù)學(xué),2021,11(2):192-200.
[3] CHEN Q L, MIAO C X, ZHANG Z F. The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations[J]. Communications in Mathematical Physics,2007,275(3):861-872.
[4] HE C, XIN Z P. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations[J]. Journal of Functional Analysis,2005,227(1):113-152.
[5] RAJAGOPAL K R, RUZICKA M, SRINIVASA A R. On the Oberbeck-Boussinesq approximation[J]. Mathematical Models and Methods in Applied Sciences,1996,6(8):1157-1167.
[6] ZHOU D G, LI Z L. Global well-posedness for the 2D Boussinesq equations with zero viscosity[J]. Journal of Mathematical Analysis Applications,2017,447(2):1072-1079.
[7] LAI S H, WU J H, XU X J, et al. Optimal decay estimates for 2D Boussinesq equations with partial dissipation[J]. Journal of Nonlinear Science,2021,31(16):1432-1467.
[8] 郭尚喜. 一維可壓縮Navier-Stokes方程初值問(wèn)題強(qiáng)解的整體存在性[J]. 四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,43(6):768-773.
[9] XIAO Y L, XIN Z P, WU J H. Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition[J]. Journal of Functional Analysis,2009,257(11):3375-3394.
[10] XIAO Y L, XIN Z P. On the invisid limit of the 3D Navier-Stokes equations with generalized Navier-slip boundary conditions[J]. Communications in Mathematics and Statistics,2013,1(2):259-279.
[11] 王雪娜,雍燕. 可壓縮流體Navier-slip邊界條件問(wèn)題解的存在性研究[J]. 上海理工大學(xué)學(xué)報(bào),2017,39(1):15-24.
[12] 楊俊. 三維Boussinesq方程組在slip邊界條件下的粘性消失極限的研究[D]. 湘潭:湘潭大學(xué),2017.
[13] 李紅民. 關(guān)于幾類流體方程相關(guān)極限的研究[D]. 湘潭:湘潭大學(xué),2019.
[14] 郭連紅. 一類Boussinesq方程組帶Navier-slip邊界條件解的存在性[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2019,49(18):193-198.
[15] 王術(shù). Sobolev空間與偏微分方程引論[M]. 北京:科學(xué)出版社,2009:88-89.
[16] LIU H M, BIAN D F, PU X K. Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion[J]. Zeitschrift für Angewandte Mathematik und Physik,2019,70(3):70-81.
Existence of Solutions for the 3D Boussinesq-MHD
Equations with Navier-slip Boundary ConditionsZHANG Shiyu1,2,LI Limei1,2,ZHU Zhiyi1,2(1. School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, Sichuan;
2. V. C. & V. R. Key Lab. of Sichuan Province, Sichuan Normal University, Chengdu 610066, Sichuan)
Abstract:We investigate the existence of solutions for the 3D incompressible Boussinesq-MHD equations with the Navier-slip boundary conditions in a smooth bounded domain. Firstly, the global existence of weak solution is obtained by Galerkin approximation. Secondly, the uniform prior estimates of the approximate solution is obtained by using the energy estimation method in the sense of H1 norm. Then combining with the standard limit process, Gronwall inequality and initial conditions, the local existence and uniqueness of the strong solution of the system are proved.
Keywords:Boussinesq-MHD equations; Navier-slip boundary condition; Galerkin approximation; weak solution; strong solution
2020 MSC:35Q35; 76D03