滕澤宇 李明嶸 馬麗娜 王柏 陳智文
摘要 東北黑土區(qū)是我國(guó)重要糧食生產(chǎn)區(qū),黑土地保護(hù)和利用已經(jīng)上升到國(guó)家戰(zhàn)略,目前在東北黑土區(qū)實(shí)施的保護(hù)性耕作技術(shù)是緩解氣候變化的一項(xiàng)重要策略,但不同研究中保護(hù)性耕作對(duì)黑土固碳、釋碳和作物產(chǎn)量的影響存在較大的差異,需要進(jìn)一步闡明黑土固碳與釋碳的影響機(jī)制。圍繞東北黑土區(qū)玉米帶的特殊環(huán)境條件以及保護(hù)性耕作方式,系統(tǒng)地梳理了黑土固碳與釋碳理論的演變及最新試驗(yàn)證據(jù),明確黑土區(qū)環(huán)境特征、施肥及耕作方式對(duì)黑土碳固存與釋放的影響機(jī)制、途徑及效果。提出未來(lái)黑土固碳與釋碳研究的重點(diǎn)方向和內(nèi)容,建議后續(xù)進(jìn)行長(zhǎng)期性、針對(duì)性與定量性的研究,以推動(dòng)黑土固碳與釋碳研究的深入開(kāi)展。
關(guān)鍵詞 黑土;保護(hù)性耕作;土壤有機(jī)碳;固碳;釋碳
中圖分類(lèi)號(hào) S154.1 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 0517-6611(2023)06-0011-03
doi:10.3969/j.issn.0517-6611.2023.06.004
Research Progress on Carbon Sequestration Effect of Conservation Tillage in Maize Belt of Black Soil Region, Northeast China
TENG Ze-yu, LI Ming-rong, MA Li-na et al
(Jilin New Fertilizer Engineering Research Center of Jilin Normal University, Siping, Jilin 136000)
Abstract The northeast black soil region is an important grain producing region in China. The protection and use of black soil has become a national strategy. Conservation tillage techniques currently being used in the black soil region of the northeast are an important strategy for mitigate climate change. However, the effects of conservation tillage on black soil carbon sequestration, carbon release and crop yield were different among different studies. Therefore, the mechanism of carbon sequestration and carbon release from black soil needs further elucidation. This paper focused on the special environmental conditions and conservation tillage methods of maize belt in the black soil region of northeast China. The latest experimental evidence and the evolution of theory of carbon sequestration and release in the black soil region are systematically reviewed, and the effects of environmental characteristics, fertilization and tillage methods on carbon sequestration and release in the black soil region are discussed. We proposed the key directions and contents of future research, suggested to conduct long-term, targeted and quantitative research to promote the study of carbon sequestration and carbon release in black soil region.
Key words Black soil;Conservation tillage;Soil organic carbon;Carbon sequestration;Carbon release
土壤有機(jī)碳庫(kù)是自然界最重要的碳庫(kù)之一,其碳儲(chǔ)量超過(guò)大氣碳庫(kù)的2倍[1]。土壤有機(jī)碳(SOC)/有機(jī)質(zhì)(SOM)在土壤中的固存與周轉(zhuǎn)具有重要的生態(tài)與環(huán)境效應(yīng)。SOC的累積可改善土壤的物理、化學(xué)及生物特征,是保障作物生長(zhǎng)的重要因素[2],也是評(píng)價(jià)黑土土壤肥力質(zhì)量的重要指標(biāo)[3]。土壤碳向大氣的釋放是影響全球氣候變化的重要因子[4],農(nóng)田SOC 庫(kù)易受人類(lèi)活動(dòng)干預(yù),可在較短的時(shí)間內(nèi)對(duì)耕作方式和環(huán)境條件做出響應(yīng)。因此,增加農(nóng)田SOC的固存被視作抵消人為CO2排放和提高土壤肥力的雙贏(yíng)策略與途徑[5]。
我國(guó)東北為世界四大黑土區(qū)之一,主要分布在黑龍江和吉林兩省,區(qū)內(nèi)低溫潮濕的氣候和以草本為主的自然植被有利于黑土中SOC的積累,具有自然肥力高、富含有機(jī)質(zhì)且適于耕作的土壤,具有良好的土壤肥力與物理、化學(xué)和生物學(xué)特性。但經(jīng)過(guò)多年開(kāi)墾特別是傳統(tǒng)的耕作方式降低了SOM的輸入,強(qiáng)烈改變了土壤理化性質(zhì),造成SOC流失、土壤固碳能力下降,土壤肥力降低。20世紀(jì)60年代起,東北黑土區(qū)率先開(kāi)展保護(hù)性耕作研究,已初步形成具有區(qū)域特色的保護(hù)性耕作體系[6]。區(qū)內(nèi)的主要作物玉米不僅在糧食生產(chǎn)方面占據(jù)重要地位,也為許多食品及工業(yè)產(chǎn)業(yè)提供了重要的原料保障。黑土區(qū)優(yōu)質(zhì)的土壤資源與適宜的環(huán)境條件為玉米高產(chǎn)、豐產(chǎn)、穩(wěn)產(chǎn)奠定了基礎(chǔ),有“黃金玉米帶”的美譽(yù)。但高強(qiáng)度的玉米生產(chǎn)帶來(lái)一系列的環(huán)境問(wèn)題[7],對(duì)實(shí)現(xiàn)玉米生產(chǎn)的可持續(xù)發(fā)展提出了更高的要求,特別是在保證玉米產(chǎn)量的前提下,降低玉米生產(chǎn)過(guò)程中的資源消耗與環(huán)境負(fù)擔(dān)是當(dāng)前急需解決的科學(xué)問(wèn)題[8]。秸稈還田少免耕能增加黑土區(qū)玉米帶SOC含量。但SOC在土壤中固存的多種機(jī)制通常相互矛盾或不一致[9],固碳速率與固碳量的計(jì)算與預(yù)測(cè)差異較大[10-12],需要仔細(xì)總結(jié)黑土固碳與釋碳研究現(xiàn)狀,明確黑土固碳與釋碳的本質(zhì),進(jìn)一步闡明其形成過(guò)程。
1 土壤有機(jī)碳固存過(guò)程及黑土區(qū)環(huán)境的影響
土壤有機(jī)碳庫(kù)由不同穩(wěn)定性與周轉(zhuǎn)率的多種碳庫(kù)構(gòu)成[11]。農(nóng)業(yè)土壤的固碳效應(yīng)及SOC的具體儲(chǔ)量,主要取決于通過(guò)土壤微生物活動(dòng)所介導(dǎo)的有機(jī)碳輸入和輸出之間的平衡[1]。其輸入源主要為植物根系分泌物、植物殘?bào)w以及有機(jī)肥等外源添加物,固存途徑主要包括礦物吸附、團(tuán)聚體保護(hù)與微生物周轉(zhuǎn)累積等[11,13-14]。保護(hù)性耕作等農(nóng)業(yè)生產(chǎn)方式通過(guò)直接改變有機(jī)碳輸入或間接改變微生物的環(huán)境條件來(lái)影響耕作層土壤的碳循環(huán)過(guò)程[15]。研究發(fā)現(xiàn),土壤細(xì)粒級(jí)比粗粒級(jí)對(duì)有機(jī)質(zhì)具有更強(qiáng)的固持作用[11],黑土成土母質(zhì)較為黏重,土壤中黏、粉粒含量及活性較高,因此對(duì)外源有機(jī)碳產(chǎn)生較強(qiáng)的吸附作用,且易于秸稈等殘?bào)w與土壤黏粒之間的團(tuán)聚[16-17]。土壤肥力狀況與土壤生物特性具有緊密聯(lián)系,可影響有機(jī)質(zhì)與分解者之間的聯(lián)系,促進(jìn)或限制微生物殘?bào)w的產(chǎn)生與積累[18]。土壤初始有機(jī)碳水平直接影響外源有機(jī)碳輸入后土壤碳飽和度,較高的初始有機(jī)質(zhì)含量可使土壤微生物獲得更為充足的能源與碳源,增強(qiáng)微生物活性,但有機(jī)質(zhì)飽和后會(huì)抑制外源有機(jī)碳的進(jìn)一步固定,繼續(xù)投入大量外源碳僅促進(jìn)了SOC與外源有機(jī)碳的更替周轉(zhuǎn)而非積累[19]。秸稈還田后土壤微生物對(duì)秸稈碳的利用能力受土壤已有肥力水平的顯著影響,高肥力土壤一般對(duì)土壤微生物殘?bào)w的積累有積極影響[20-21],在對(duì)微生物殘?bào)w的固持能力方面顯著強(qiáng)于有機(jī)質(zhì)含量較低的土壤類(lèi)型[21],有利于碳素的固持;而低肥力土壤中的土壤微生物則更傾向于利用外源(如作物殘?bào)w)碳[22],且低肥力水平下秸稈還田更有利于土壤真菌而非細(xì)菌殘?bào)w的積累[23],這種微生物殘?bào)w類(lèi)型的區(qū)別可進(jìn)一步造成有機(jī)碳庫(kù)組分及穩(wěn)定性的差異。
黑土區(qū)春季多大風(fēng)和夏季降水集中的氣候特征與多漫崗的地貌特征,導(dǎo)致SOC最為豐富的表層土壤易遭風(fēng)蝕、水蝕。冬季的低溫限制土壤微生物活性進(jìn)而降低SOC的周轉(zhuǎn)與礦化強(qiáng)度,而凍融循環(huán)過(guò)程會(huì)導(dǎo)致秸稈部分老化破碎,短期內(nèi)可釋放出更多的碳[24]。土壤水分的反復(fù)凍融也易導(dǎo)致土壤空隙增加,SOM自團(tuán)聚體中暴露,加快SOC的礦化[25]。
2 黑土區(qū)耕作方式與土壤固碳效應(yīng)
黑土區(qū)玉米帶內(nèi)常見(jiàn)的耕作方法包括翻耕、免耕、旋耕、條耕和深松等,對(duì)土層擾動(dòng)大、留茬覆蓋面積小的傳統(tǒng)耕作方式被認(rèn)為是導(dǎo)致黑土開(kāi)墾后SOC快速流失的重要因素。對(duì)土壤擾動(dòng)較大的耕作方式,即便與秸稈還田相配合,在有利于增加深層土壤的外源碳輸入的同時(shí),亦會(huì)加快SOC的礦化過(guò)程而阻礙SOC含量的恢復(fù)[26],所導(dǎo)致的高強(qiáng)度的碳周轉(zhuǎn)對(duì)環(huán)境變化可能更為敏感。與之相比,長(zhǎng)期的少免耕可顯著減少對(duì)黑土結(jié)構(gòu)的破壞,降低土壤容重,進(jìn)而通過(guò)土壤環(huán)境狀況的改變而影響耕層的固碳能力[27]。
耕作方式除直接影響土壤物理狀況外,也會(huì)改變土壤微生物的生存環(huán)境,影響固碳過(guò)程。少免耕等保護(hù)性耕作提高了土壤團(tuán)聚體粒級(jí)分布及其穩(wěn)定性,改變了團(tuán)聚體各粒級(jí)的碳、氮含量。少免耕對(duì)于作物生長(zhǎng)的增益與土壤環(huán)境的改善,加快了土壤呼吸碳排放[28]。與少耕相比,免耕可最大程度上降低機(jī)械化耕作所帶來(lái)的碳排放及對(duì)土層的機(jī)械壓實(shí),但在改善土壤結(jié)構(gòu)及蓄水保墑方面不如深松等方式,并易導(dǎo)致土層間土壤環(huán)境狀況及微生物狀況的差異增大,出現(xiàn)表層SOC增加的同時(shí)亞表層SOC含量降低的分層現(xiàn)象[29]。對(duì)于土壤微生物來(lái)說(shuō),真菌代謝過(guò)程中所儲(chǔ)存的碳素更多,而少免耕能夠減少對(duì)真菌菌絲的破壞,這有利于真菌對(duì)碳的截獲與大團(tuán)聚體的形成與穩(wěn)定[30]。
在無(wú)秸稈覆蓋的條件下,短期免耕對(duì)SOC的含量沒(méi)有顯著影響[31],需要長(zhǎng)時(shí)間持續(xù)免耕(10年以上)才體現(xiàn)出有對(duì)于土壤固碳的增益[32],秸稈覆蓋還田免耕比傳統(tǒng)耕作更有利于SOC的增加[33]。外源有機(jī)碳的輸入與免耕可簡(jiǎn)化土壤孔隙結(jié)構(gòu),改善土壤中的空氣和水的流動(dòng),通過(guò)減輕干旱對(duì)作物的脅迫而影響有機(jī)碳的輸入過(guò)程。夏季降水集中的黑土區(qū)由于土壤水分過(guò)多通氣性較差而可能出現(xiàn)周期性限氧,但礦物保護(hù)碳的釋放可抵消缺氧對(duì)于微生物代謝的限制[34]。因此,長(zhǎng)期少免耕對(duì)于土壤通氣性的提高并不一定能進(jìn)一步促進(jìn)SOC的礦化,土壤保墑能力的提高導(dǎo)致土壤溫度降低,在一定時(shí)間段內(nèi)(特別是春季)抑制土壤微生物及其胞外酶的活性。
合理的深松可打破犁底層,降低深層土壤容重,增加土壤深層水分,促進(jìn)玉米等作物根系生長(zhǎng),增加作物深層根系生物量及殘?bào)w的輸入量進(jìn)而增加土壤的固碳能力,這對(duì)于黑土等質(zhì)地較為黏重的土壤更為明顯[35]。但通過(guò)增加深層土壤通透性而加速SOC礦化(如增加土壤通氣性及改變土壤微生物群落結(jié)構(gòu)與活性)的風(fēng)險(xiǎn),因此深松的具體固碳效應(yīng)在不同研究中差異較大[36-37],這種不同的影響可能源于不同土壤初始有機(jī)碳水平、有機(jī)碳輸入水平及耕作方式持續(xù)時(shí)間的差異[38]。
3 黑土區(qū)施肥與土壤固碳效應(yīng)
施肥提高了農(nóng)作物生物產(chǎn)量,增加SOM輸入并促進(jìn)其降解,改變了土壤內(nèi)的化學(xué)及生物過(guò)程,強(qiáng)烈地影響土壤中部分有機(jī)碳組分固持與累積[39]。合理施肥是保護(hù)性耕作的內(nèi)涵之一[7],單施化肥、減施化肥與有機(jī)肥對(duì)化肥的部分替代都會(huì)對(duì)黑土區(qū)玉米帶的土壤固碳過(guò)程產(chǎn)生影響。施用化肥(特別是無(wú)機(jī)氮)對(duì)于土壤碳礦化的影響可表現(xiàn)為激發(fā)也可表現(xiàn)為抑制[18,40],或是表現(xiàn)為從激發(fā)到抑制的轉(zhuǎn)變[41]。高氮輸入可增加根系分泌物,其中所包含的碳水化合物、氨基酸和有機(jī)酸不僅可直接增加進(jìn)入土壤的有機(jī)質(zhì),還可增加土壤微生物活性,促進(jìn)作物殘?bào)w碳向SOC的轉(zhuǎn)化[42]。根的向肥性導(dǎo)致施肥的具體方式影響作物地下生物量與空間分布,改變不同土層間SOC輸入量及累積量的分布。無(wú)機(jī)氮等化肥的施用可改善秸稈還田后土壤中的C/N比值,這可避免微生物會(huì)優(yōu)先利用SOM來(lái)滿(mǎn)足自身對(duì)氮的需求?;诠泊x理論,隨著氮投入的增加,土壤微生物中纖維素降解等能夠促進(jìn)秸稈分解的基因表達(dá)迅速增加,有利于團(tuán)聚體形成與SOC的累積。施用化肥所導(dǎo)致的土壤養(yǎng)分不均衡也可抑制黑土區(qū)土壤微生物量及酶活性并影響碳礦化過(guò)程[43]。但必須考慮的是化肥投入碳排放量約占系統(tǒng)農(nóng)業(yè)總投入碳排放量的73.5%~77.4%,是農(nóng)業(yè)生產(chǎn)中主要的間接碳排放源[42]。黑土的高初始肥力也可導(dǎo)致過(guò)度強(qiáng)化土壤微生物的活性而引發(fā)黑土SOC的加速流失[44]。
有機(jī)肥具有養(yǎng)分全面、肥效長(zhǎng)、能改良土壤、維持地力與提高農(nóng)產(chǎn)品品質(zhì)等優(yōu)點(diǎn)[45],黑土區(qū)有機(jī)肥與化肥混合施用提高了土壤中可溶性碳與微生物量碳含量,利于土壤有機(jī)質(zhì)的形成。有機(jī)肥施用直接增加了土壤外源有機(jī)質(zhì)的投入,而土壤微生物對(duì)于復(fù)雜有機(jī)質(zhì)分解過(guò)程中所獲得的能量投入回報(bào)更少,導(dǎo)致進(jìn)入土壤的有機(jī)質(zhì)分解速度更慢。但相對(duì)于秸稈等植物源有機(jī)質(zhì),施用糞肥等動(dòng)物源有機(jī)肥可直接向土壤中加入大量微生物,且施入后更偏向于增加穩(wěn)定性較低的顆粒有機(jī)碳[46]。由于有機(jī)肥種類(lèi)繁多,所含成分復(fù)雜,在土壤中變化的歷程較長(zhǎng),對(duì)土壤肥力和土壤環(huán)境質(zhì)量的影響帶有很大的不確定性[47],因此有機(jī)肥的具體固碳效果難以估算。
除直接的固碳效應(yīng)外,與保護(hù)性耕作相結(jié)合的合理施肥對(duì)于土壤條件的改善可有效增加單位面積的作物產(chǎn)量。在產(chǎn)量需求一定的前提下,更高的單產(chǎn)可以保證現(xiàn)有耕地面積滿(mǎn)足需求,減少土地利用變化對(duì)于天然土壤碳庫(kù)的擾動(dòng),這對(duì)于后備耕地資源較少的黑土區(qū)具有重要意義。
4 總結(jié)與展望
出于對(duì)保護(hù)黑土地肥力與提升農(nóng)業(yè)土壤碳匯能力的關(guān)注,近年來(lái)針對(duì)黑土固碳效應(yīng)的相關(guān)研究不斷涌現(xiàn)并取得了較多的成果,但土壤固碳過(guò)程及其機(jī)理較為復(fù)雜,相關(guān)結(jié)果中尚有較多不清楚或不一致的內(nèi)容。針對(duì)上述問(wèn)題,需要更進(jìn)一步加強(qiáng)黑土固碳過(guò)程與釋碳機(jī)理研究,針對(duì)黑土固碳與釋碳本質(zhì)等重大科學(xué)問(wèn)題,急需攻堅(jiān)克難,應(yīng)加強(qiáng)以下幾個(gè)方面的研究:
(1)堅(jiān)持并完善保護(hù)性耕作下黑土區(qū)土壤固碳效應(yīng)的長(zhǎng)期研究。已有研究表明,即便是相同的環(huán)境或人為因子,其所引導(dǎo)的具體固碳過(guò)程仍可在不同時(shí)間尺度下存在較大差別。若要準(zhǔn)確揭示其長(zhǎng)期固碳效應(yīng)對(duì)土壤肥力與氣候變化的影響,需要繼續(xù)進(jìn)行長(zhǎng)期化、標(biāo)準(zhǔn)化的定位試驗(yàn)研究。
(2)對(duì)于黑土區(qū)玉米帶近年來(lái)與保護(hù)性耕作相結(jié)合所逐步應(yīng)用的新型農(nóng)業(yè)生產(chǎn)技術(shù)體系,如施用緩控釋肥、水肥一體化、耕層障礙消減等,其對(duì)于黑土區(qū)的土壤固碳效應(yīng)仍需進(jìn)行深入研究。
(3)繼續(xù)探索具體環(huán)境因子對(duì)于土壤固碳效應(yīng)之間的影響及其機(jī)理或介導(dǎo)方式,揭示不同固碳機(jī)制的適用范圍與條件,量化自然或人為所導(dǎo)致的土壤環(huán)境變化對(duì)土壤固碳能力的影響程度及其變化趨勢(shì)。
(4)建立完善符合黑土區(qū)環(huán)境特征并能夠考慮更多固碳機(jī)制的土壤固碳效應(yīng)模型,更為準(zhǔn)確地預(yù)測(cè)較大時(shí)間與空間尺度下黑土區(qū)土壤固碳能力與土壤有機(jī)質(zhì)恢復(fù)程度。
(5)量化保護(hù)性耕作后土壤固碳能力變化本身對(duì)農(nóng)業(yè)生產(chǎn)的影響,研究并建立保護(hù)性耕作中黑土固碳機(jī)理或過(guò)程與農(nóng)業(yè)生產(chǎn)的具體過(guò)程及效能之間的具體聯(lián)系,并服務(wù)于黑土區(qū)的農(nóng)業(yè)發(fā)展。
滕澤宇等 東北黑土區(qū)玉米帶保護(hù)性耕作固碳效應(yīng)研究進(jìn)展
參考文獻(xiàn)
[1] LAL R.World cropland soils as a source or sink for atmospheric carbon[J].Advances in agronomy,2001,71:145-191.
[2] 沈善敏.中國(guó)土壤肥力[M].北京:中國(guó)農(nóng)業(yè)出版社,1998.
[3] 汪景寬,張旭東,王鐵宇,等.黑土土壤質(zhì)量演變初探II:不同地區(qū)黑土中有機(jī)質(zhì)、氮、硫和磷現(xiàn)狀及變化規(guī)律[J].沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2002,33(4):270-273.
[4] SCHLESINGER W H,ANDREWS J A.Soil respiration and the global carbon cycle[J].Biogeochemistry,2000,48(1):7-20.
[5] TAO F L,PALOSUO T,VALKAMA E,et al.Cropland soils in China have a large potential for carbon sequestration based on literature survey[J].Soil and tillage research,2019,186:70-78.
[6] 高旺盛.中國(guó)保護(hù)性耕作制[M].北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,2011.
[7] LEE E K,ZHANG X S,ADLER P R,et al.Spatially and temporally explicit life cycle global warming,eutrophication,and acidification impacts from corn production in the U.S.Midwest[J].Journal of cleaner production,2019,242:1-11.
[8] CHEN X P,CUI Z L,F(xiàn)AN M S,et al.Producing more grain with lower environmental costs[J].Nature,2014,514:486-489.
[9] LTZOW M V,KGEL-KNABNER I,EKSCHMITT K,et al.Stabilization of organic matter in temperate soils:Mechanisms and their relevance under different soil conditions-a review[J].European journal of soil science,2006,57(4):426-445.
[10] SUN W J,HUANG Y,ZHANG W,et al.Carbon sequestration and its potential in agricultural soils of China[J].Global biogeochemical cycles,2010,24(3):1302-1307.
[11] PAN G X,XU X W,SMITH P,et al.An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring[J].Agriculture,ecosystems and environment,2010,136(1/2):133-138.
[12] ZHAO Y C,WANG M Y,HU S J,et al.Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J].Proceedings of the national academy of sciences,2018,115(16):4045-4050.
[13] STOCKMANN U,ADAMS M A,CRAWFORD J W,et al.The knowns,known unknowns and unknowns of sequestration of soil organic carbon[J].Agriculture,ecosystems and environmen4,2013,164:80-99.
[14] NAYLOR D,SADLER N,BHATTACHARJEE A,et al.Soil microbiomes under climate change and implications for carbon cycling[J].Annual review of environment and resources,2020,45:29-59.
[15] VAN WESEMAEL B,PAUSTIAN K,MEERSMANS J,et al.Agricultural management explains historic changes in regional soil carbon stocks[J].Proceedings of the national academy of sciences of the United States of America,2010,107(33):14926-14930.
[16] 陳鮮妮,吳姍薇,寇太記,等.秸稈源性碳在黑土和褐土中的轉(zhuǎn)運(yùn)及其對(duì)氮肥的響應(yīng)[J/OL].土壤學(xué)報(bào),2021-10-25[2022-02-27].http://kns.cnki.net/kcms/detail/32.1119.P.20211022.1726.002.html.
[17] JASTROW J D.Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J].Soil biology and biochemistry,1996,28(4/5):665-676.
[18] ZHANG X F,XIN X L,YANG W L,et al.Short-term decomposition,turnover and retention of residue-derived carbon are influenced by the fertility level in a sandy loam soil[J].Geoderma,2019,349:68-78.
[19] YAN X,ZHOU H,ZHU Q H,et al.Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China[J].Soil and tillage research,2013,130:42-51.
[20] DING X L,HAN X Z,ZHANG X D,et al.Continuous manuring combined with chemical fertilizer affects soil microbial residues in a Mollisol[J].Biology and fertility of soils,2013,49(4):387-393.
[21] 李麗東,胡國(guó)慶,趙鈺,等.玉米秸稈摻入對(duì)土壤氨基糖分布動(dòng)態(tài)的影響[J].土壤通報(bào),2014,45(6):1402-1409.
[22] XU Y D,SUN L J,LAL R,et al.Microbial assimilation dynamics differs but total mineralization from added root and shoot residues is similar in agricultural Alfisols[J].Soil biology and biochemistry,2020,148:1-10.
[23] XU Y D,GAO X D,LIU Y L,et al.Differential accumulation patterns of microbial necromass induced by maize root vs.shoot residue addition in agricultural Alfisols[J/OL].Soil biology and biochemistry,2022,164[2021-11-09].https://doi.org/10.1016/j.soilbio.2021.108474.
[24] 陳昱,梁媛,鄭章琪,等.老化作用對(duì)水稻秸稈生物炭吸附Cd(Ⅱ)能力的影響[J].環(huán)境化學(xué),2016,35(11):2337-2343.
[25] 高敏,李艷霞,張雪蓮,等.凍融過(guò)程對(duì)土壤物理化學(xué)及生物學(xué)性質(zhì)的影響研究及展望[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(12):2269-2274.
[26] GUZMAN J,AL-KAISI M,PARKIN T.Greenhouse gas emissions dynamics as influenced by corn residue removal in continuous corn system[J].Soil science society of American journal,2015,79(2):612-625.
[27] MEURER K H E,HADDAWAY N R,BOLINDER M A,et al.Tillage intensity affects total SOC stocks in boreo-temperate regions only in the topsoil-A systematic review using an ESM approach[J].Earth-science reviews,2018,177:613-622.
[28] 孫寶龍,陶蕊,王永軍,等.長(zhǎng)期少免耕對(duì)中國(guó)東北玉米農(nóng)田土壤呼吸及碳氮變化的影響[J].玉米科學(xué),2020,28(6):107-115.
[29] DOLAN M S,CLAPP C E,ALLMARAS R R,et al.Soil organic carbon and nitrogen in a Minnesota soil as related to tillage,residue and nitrogen management[J].Soil and tillage research,2006,89(2):221-231.
[30] 丁雪麗,張旭東,楊學(xué)明,等.免耕秸稈還田和傳統(tǒng)耕作方式下東北黑土氨基糖態(tài)碳的積累特征[J].土壤學(xué)報(bào),2012,49(3):535-543.
[31] DU Z L,ANGERS D A,REN T S,et al.The effect of no-till on organic C storage in Chinese soils should not be overemphasized:A meta-analysis[J].Agriculture ecosystems & environment,2017,236:1-11.
[32] 張恒恒,嚴(yán)昌榮,張燕卿,等.北方旱區(qū)免耕對(duì)農(nóng)田生態(tài)系統(tǒng)固碳與碳平衡的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):240-247.
[33] TIAN K,ZHAO Y C,XU X H,et al.Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China:A meta-analysis[J].Agriculture,ecosystems and environment,2015,204:40-50.
[34] HUANG W J,WANG K F,YE C L,et al.High carbon losses from oxygen-limited soils challenge biogeochemical theory and model assumptions[J].Global change biology,2021,27(23):6166-6180.
[35] 張麗,張中東,郭正宇,等.深松耕作和秸稈還田對(duì)農(nóng)田土壤物理特性的影響[J].水土保持通報(bào),2015,35(1):102-106,117.
[36] VALBOA G,LAGOMARSINO A,BRANDI G,et al.Long-term variations in soil organic matter under different tillage intensities[J].Soil and tillage research,2015,154:126-135.
[37] 田慎重,王瑜,寧堂原,等.轉(zhuǎn)變耕作方式對(duì)長(zhǎng)期旋免耕農(nóng)田土壤有機(jī)碳庫(kù)的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(17):98-105.
[38] HAN P F,ZHANG W,WANG G C,et al.Changes in soil organic carbon in croplands subjected to fertilizer management:A global meta-analysis[J].Scientific reports,2016,6:1-13.
[39] NI X Y,LIAO S,TAN S Y,et al.A quantitative assessment of amino sugars in soil profiles[J].Soil biology and biochemistry,2020,143:1-10.
[40] TANG J C,ZHANG R Y,LI H C,et al.Effect of the applied fertilization method under full straw return on the growth of mechanically transplanted rice[J].Plants,2020,9(3):1-12.
[41] 朱培立,王志明,黃東邁,等.無(wú)機(jī)氮對(duì)土壤中有機(jī)碳礦化影響的探討[J].土壤學(xué)報(bào),2001,38(4):457-463.
[42] GONG W,YAN X Y,WANG J Y.The effect of chemical fertilizer application on carbon input and export in soil-A pot experiment with wheat using natural 13C abundance method[J].Geoderma,2012,189/190:170-175.
[43] CHEN X,HAN X Z,LU X C,et al.Long-term continuous cropping affects ecoenzymatic stoichiometry of microbial nutrient acquisition:A case study from a Chinese Mollisol[J].Journal of the science of food and agriculture,2021,101(15):6338-6346.
[44] MUSTAFA A,HU X,ABRAR M M,et al.Long-term fertilization enhanced carbon mineralization and maize biomass through physical protection of organic carbon in fractions under continuous maize cropping[J].Applied soil ecology,2021,165:1-11.
[45] ZHANG H M,XU M G,ZHANG F.Long-term effects of manure application on grain yield under different cropping systems and ecological conditions in China[J].Journal of agricultural science,2009,147(1):31-42.
[46] QU X J,WANG X H,WU J G,et al.Both carbon sequestration and yield are related to particulate organic carbon stability affected by organic amendment origins in mollisol[J].Journal of soils and sediments,2021,21(9):3044-3056.
[47] 寧川川,王建武,蔡昆爭(zhēng).有機(jī)肥對(duì)土壤肥力和土壤環(huán)境質(zhì)量的影響研究進(jìn)展[J].生態(tài)環(huán)境學(xué)報(bào),2016,25(1):175-181.
基金項(xiàng)目 中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專(zhuān)項(xiàng)(XDA28080105)。
作者簡(jiǎn)介 滕澤宇(1990—),男,河北秦皇島人,講師,博士,從事黑土地保護(hù)研究。*通信作者,教授,從事土壤生態(tài)與新型肥料研究。
收稿日期 2022-03-21