任天翔 孫瀟瀟 滕曉波 石佩玉 戚棟明 馬金星 趙德方 占海華
摘要: 可手撕紡織品作為近年來新型紡織材料的研究熱點(diǎn)之一,人們對(duì)其可撕裂性能和服用性能提出了更高的要求。文章分別以低黏度聚酯(LVPET)和水溶性聚酯(COPET)作為皮層和芯層,通過熔體復(fù)合紡絲工藝制備低強(qiáng)度皮芯復(fù)合FDY長絲。通過光學(xué)顯微鏡觀察復(fù)合纖維的橫截面皮芯結(jié)構(gòu)形態(tài),確定合適的原料組分配比,優(yōu)化了紡絲溫度、牽伸倍數(shù)、紡絲速度等工藝參數(shù);進(jìn)一步地,對(duì)所制備纖維的取向度及拉伸性能進(jìn)行了測(cè)試分析。研究結(jié)果表明,LVPET與COPET螺桿擠出機(jī)各區(qū)溫度分別為285 ℃/285 ℃/285 ℃/285 ℃/285 ℃和284 ℃/284 ℃/284 ℃/284 ℃/285 ℃,LVPET與COPET紡絲箱體溫度分別為282 ℃和280 ℃,第二熱輥溫度為90~115 ℃、LVPET與COPET的質(zhì)量比為50︰50、牽伸倍數(shù)為2.7、紡絲速度為3 000 m/min時(shí),制得的171 dtex皮芯型復(fù)合長絲的可紡性及力學(xué)性能良好,滿足可手撕紡織品對(duì)纖維強(qiáng)度的要求。
關(guān)鍵詞: 低強(qiáng)度纖維;低黏度聚酯;水溶性聚酯;皮芯型復(fù)合長絲;熔體復(fù)合紡絲工藝;可手撕紡織品
中圖分類號(hào): TS101.921
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1001-7003(2023)04-0038-06
引用頁碼:
041106
DOI: 10.3969/j.issn.1001-7003.2023.04.006(篇序)
隨著材料科技的迅速發(fā)展和市場(chǎng)需求的不斷提高,國內(nèi)外出現(xiàn)了越來越多的新型紡織材料。其中,可手撕紡織材料作為一種新型紡織品,可用于可撕醫(yī)用紗布、繃帶、一次性可撕包裝袋、標(biāo)簽布、電子膠帶等產(chǎn)品的制備[1],使用者可以從任意方向?qū)⑵渌洪_,使用過程方便快捷,具有廣闊的發(fā)展與應(yīng)用空間。可手撕紡織品主要是由低強(qiáng)度的纖維織成,且斷裂強(qiáng)度要求在2.0 cN/dtex左右,但常規(guī)化學(xué)纖維斷裂強(qiáng)度一般在2.5 cN/dtex以上,聚酯類纖維更是在3.0 cN/dtex以上,因此需采用特殊的制備工藝來滿足低強(qiáng)度性能的要求。
目前市場(chǎng)上可手撕紡織品的制備方法主要有三種。一種是在化纖原料中添加化學(xué)助劑和膠黏劑并通過非織造技術(shù)制得無紡布材料,但該材料耐久性、耐熱耐光性、吸濕透氣性等性能較差,限制了其在各個(gè)領(lǐng)域的應(yīng)用。另一種是對(duì)化纖母?;蚶w維進(jìn)行物理和化學(xué)改性處理,制得的織物既可達(dá)到可
撕裂的性能要求,也能滿足基礎(chǔ)的服用性能。何偉等[1]通過酯化縮聚制備了改性聚酯原料并通過熔融紡絲制備了低強(qiáng)低伸滌綸長絲,斷裂強(qiáng)度僅為1.0~2.2 cN/dtex,并且制得的織物透濕透氣性、熱穩(wěn)定性能也得到提高。張小雨等[2]以陽離子改性滌綸絲為原紗進(jìn)行織造,并進(jìn)一步對(duì)得到的坯布交替進(jìn)行酸處理和堿處理從而得到手撕布,經(jīng)、緯紗撕破強(qiáng)力分別為3.5~5.8 N和3.5~6 N,滿足手撕布的使用性能要求。還有一種方法是采用熔融復(fù)合紡絲制備低強(qiáng)度皮芯型復(fù)合纖維,并可以通過工藝設(shè)計(jì)制備具有異形截面的纖維以提高織物的可撕裂性、蓬松性和透氣性。吳國忠[3]通過熔融共混紡絲的方法制備了以聚酰胺為皮層和以聚酯為芯層的低強(qiáng)低模復(fù)合纖維,并對(duì)織造后的織物采用水蒸氣處理,制得的織物具有良好的易撕裂性及舒適性。王山水等[4]采用FDY工藝制備了三葉形彈性纖維,并通過機(jī)織織造制備了透氣性良好的醫(yī)用易撕布。
目前國內(nèi)外對(duì)于低強(qiáng)度皮芯型復(fù)合纖維的研究相對(duì)較少,且純聚酯類的低強(qiáng)度皮芯型復(fù)合長絲在國內(nèi)外文獻(xiàn)中尚未見報(bào)道。LVPET作為一種低黏度聚酯,分子間作用力較小,可滿足低強(qiáng)度纖維的制備要求,并且LVPET保留了聚酯的部分特性[5],與其他聚酯類化合物的黏合性和相容性較好;而COPET作為一種水溶性聚酯,大分子鏈上存在的特殊結(jié)構(gòu)使其易于水解[6],從而減少了有機(jī)溶劑的使用并且有利于回收利用,可提高產(chǎn)品的經(jīng)濟(jì)效益和社會(huì)效益。因此,本研究采用復(fù)合紡絲法制備了171 dtex低強(qiáng)度LVPET/COPET皮芯復(fù)合FDY絲,探討了紡絲溫度、牽伸倍數(shù)、紡絲速度等工藝參數(shù)對(duì)纖維可紡性和纖維質(zhì)量的影響,并對(duì)復(fù)合長絲的取向度及力學(xué)性能進(jìn)行了分析,可為低強(qiáng)度皮芯結(jié)構(gòu)復(fù)合纖維的制備提供一定的參考與借鑒。
1 材料與方法
1.1 材 料
黏度(0.58±0.05) dl/g、熔點(diǎn)為(265±5) ℃的LVPET切片(上海金山石化有限公司),黏度(0.60±0.012) dl/g、熔點(diǎn)為(236±5) ℃的COPET切片(龍巖創(chuàng)冠化纖有限公司),油劑A(F-1048)與油劑B(TF-7615)(旭美化工科技有限公司)。
1.2 儀 器
SZG雙錐回轉(zhuǎn)真空干燥機(jī)(常州凱航干燥設(shè)備有限公司),JK81B-80X25-00螺桿擠壓機(jī)(北京中麗制機(jī)工程技術(shù)有限公司),PF2T熔體過濾器(蘇州東海濾機(jī)設(shè)備有限公司),BKV546一部位FDY紡牽聯(lián)合機(jī)(北京中麗制機(jī)工程技術(shù)有限公司),YG086縷紗測(cè)長儀、YG021A-Ⅲ式電子單紗強(qiáng)力機(jī)(溫州方圓儀器有限公司),SSY-C纖維雙折射儀(上海東華凱利化纖高科技有限公司)。
1.3 試 驗(yàn)
1.3.1 LVPET/COPET皮芯復(fù)合長絲的制備
采用轉(zhuǎn)鼓干燥機(jī)分別對(duì)LVPET切片與COPET切片進(jìn)行干燥,含水率達(dá)到要求后分別送至各自的螺桿擠出機(jī)熔融擠壓。通過不同的熔體管道各自輸送到主副紡絲箱體內(nèi)的計(jì)量泵中,然后在紡絲組件內(nèi)復(fù)合成皮芯結(jié)構(gòu)截面形狀。最后從噴絲板噴出,經(jīng)側(cè)吹風(fēng)冷卻凝固成復(fù)合纖維,經(jīng)上油、預(yù)拉伸、拉伸、熱定型等工序,卷繞成筒制得低強(qiáng)度皮芯復(fù)合纖維。
合適的冷卻工藝是使纖維獲得優(yōu)異性能的重要條件,其中側(cè)吹風(fēng)風(fēng)速控制在0.3~0.5 m/s,側(cè)風(fēng)風(fēng)溫控制在(21±2) ℃,風(fēng)濕控制在70%~80%時(shí),纖維成形性良好;油劑的抗靜電性能及上油率對(duì)纖維的可紡性和紡絲質(zhì)量也有較大的影響,經(jīng)多次試驗(yàn),油劑B相對(duì)于油劑A的抗靜電效果較好,成絲率及成絲質(zhì)量良好。本試驗(yàn)采用油劑B且含油率為0.5%時(shí),纖維的可紡性和拉伸性能良好。
1.3.2 性能測(cè)試
1) 取向度測(cè)試。采用SSY-C型雙折射儀測(cè)量纖維的雙折射率(Δn)以反映纖維的取向度。雙折射儀目鏡為5倍,物鏡為40倍。雙折射率計(jì)算公式如下:
Δn=Rd×1 000(1)
式中:R為光程差,nm;d為纖維直徑,μm。
2) 拉伸性能測(cè)試。根據(jù)GB/T 3916—2013《紡織品卷裝紗單根紗線斷裂強(qiáng)力和斷裂伸長率的測(cè)定(CRE法)》標(biāo)準(zhǔn),采用YG021A-Ⅲ式電子單紗強(qiáng)力機(jī)測(cè)試?yán)w維的拉伸性能,試樣的夾持長度為500 mm,拉伸速度為500 mm/min。
2 結(jié)果與分析
2.1 原料干燥工藝
通常LVPET切片含水率為0.4%~0.5%,而COPET分子鏈中存在極性基團(tuán),容易吸水,若切片中含水量過多,會(huì)使聚酯高分子在紡絲過程中發(fā)生水解,造成相對(duì)分子質(zhì)量下降從而影響紡絲質(zhì)量,嚴(yán)重時(shí)甚至無法紡絲,為了進(jìn)一步提高可紡性和紡絲質(zhì)量,因此對(duì)兩種切片都進(jìn)行干燥處理[7]。干燥溫度較低會(huì)降低干燥效果,干燥溫度過高則易造成相對(duì)分子質(zhì)量下降,使得切片增黏、氧化變黃從而影響可紡性及紡絲質(zhì)量[8]。本試驗(yàn)采用回轉(zhuǎn)真空干燥設(shè)備,經(jīng)試驗(yàn)LVPET與COPET的干燥溫度分別為(165±5) ℃、(145±5) ℃,干燥時(shí)間分別為7~9 h、16~18 h,含水率可分別控制在0.01%、0.03%左右,滿足復(fù)合紡絲要求。
2.2 螺桿熔融溫度
螺桿溫度是決定高聚物充分熔融的主要條件,溫度太高會(huì)導(dǎo)致高聚物降解,溫度太低會(huì)導(dǎo)致高聚物熔融不充分,從而影響可紡性及產(chǎn)品質(zhì)量。經(jīng)反復(fù)試驗(yàn),控制LVPET螺桿擠出機(jī)各區(qū)溫度為285 ℃/285 ℃/285 ℃/285 ℃/285 ℃、COPET螺桿擠出機(jī)各區(qū)溫度為284 ℃/284 ℃/284 ℃/284 ℃/285 ℃時(shí),復(fù)合纖維可紡性及成絲質(zhì)量良好。
2.3 紡絲溫度
紡絲工藝中,紡絲溫度與熔體的流動(dòng)性能有直接關(guān)系,會(huì)進(jìn)一步影響到熔體細(xì)流冷卻固化效果及初生纖維的結(jié)構(gòu)和拉伸性能。本試驗(yàn)采用復(fù)合紡絲工藝制備皮芯結(jié)構(gòu)纖維,應(yīng)通過控制主、副紡絲箱體溫度來減小兩組分在噴絲口處的黏度差異,使得皮芯結(jié)構(gòu)結(jié)合面更加均勻、平滑,從而有利于后道的牽伸工藝[9]。經(jīng)試驗(yàn), LVPET的紡絲箱體溫度控制在282 ℃、COPET的紡絲箱體溫度控制在280 ℃時(shí),復(fù)合纖維截面的均勻性、穩(wěn)定性良好,在后道牽伸時(shí)不易發(fā)生斷裂。
2.4 組分配比
在LVPET螺桿擠出溫度為285 ℃、COPET螺桿擠出溫度為284 ℃、LVPET紡絲箱體溫度為282 ℃、COPET紡絲箱體溫度為280 ℃時(shí),將LVPET/COPET比例定為30︰70、40︰60、50︰50、60︰40、70︰30進(jìn)行試驗(yàn),并取不同組分配比下的無油絲制成的切片觀察其截面形態(tài),記錄不同組分配比下的可紡性,其可紡性和截面形態(tài)如表1和圖1所示。
由表1可知,復(fù)合比為30︰70時(shí)吸槍吸不住絲束,無法正常紡絲,可紡性極差;復(fù)合比為40︰60時(shí)吸槍可以吸住絲束,但紡絲過程中易發(fā)生斷頭,可紡性也較差;紡絲復(fù)合比為50︰50、60︰40、70︰30時(shí),纖維可紡性良好。
從圖1可以看出,復(fù)合纖維橫截面呈明顯的皮芯結(jié)構(gòu),其皮質(zhì)與芯層的色澤差別顯著,皮層顏色較深,芯層顏色較明亮。當(dāng)復(fù)合比為30︰70時(shí),纖維成形劣化,其皮層結(jié)構(gòu)出現(xiàn)破裂,部分纖維的表面甚至完全沒有被皮層覆蓋。這是由于皮芯質(zhì)量比太低,使得LVPET熔體在組件內(nèi)部壓力過低,以至于在噴絲口不能均勻地覆蓋COPET熔體而引起的[10];在皮芯質(zhì)量比為40︰60和50︰50的條件下,纖維的組織結(jié)構(gòu)比較完整,分布均勻,成形完好;在皮芯質(zhì)量比為60︰40和70︰30時(shí),纖維皮芯結(jié)構(gòu)完好,但由于皮層為低黏度聚酯,若皮層含量過高,會(huì)導(dǎo)致纖維強(qiáng)度過低從而使紡絲過程中易發(fā)生斷頭現(xiàn)象。
綜合表1和圖1的分析情況來看,選擇LVPET與COPET的最優(yōu)復(fù)合比為50︰50。
2.5 牽伸倍數(shù)
纖維的取向度、結(jié)晶度與力學(xué)性能密切相關(guān),而纖維的取向主要發(fā)生在熱牽伸工序。適當(dāng)增加牽伸倍數(shù)有利于提高纖維的拉伸強(qiáng)度和彎曲剛度;若牽伸倍數(shù)過小,則會(huì)出現(xiàn)未拉伸絲,給紡織加工帶來困難;若牽伸倍數(shù)過大,則會(huì)產(chǎn)生毛絲、斷頭,影響紡絲質(zhì)量。在其他條件不變的情況下,本試驗(yàn)設(shè)定牽伸倍數(shù)分別為2.4、2.7、3.0、3.6進(jìn)行紡絲,其可紡性及纖維的力學(xué)性能如表2所示,取向態(tài)結(jié)構(gòu)參數(shù)如表3所示。
從表2可以看出,隨著牽伸倍數(shù)的增加,纖維的斷裂強(qiáng)度逐漸增大,斷裂伸長率逐漸下降。這是由于牽伸倍數(shù)的增大提高了非晶區(qū)的取向度[11],在牽伸過程中非晶區(qū)卷曲的大分子通過鏈段運(yùn)動(dòng),沿著牽伸方向伸展,纖維能夠承受外力的分子鏈數(shù)量增多,從而使纖維強(qiáng)度增大,而伸長率降低。當(dāng)牽伸倍數(shù)為2.7時(shí),纖維的斷裂強(qiáng)度與試驗(yàn)要求最接近。從表3可以看出,隨著牽伸倍數(shù)的增加,纖維的雙折射率逐漸增大。這是由于拉伸過程中非晶區(qū)內(nèi)部大分子鏈沿受力方向有序伸展排列,取向度提高,反映為雙折射率增加[12]。
綜合纖維的拉伸性能及取向度,牽伸倍數(shù)的最佳工藝選擇為2.7,此時(shí)纖維的斷裂強(qiáng)度最接近2.0 cN/dtex。
2.6 牽伸溫度
牽伸溫度一般高于聚合物的玻璃化溫度時(shí),才能使纖維得到均勻拉伸,從而避免毛絲。LVPET和COPET的玻璃化轉(zhuǎn)變溫度在67 ℃左右,對(duì)于皮芯型LVPET/COPET復(fù)合長絲而言,拉伸過程需要加熱,而選擇恰當(dāng)?shù)睦鞙囟葘?duì)于該復(fù)合長絲的制備也尤其重要。第二熱輥起定型作用,使拉伸時(shí)形成的分子鏈結(jié)構(gòu)得到進(jìn)一步固定,有利于纖維結(jié)晶和取向的形成,可以在一定程度上提高纖維的可紡性。但是,溫度不能過高,否則會(huì)導(dǎo)致纖維大分子松弛而解取向。試驗(yàn)表明,皮芯型LVPET/COPET復(fù)合長絲在生產(chǎn)過程中,第二熱輥的溫度在90~115 ℃為宜。
2.7 紡絲速度
紡絲速度的適當(dāng)增加,會(huì)使得紡絲線上的速度梯度增加,卷繞張力隨之增加,使得纖維大分子鏈沿拉伸方向有序規(guī)整排列,取向度和結(jié)晶度增加,有利于增強(qiáng)纖維的力學(xué)性能。但紡絲速度過高時(shí),初生纖維會(huì)越來越細(xì),易受空氣氣流影響,致使絲條與空氣的摩擦阻力增大從而產(chǎn)生毛絲[13],此外纖維會(huì)因內(nèi)部應(yīng)力過大而發(fā)生斷裂。在其他條件不變的情況下,設(shè)定紡絲速度分別為2 800、3 000、3 200、3 400 m/min進(jìn)行紡絲,其可紡性及纖維的拉伸性能如表4所示,取向態(tài)結(jié)構(gòu)參數(shù)如表5所示。
從表4可以看出,隨著卷繞速度的增加,纖維的斷裂強(qiáng)度逐漸增大,斷裂伸長率逐漸下降。這是由于卷繞速度的增大,使得分子鏈排列更加有序、規(guī)整,纖維承受外力作用的能力加強(qiáng),表現(xiàn)為斷裂強(qiáng)度提高,而此時(shí)由于分子鏈間的束縛力增強(qiáng),纖維的斷裂伸長率有所下降。當(dāng)卷繞速度超過3 200 m/min時(shí),纖維的斷裂強(qiáng)度反而下降,斷裂伸長率增加。這是由于取向度的提高引起纖維內(nèi)部結(jié)晶的發(fā)生,致使分子間作用力減小,斷裂強(qiáng)度下降,分子間作用力減小也帶來了分子鏈間的滑移[14],致使斷裂伸長率增加。
從表5可以看出,隨著卷繞速度的增加,雙折射率逐漸增大,但當(dāng)卷繞速度超過3 200 m/min時(shí),雙折射率反而下降。這是由于卷繞速度的增加使得纖維內(nèi)部大分子鏈排列更加規(guī)整、有序,致使取向度增加,從而使雙折射率增加。雙折射率主要反映的是大分子鏈段的整體取向程度,代表的是小尺寸范圍內(nèi)的有序程度,相比于大分子鏈而言,取向與解取向都更容易,所以當(dāng)卷繞速度過高時(shí),大分子鏈段解取向程度大于取向程度,取向度下降,從而導(dǎo)致雙折射率下降[15]。
綜合纖維的拉伸性能與取向度分析,最佳的紡絲速度為3 000 m/min,這時(shí)的斷裂強(qiáng)度最接近2.0 cN/dtex。
3 結(jié) 論
本研究將LVPET與COPET進(jìn)行雙組分復(fù)合紡絲,制備了171 dtex低強(qiáng)度皮芯結(jié)構(gòu)復(fù)合長絲,并探究了紡絲工藝對(duì)纖維可紡性和質(zhì)量的影響。
1) 根據(jù)纖維的可紡性,經(jīng)反復(fù)試驗(yàn),選擇LVPET螺桿擠出機(jī)各區(qū)溫度為285 ℃/285 ℃/285 ℃/285 ℃/285 ℃、COPET螺桿擠出機(jī)各區(qū)溫度為284 ℃/284 ℃/284 ℃/284 ℃/285 ℃,LVPET的紡絲箱體溫度為282 ℃,COPET的紡絲箱體溫度為280 ℃,第二熱輥的溫度為90~115 ℃。
2) 控制紡絲溫度不變,改變LVPET與COPET的組分配比進(jìn)行對(duì)比試驗(yàn),通過觀察復(fù)合纖維橫截面形態(tài)和可紡性,確定最佳復(fù)合比為50︰50。通過對(duì)纖維可紡性的觀察及拉伸性能和取向度的分析,最終確定牽伸倍數(shù)為2.7,紡絲速度為3 000 m/min。
3) 采用雙組分熔融復(fù)合紡絲技術(shù)并通過最佳工藝的探討,制備了低強(qiáng)度皮芯結(jié)構(gòu)復(fù)合長絲,其斷裂強(qiáng)度滿足2.0 cN/dtex的要求,可用作于制備可手撕紡織品。
參考文獻(xiàn):
[1]何偉, 向峰, 左平安, 等. 一種低強(qiáng)低伸滌綸長絲的制備方法: CN102618961A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMjMSEENOMjAxMjEwMDk5OD A5LjUaCHM4dnN0Z3By.
HE Wei, XIANG Feng, ZUO Pingan, et al. A low strength and low elongation polyester filament preparation methods: CN102618961A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMjMSEENOMjAxMjEwMDk5OD A5LjUaCHM4dnN0Z3By.
[2]張小雨, 付賓余. 一種手撕布及其制造方法: CN104452036A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXd TMjAyMjAzMjMSEENOMjAxNDEwNjg1MzQyLjEaCGY2bzFiaWRt.
ZHANG Xiaoyu, FU Binyu. A hand tearing cloth and its manufacturing method: CN104452036A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMjM SEENOMjAxNDEwNjg1MzQyLjEaCGY2bzFiaWRt.
[3]吳國忠. 皮蕊型復(fù)合纖維及其制造方法以及織物: CN103014911A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMjMSEENOMjAxMjEwMzU2ND I5LjUaCHk2NGdpamIy.
WU Guozhong. Pistil type composite fiber and its manufacturing method and fabric: CN103014911A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMj MSEENOMjAxMjEwMzU2NDI5LjUaCHk2NGdpamIy.
[4]王山水, 范紅衛(wèi), 湯方明, 等. 一種醫(yī)用易撕布的制備方法: CN110983548B[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMjMSE0NOMjAxOTExMzg2Mjc 0Ljhfc3EaCGYxcnN2bnlv.
WANG Shanshui, FAN Hongwei, TANG Fangming, et al. A preparation method of medical tear-off cloth: CN110983548B[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZX dTMjAyMjAzMjMSE0NOMjAxOTExMzg2Mjc0Ljhfc3EaCGYxcnN2 bnlv.
[5]張德權(quán). 低熔點(diǎn)皮芯型滌綸短纖維生產(chǎn)工藝研究[J]. 合成纖維, 2009, 38(5): 33-36.
ZHANG Dequan. Study on processing of low melting point polyester composite staple fiber[J]. Synthetic Fiber in China, 2009, 38(5): 33-36.
[6]楊文娟, 郭秉臣. 海島纖維堿減量法溶解海組分[J]. 產(chǎn)業(yè)用紡織品, 2005(4): 26-29.
YANG Wenjuan, GUO Bingchen. Island-in-the-sea fiber dissolve sea component with alkalimetry[J]. Industrial Textiles, 2005(4): 26-29.
[7]葛曉陵, 蔣士忠. 功能性超細(xì)添加劑在化纖工業(yè)中的應(yīng)用[J]. 紡織導(dǎo)報(bào), 2001(3): 64-70.
GE Xiaoling, JIANG Shizhong. Development of superfine materials in chemical fiber industry[J]. China Textile Leader, 2001(3): 64-70.
[8]李順希, 許志強(qiáng), 詹瑩韜, 等. 高密度聚乙烯/聚酰胺6復(fù)合纖維的制備及性能[J]. 合成纖維工業(yè), 2020, 43(1): 42-45.
LI Shunxi, XU Zhiqiang, ZHAN Yingtao, et al. Preparation and properties of high-density polyethylene/polyamide 6 composite fiber[J]. China Synthetic Fiber Industry, 2020, 43(1): 42-45.
[9]金正日, 王海燕. PET/COPET海島纖維POY生產(chǎn)工藝研究[J]. 合成纖維, 2004(3): 26-27.
JIN Zhengri, WANG Haiyan. Investegation on the process of PET/COPET sea-island POY[J]. Synthetic Fiber in China, 2004(3): 26-27.
[10]劉傳生. LPET和PET的流變性能及其皮芯復(fù)合紡絲研究[J]. 合成纖維工業(yè), 2021, 44(4): 38-42.
LIU Chuansheng. Study on rheological property and sheath-core composite spinning process of LPET and PET[J]. China Synthetic Fiber Industry, 2021, 44(4): 38-42.
[11]夏維, 陳立軍, 趙杰, 等. 皮芯型復(fù)合儲(chǔ)能調(diào)溫聚酰胺6纖維的制備與表征[J]. 紡織學(xué)報(bào), 2018, 39(4): 1-8.
XIA Wei, CHEN Lijun, ZHAO Jie, et al. Preparation and characterization of sheath-core energy storage and thermo-regulated composite fibers of polymaide 6[J]. Journal of Textile Research, 2018, 39(4): 1-8.
[12]陳詠, 烏婧, 王朝生, 等. 生物可降解聚己二酸—對(duì)苯二甲酸丁二醇酯纖維的制備及其環(huán)境降解性能[J]. 紡織學(xué)報(bào), 2022, 43(2): 37-43.
CHEN Yong, WU Jing, WANG Chaosheng, et al. Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-coterephthalate) fiber[J]. Journal of Textile Research, 2022, 43(2): 37-43.
[13]張小英, 潘志娟, 錢丹娜, 等. 靜電紡錦綸6納米級(jí)纖維的形態(tài)結(jié)構(gòu)[J]. 紡織學(xué)報(bào), 2006(7): 13-15.
ZHANG Xiaoying, PAN Zhijuan, QIAN Danna, et al. Configuration of electrospun polycaprolactam nano-scale fibers[J]. Journal of Textile Research, 2006(7): 13-15.
[14]郝超偉, 馬清芳, 王崢, 等. 超細(xì)旦多孔尼龍6彈力絲的生產(chǎn)工藝[J]. 合成纖維工業(yè), 2011, 34(6): 41-43.
HAO Chaowei, MA Qingfang, WANG Zheng, et al. Production process of porous super-fine nylon 6 textured yarn[J]. China Synthetic Fiber Industry, 2011, 34(6): 41-43.
[15]陳克權(quán), 段菊蘭, 周燕, 等. 卷繞速度對(duì)PTT初生纖維結(jié)構(gòu)與性能的影響[J]. 合成纖維工業(yè), 2004(5): 14-17.
CHEN Kequan, DUAN Julan, ZHOU Yan, et al. Effect of take-up velocity on structure and properties of as-spun PTT fiber[J]. China Synthetic Fiber Industry, 2004(5): 14-17.
Study on the preparation and properties of low-strength LVPET/COPET skin-corecomposite filaments
REN Tianxiang1a, SUN Xiaoxiao1a, TENG Xiaobo2, SHI Peiyu1a, QI Dongming3, MA Jinxing4, ZHAO Defang1, ZHAN Haihua1
(1a.College of Textile and Garment; 1b.Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province; 1c.Zhejiang Sub-centerof National Carbon Fiber Engineering Technology Research Center; 1d.Shaoxing Sub-center of National Engineering Research Center forFiber-based Composites, Shaoxing 312000, China; 2.CTA High-Tech Fiber Co., Ltd., Shaoxing 312000, China;3.Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China;4.Shaoxing Shuixiang Textile Technology Co., Ltd., Shaoxing 312000, China)
Abstract:
With the rapid development of material science and technology and the continuous improvement of market demand, more and more new textile materials have emerged at home and abroad. Among them, the tearable textile material, a new type of textile, can be used for the preparation of products such as tearable medical gauze, bandages, disposable tearable bags, label cloth, and electronic tapes. Users can tear it from any direction. The use process is convenient and fast, and it has a wide space for development and application. Tearable textiles are mainly woven from low strength fibers, and the strength is required to be about 2.0 cN/dtex. However, the strength of conventional chemical fibers is generally over 2.5 cN/dtex, and that of polyester fibers is more than 3.0 cN/dtex. Therefore, special preparation processes are required to meet the requirements of low strength properties. At present, there are three main preparation methods of tearable textiles on the market. One is to add chemical additives and adhesives to chemical fiber raw materials and make non-woven materials through nonwoven technology. However, such materials exhibit poor durability, heat resistance, light resistance, moisture absorption and air permeability, limiting their application in various fields. Another is the physical and chemical modification of chemical fiber masterbatches or fibers. The fabric obtained can not only meet the tear performance requirements, but also meet the basic wearing performance. The last method is to use melt composite spinning to prepare low strength skin core composite fibers, and process design can be used to prepare fibers with profiled sections to improve the tear resistance, bulkiness and air permeability of the fabric. Nevertheless, there are relatively few studies on low strength sheath core composite fibers at home and abroad, and the low strength sheath core composite filament of pure polyester has not been reported in the literature at home and abroad. The intermolecular force of low viscosity polyester (LVPET) is small, which can meet the preparation requirements of low strength fibers. LVPET retains some properties of polyester, and has good adhesion and compatibility with other polyester compounds. The special structure on the macromolecular chain of water-soluble polyester (COPET) makes it easy to hydrolyze, which reduces the use of organic solvents and is conducive to recycling, and can improve the economic and social benefits of the product. In view of this, we explored the preparation of a low strength sheath core composite fiber with LVPET as the skin layer and COPET as the core layer through melt composite spinning process. Specifically, LVPET chips and COPET chips meeting the water content requirements after drying were sent to their respective screw extruders for melting and extrusion, and were respectively transported to the metering pumps in the main and auxiliary spinning boxes through different melt pipes. Then, they were compounded into skin core structure section shapes in the spinning components, and then they were sprayed from the spinneret, cooled and solidified by side blowing to obtain composite fibers. Finally, the low-strength LVPET/COPET sheath-core composite fiber was obtained by oiling, pre-stretching, stretching, heat setting and winding. During the whole experiment, the appropriate screw melting temperature, spinning temperature and drafting temperature were determined according to the spinnability and spinning quality of the fiber; the LVPET/COPET ratios were set at 30︰70, 40︰60, 50︰50, 60︰40 and 70︰30, respectively for experiments. The skin core structure of the composite fiber was observed through the optical microscope to determine its raw material composition distribution ratio; the spinning speeds of 2 800 m/min, 3 000 m/min, 3 200 m/min and 3 400 m/min were set respectively for experiments. The spinning speeds were determined according to the spinnability, mechanical properties (breaking strength and elongation at break) and orientation degree of the fibers; the drafting ratios were set as 2.4 times, 2.7 times, 3.0 times and 3.6 times, respectively for experiments, and the drafting ratios were deterimined according to the spinnability, mechanical properties (breaking strength and elongation at break) and orientation degree of the fiber. The results show that when LVPET and COPET are used for skin core composite spinning, temperatures of various zones of the screw extruder for LVPET and COPET screw extruder are 285 ℃/285 ℃/285 ℃/285 ℃/285 ℃ and 284 ℃/284 ℃/284 ℃/284 ℃/285 ℃, respectively, the spinning box temperatures of LVPET and COPET are 282 ℃ and 280 ℃, respectively, the temperatures of the second hot roll range from 90 ℃ to 115 ℃, the mass ratio of LVPET to COPET is 50︰50, and the drafting multiple is 2.7, the spinning speed is 3 000 m/min, the prepared 171 dtex skin-core composite filament has good spinnability and mechanical properties, which meets the fiber strength requirements of tearable textiles. Through the selection and modification of raw materials as well as the optimization of process, the requirements of tearable textiles for low strength properties of fibers can be met, and the antibacterial property, durability and wearability of fibers can be further improved by means of modification, so as to expand their application scope in various fields and have a good development space.
Key words:
low strength fiber; low viscosity polyester; water soluble polyester; skin-core composite filament; melt composite spinning process; tearable textiles
收稿日期:
2022-08-03;
修回日期:
2023-02-22
基金項(xiàng)目:
紹興市“揭榜掛帥”制科技項(xiàng)目(2021B41003)
作者簡介:
任天翔(1998),男,碩士研究生,研究方向?yàn)楦叻肿硬牧霞案呒夹g(shù)纖維開發(fā)。通信作者:趙德方,副教授,博士,zhaodefang0518@usx.edu.cn。