劉夢雨 楊建偉
摘要:基于測度值解的概念,研究了旋轉(zhuǎn)淺水和歐拉方程的漸近極限問題.在好初值條件下,證明了當弗勞德數(shù)趨近于零時,旋轉(zhuǎn)淺水和歐拉方程的測度值解收斂于旋轉(zhuǎn)湖方程的經(jīng)典解.
關(guān)鍵詞:旋轉(zhuǎn)淺水和歐拉方程; 測度值解; 漸近極限
中圖分類號:O175.2 文獻標志碼:A 文章編號:1001-8395(2023)05-0623-05
1預(yù)備知識
2引理和主要結(jié)果
3主要結(jié)論的證明
參考文獻
[1] WU K C. Low Froud number limit of the rotating shallow water and Euler equation[J]. Proc Amer Math Soc,2014,142(3):939-947.
[2] LEVERMORE C D, OLIVER M, TITI E S. Global well-posedness for models of shallow water in a basin with a varying bottom[J]. Indiana Univ Math,1996,45(2):479-510.
[3] CHENG P, YANG J W, DAN B. Rate of convergence from the rotating Euler and shallow water equation to the rotating lake equations[J]. Bound Value Problem,2017,2017:1-9.
[4] PERNA D R J. Measure-valued solutions to conservation laws[J]. Arch Ration Mech Anal,1985,88(3):223-270.
[5] GWIAZDA P, SWIERCZEWSKA-GWIAZDA A, WIEDEMANN E. Weak-strong uniqueness for measure-valued solutions of some compressible fluid models[J]. Nonlinearity,2015,28(11):3873-3890.
[6] FEIREISL E, GWIAZDA P, SWIERCZEWSKA-GWIAZDA A, et al. Dissipative measure-valued solutions to the compressible Navier-Stokes system[J]. Calc Var Part Diff,2016,55(6):141-160.
[7] BREZINA J, FEIREISL E. Measure-valued solutions to the complete Euler system[J]. J Math Soc Japan,2018,69:1227-1245.
[8] FEIREISL E, KLINGENBERG C, MARKFELDER S. On the low Mach number limit for the compressible Euler system[J]. SIAM J Math Anal,2019,51(2):1496-1513.
[9] BREZINA J, FEIREISL E, NOVOTNY A. Stability of strong solutions to the Navier-Stokes-Fourier system[J]. SIAM J Math Anal,2020,52(2):1761-1785.
[10] HUANG B K. On the existence of dissipative measure-valued solutions to the compressible micropolar system[J]. J Math Fluid Mech,2020,22(59):1-16.
Asymptotic Limit of the Rotating Shallow Water and Euler EquationsLIU Mengyu,YANG Jianwei(School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan)
Abstract:In this paper,? we study the asymptotic limit of the rotating shallow water and Euler equations based on the concept of measure-valued solutions. In the case of well-prepared initial data, we prove that the measure-valued solutions of the rotating shallow water and Euler equations converge to the classical solution of the rotating lake equations when the Froued number tends to zero.
Keywords:rotating shallow water and Euler equations; measure-valued solutions; asymptotic limit
2020 MSC:35B40; 35D30
(編輯周俊)