劉林云 董旭燁 劉芷鈞 李錦冠 許嘉寧
摘要: 紡織印染工業(yè)中的纖維素活性染色面臨的主要問題是高耗鹽、高耗水和高排污等。在以廢烹飪油為染色介質(zhì)的研究中,考察了染色機理、烹飪油的去除效率及回用方法等。為擴展其應(yīng)用范圍,本文從固色時間對相對固色率的影響、染料投入量對固色效率的影響、拼色穩(wěn)定性等方面研究了異雙活性基三拼色染料在烹飪油/水二元體系中的配伍性能。結(jié)果表明,單個染料在棉布中某時刻的固色量差異較小;隨著三拼色染料用量的增加,三拼色染料在棉布上的固色量的總和呈現(xiàn)線性增加;在二元體系中,三拼色染料具有良好的拼色穩(wěn)定性,有色棉布的常規(guī)色牢度未明顯發(fā)生下降。
關(guān)鍵詞: 纖維素染色;應(yīng)用范圍;異雙活性基三拼色染料;廢烹飪油;二元體系;配伍性能
中圖分類號: TS193.5
文獻標志碼: A
文章編號: 1001-7003(2023)04-0031-07
引用頁碼:
041105
DOI: 10.3969/j.issn.1001-7003.2023.04.005(篇序)
在當前的紡織原料印染加工中,纖維素的活性染料染色仍然是一種“三高(高耗水、高耗鹽、高排污)”工藝,染色后的洗滌及污水處理的成本約占印染加工成本的50%[1]。從20世紀70年代至今,尤其是近20年內(nèi),眾多的非水或少水染色體系被研發(fā)出來,如超臨界流體(二氧化碳)[2]、二元有機溶劑體系(二甲亞砜/辛酸乙酯[3]、二甲亞砜/四氯乙烯[4-5])、少水體系(乙醇/水[6-7]、石蠟/水[8-10]、十甲基環(huán)五硅氧烷/水[11-14]等),這些新體系的主要優(yōu)點有染料利用率高、無鹽或低鹽促染、皂洗用水少等。在這些染色媒介中,除二氧化碳外,基本上所有的非水溶劑都存在或大或小的生物毒性、閃爆風險、價格昂貴等不足。
在“非水介質(zhì)染色關(guān)鍵技術(shù)研究與產(chǎn)業(yè)化示范”項目中,報道了以廢烹飪油(Waste cooking oil,WCO)作為活性染料染色介質(zhì)的染色技術(shù)。曾經(jīng)WCO是一種令國人談虎色變的城市餐飲廢棄物,當前中國的WCO年產(chǎn)生量預計在560萬t[15]。雖然,關(guān)于WCO的再利用有眾多的途徑,但是將WCO用于印染中的染色加工將是一條兼具環(huán)保、安全、經(jīng)濟等多方面特點的方案。在之前的研究中,分別考察了一氯均三嗪和乙烯砜型活性染料在WCO體系中的染色機理、染色后織物上WCO的去除效率、WCO的回用性能及回用方法等方面[16-18]。在當前纖維素類紡織品的活性染料染色加工中,很大一部分有色紡織品是通過染料之間的拼色實現(xiàn)的[19-21]。在活性染料的拼色染色中,所使用的三拼色染料對棉布具有接近的固色速率或固色率,隨著織物顏色深度的增加,保持色光的一致性對于染色棉布具有重要意義,這也就是所謂的活性染料染色性能中的配伍性。而活性染料在WCO染色體系中的配伍性,還沒有被報道。
本文選取了在纖維素染色中常用的異雙活性基染料,對比研究三拼色染料在常規(guī)水介質(zhì)和WCO介質(zhì)中的配伍性能,分別考察了在不同固色時間的固色速率、在不同投入量時的固色效率、拼色穩(wěn)定性及常規(guī)的色牢度(摩擦、日曬、洗滌)等,以期驗證WCO染色體系替代傳統(tǒng)水介質(zhì)染色的可能性。
1 實 驗
1.1 材 料
異雙活性基三原色商品染料(菲諾染料化工(無錫)有限公司),其中C.I.活性紅195、C.I.活性黃145、C.I.活性藍222分別簡寫為R195、Y145和B222,所有染料在使用前都經(jīng)過脫鹽純化處理。無水碳酸鈉(Na2CO3)、濃硫酸(H2SO4)、無水硫酸鈉(Na2SO4)、氫氧化鈉(NaOH)(國藥試劑有限公司)。廢烹飪油(WCO)(廈門華億宏進出口有限公司)。由于WCO中的脂肪酸和甘油等極性物質(zhì)會對活性染料的染色結(jié)果有負面影響,所以在染色前WCO須經(jīng)堿煉除雜處理。紗支為14.58×14.58 tex,密度為567×335根/10 cm,平方米質(zhì)量為135 g/m2的100%棉平紋梭織漂白布(溢達紡織有限公司)。滿足ISO 105-C10:2006的不含熒光增白劑的洗滌劑(上海米恩檢測儀器有限公司)。
1.2 方 法
1.2.1 廢烹飪油(WCO)-水染色
染色方法基本按照本研究之前成果[17]:將2 g棉平紋梭織漂白布,在由無水碳酸鈉配制的質(zhì)量濃度40 g/L的溶液中預處理1 h左右,之后為控制棉布上堿的總量及保證碳酸鈉的均勻性,按照印染加工中最常用的兩浸兩軋工藝,控制棉布的帶液量為100%(相對布重),在90 ℃的R-3型定型烘干機(佛山精柯紡織印染設(shè)備有限公司)上處理約30 s后,將其置于恒溫恒濕房(溫度21 ℃,濕度65%)中回潮24 h。將回潮后的棉布,按照如圖1所示的工藝曲線進行染色處理,浴比為1︰20(棉布︰水︰WCO=1︰1︰19)。染色結(jié)束后,棉布上的SHB-Ⅲ WCO按照真空抽液(廣州華瑞化玻儀器有限公司)、P-AO型軋車軋液(佛山精柯紡織印染設(shè)備有限公司)和兩浸兩軋等一系列連續(xù)的工序進行回收。最后,后處理結(jié)束后的有色棉布,按照傳統(tǒng)四步水洗法進行水洗以去除浮色。
1.2.2 傳統(tǒng)水染色
將2 g棉平紋梭織漂白布,按照類似1.2.1的染色工藝曲線進行染色處理,浴比為1︰20。染色結(jié)束后的有色棉布,按照傳統(tǒng)四步水洗法進行水洗以去除浮色。
1.2.3 三拼色染料在不同固色時間的相對固色率
三拼色活性染料(R195、Y145和B222)的質(zhì)量比為R195︰Y145︰B222=1︰1︰1,總質(zhì)量分數(shù)為5%,固色時間為10~120 min,其他工藝條件同1.2.1和1.2.2。根據(jù)實際生產(chǎn)中的工藝,異雙活性基染料的固色時間為30~60 min,所以將固色時間為90 min時的棉布上的染料量作為廢烹飪油(WCO)-水體系和傳統(tǒng)水體系固色達到平衡時的固色量。考查染色棉布上某一時刻(t)固著的某種活性染料的量(固色量),與達到固色平衡時棉布上固著的活性染料的量(∞),是否滿足以下公式:
(Mt)1(M∞)1=(Mt)2(M∞)2=(Mt)3(M∞)3(1)
式中:(Mt)i,是在固色時間t min時,第i種三原色染料在棉布上的固著量;(M∞)i,是在固色達到平衡時,第i種三原色染料在棉布上的固著量。
1.2.4 三拼色染料在不同投入量時的固色量的變化
三拼色活性染料(R195、Y145和B222)的質(zhì)量比為紅︰黃︰藍=1︰1︰1,總質(zhì)量分數(shù)為3%~7%,固色時間為60 min,其他工藝條件同1.2.1和1.2.2??疾樵诓煌娜瓷钚匀玖贤度肓繒r,棉布上三拼色活性染料的總固色量和顏色深度的變化情況。
1.2.5 三拼色染料的拼色穩(wěn)定性
依據(jù)1.2.1的操作方法進行重復染色,三拼色活性染料的總質(zhì)量分數(shù)同1.2.3,其中下一次所使用的染色介質(zhì),是將上一次的染色殘液和經(jīng)過回收的廢烹飪油合并,將其經(jīng)過重新脫酸處理后用于下一次染色,其中染色介質(zhì)的酸值保持在0.1 mg/g以下。
1.3 測試與表征
1.3.1 染料固色量的測定
將做過凈洗并晾干的有色棉布,經(jīng)105 ℃的高溫預烘2 h左右以去除結(jié)合水,之后被轉(zhuǎn)移至室溫下的干燥器中冷卻至溫度不發(fā)生變化。用分析天平精確稱取0.1 g有色棉布于70%的硫酸溶液中至未觀察到溶液中有固體后,在TU-1901型分光光度計(北京普析通用儀器有限責任公司)上測試有色硫酸溶液的吸光度值。由于多組分體系中吸光度值具有可加和的特點[22-23],所以可根據(jù)分光光度法中標準曲線的變形公式計算硫酸溶液中的三拼色染料的質(zhì)量濃度,并計算棉布上的染料固著量。
(At)i=K195×b×C195+K145×b×C145+K222×b×C222(2)
式中:(At)i為三拼色活性染料(R195、Y145和B222)在時間為t時R195、Y145或B222的最大吸收波長下的吸光度值。b為常數(shù),是TU-1901型分光光度計所用比色皿的寬度;K195、K145、K222為三拼活性染料的吸光參數(shù),這兩項參數(shù)可分別根據(jù)配制的硫酸溶液中已知濃度的R195、Y145和B222的標準曲線來進行計算。C195、C145、C222為溶解有三拼色染料染色后的棉布的有色硫酸溶液中三拼活性染料(R195、Y145和B222)的質(zhì)量濃度。
1.3.2 染色棉布顏色參數(shù)的測定
將做過凈洗并晾干的有色棉布置于恒溫恒濕房(溫度21 ℃,濕度65%)中回潮24 h后,通過Ci7800型分光光度計(愛色麗有限公司)表征有色棉布的顏色深度(K/S值)和色差(ΔE)等方面的數(shù)值,其中ΔE主要用于評價染色有色棉布之間的顏色差異,而基于Kubelka-Munk理論的K/S值,主要用于評價染色有色棉布的顏色深度。對于單一活性染料染色的棉布,主要用可見光范圍內(nèi)最大吸收波長下的K/S值來表示染色棉布的顏色深度,而對于本研究所選用的三拼色染料(R195、Y145和B222)染色后的棉布,由于其在最大吸收波長560 nm處仍具有最大的K/S值(在廢烹飪油/水二元體系中,三拼色染料總質(zhì)量分數(shù)為5%時所染色的棉織物的K/S值曲線如圖2所示,其中R195、Y145和B222=1︰1︰1),所以仍然可用最大吸收波長下的K/S值來反應(yīng)拼色染色棉布的顏色深度。
1.3.3 色牢度的測定
分別測試經(jīng)凈洗并晾干的有色棉布的三種色牢度,即耐皂洗色牢度(AATCC TM61-2013e(2020) 2A《耐洗色牢度:加速》)、耐日曬色牢度(AATCC TM16.3-2020 Option3《耐光色牢度:氙弧法》)、耐摩擦色牢度(AATCC TM8-2016e《摩擦色牢度測試》)。
2 結(jié)果與分析
2.1 固色時間對三拼色染料相對固色率的影響
在廢烹飪油(WCO)-水體系和傳統(tǒng)水體系中,不同固色時間對三拼色活性染料(R195、Y145和B222)在棉布上固色量的影響見表1。從表1可見,在傳統(tǒng)工藝中,當固色時間達到30 min時,三拼色活性染料(R195、Y145和B222)的相對固色率基本達到了最大,延長固色時間基本不會進一步提高棉布上三拼色染料的固色量;而在廢烹飪油(WCO)-水體系中,固色時間達到60 min時棉布上三拼色染料的相對固色率和固色量才達到最大。實驗結(jié)果與之前報道的活性染料在油/水二元溶劑染色體系中隨著單一染料投入量的增加,染色棉布上染料的總固著量呈現(xiàn)增加的趨勢基本保持一致。這是由于在上述二元溶劑的染色體系中,初始分散在廢烹飪油中的三拼色染料納米液滴在染色的過程中需要完成液滴的聚集、液滴在棉布中的擴散、染料在棉布中的固著等過程[24]。同時還可發(fā)現(xiàn),雖然三拼色活性染料(R195、Y145和B222)在油/水二元溶劑體系中的固色速率下降了,但是單個活性染料(R195、Y145和B222)在棉布中某一時刻(10、20、30 min等)的固色量基本保持了同步增加,其間差異在5%以內(nèi)[25]。從固色時間的角度可見,三拼色活性染料(R195、Y145和B222)在油/水二元溶劑體系中也具有良好的配伍性。
2.2 三拼色染料投入量對棉布上染料總固著量的影響
三拼色染料(R195、Y145和B222)總質(zhì)量分數(shù)對棉布上染料總固著量的影響如圖3所示。由圖3可知,由于不改變?nèi)瓷玖希≧195、Y145和B222)的質(zhì)量比(R195︰Y145︰B222=1︰1︰1),隨著三拼色染料(R195、Y145和B222)總質(zhì)量分數(shù)的增加,有色棉織物上三拼色染料(R195、Y145和B222)的總固著的染料量呈線性增加。其中三拼色染料(R195、Y145和B222)在廢烹飪油/水體系中的線性相關(guān)系數(shù)R2為0.996 0,而在傳統(tǒng)水體系中的線性相關(guān)系數(shù)R2為0.986 5。隨著染料投入量的增加,異雙活性基染料在傳統(tǒng)水相中對棉布的染色需要添加大量的中性鹽,但是仍然存在大量的未固著或水解染料殘留在水中;而在油/水兩相染色中,染色前通過高速剪切所制備的納米級染料液滴在染色過程中會聚集并幾乎100%上染棉布,并進一步發(fā)生固著反應(yīng)。所以,異雙活性基染料在油/水兩相染色中,在棉布上的固著效率具有更好的線性相關(guān)系數(shù)。
2.3 三拼色染料在油/水二元與傳統(tǒng)水相中顏色的差異
三拼色染料(R195︰Y145︰B222)在油/水兩相和傳統(tǒng)水相中上染棉布后的顏色差異見表2。從表2可見,在油/水二元體系和傳統(tǒng)水體系的3組對比實驗中,油水二元體系中染色的棉布與傳統(tǒng)水體系中染色的棉布的色差值(ΔE)均不超過0.5,滿足當前紡織印染企業(yè)對有色紡織品一次成功的基本要求。而且,在所選擇的油/水二元體系和傳統(tǒng)水體系的3組對比實驗中,相比于傳統(tǒng)水體系,油/水二元體系可節(jié)省約20%~30%異雙活性基染料的用量。
2.4 三拼色染料在油/水二元體系中的拼色穩(wěn)定性
三拼色染料在油/水二元體系中的拼色穩(wěn)定性如圖4所示。由圖4可見,在染色循環(huán)次數(shù)為1~5時,染色棉布與初次染色的棉布的色差值(ΔE)小于均0.4,染色棉布的顏色深度(K/S值)基本在18.5左右。這是由于廢烹飪油在脫酸預處理的過程中已經(jīng)將會影響染色質(zhì)量的油脂降解產(chǎn)物(如脂肪酸和甘油等)基本去除掉了,雖然在染色過程中廢烹飪油仍然有微弱的降解,但是在廢烹飪油回用前,降解產(chǎn)物依舊可以通過之前開發(fā)的堿煉、離心和水洗等工藝去除。這說明了從拼色穩(wěn)定性的角度出發(fā),非極性(油)/極性(水)二元體系是有望替代傳統(tǒng)水相體系用以纖維素活性染色的。
2.5 三拼色染料在油/水二元體系中的色牢度
表3為三拼色染料在油/水二元體系中的色牢度。在油/水二元體系與傳統(tǒng)水相體系所染色的有色棉布的顏色深度基本相當?shù)那疤嵯?,染色棉織物的常?guī)色牢度(耐摩擦、耐洗滌和耐日曬)基本一致,可以滿足消費者對有色紡織品的色牢度需要。
3 結(jié) 論
本文對比研究了異雙活性基三拼色染料(R195︰Y145︰B222)在常規(guī)水介質(zhì)和廢烹飪油/水介質(zhì)體系中的配伍性能。主要結(jié)論如下:
1) 相比傳統(tǒng)水體系,在廢烹飪油/水體系中三拼色染料的固色速率稍慢,但是單個活性染料(R195、Y145和B222)在棉布中某一時刻(10~60 min等)的固色量,相互之間的差異在5%以內(nèi)。
2) 當三拼色染料的投入量改變時,棉織物上三拼色染料固色量的總和呈現(xiàn)一定線性增加。其中,染料在廢烹飪油/水體系中的線性相關(guān)系數(shù)(R2為0.996 0)要好于傳統(tǒng)水體系(R2為0.986 5)。
3) 在廢烹飪油/水體系中,當染色循環(huán)次數(shù)為1~5時,染色棉布與初次染色的棉布的色差(ΔE)小于0.6。與傳統(tǒng)水介質(zhì)相比,廢烹飪油/水體系所染色的棉布的常規(guī)色牢度(耐摩擦、耐洗滌和耐日曬)基本沒有發(fā)生下降。
參考文獻:
[1]KHATRI A, PEERZADA M H, MOHSIN M, et al. A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution[J]. Journal of Cleaner Production, 2015, 87: 50-57.
[2]ZHOU T B, WANG Y X, ZHENG H D, et al. Sustainable and eco-friendly strategies for polyester-cotton blends dyeing in supercritical CO2[J]. Journal of CO2 Utilization, 2022, 55: 101816.
[3]ZHAO J B, AGABA A, SUI X F, et al. A heterogeneous binary solvent system for recyclable reactive dyeing of cotton fabrics[J]. Cellulose, 2018, 25(12): 7381-7392.
[4]DENG Y, XU M, ZHANG Y G, et al. Non-water dyeing process of reactive dyes in two organic solvents with temperature-dependent miscibility[J]. Textile Research Journal, 2019, 89(18): 3882-3889.
[5]柯鋼強, 江立文, 董霞, 等. 棉織物含水率對DMSO/PCE體系活性染色性能的影響[J]. 印染, 2018, 44(22): 1-6.
KE Gangqiang, JIANG Liwen, DONG Xia, et al. Effects of water content of cotton on reactive dyeing behaviors in DMSO/PCE miscible system[J]. China Dyeing & Finishing, 2018, 44(22): 1-6.
[6]DONG X, GU Z J, HANG C Y, et al. Study on the salt-free low-alkaline reactive cotton dyeing in high concentration of ethanol in volume[J]. Journal of Cleaner Production, 2019, 226: 316-323.
[7]谷智杰, 柯鋼強, 姚金龍, 等. 乙醇/水染色體系中棉纖維的溶脹性能[J]. 印染, 2018, 44(3): 1-4.
GU Zhijie, KE Gangqiang, YAO Jinlong, et al. Swelling behaviors of cotton fibers in ethanol/water dyeing system[J]. China Dyeing & Finishing, 2018, 44(3): 1-4.
[8]FAN J, SHAO M, MIAO J H, et al. Thermodynamic properties of cotton dyeing with indigo dyes in non-aqueous media of liquid paraffin and D5[J]. Textile Research Journal, 2021, 91(21/22): 2692-2704.
[9]朱振旭, 周嵐, 黃益, 等. 棉織物的活性染料/液體石蠟體系無鹽節(jié)水染色[J]. 染整技術(shù), 2017, 39(3): 52-57.
ZHU Zhenxu, ZHOU Lan, HUANG Yi, et al. A water-saving and salt-free dyeing of cotton fabrics with reactive dye/liquid paraffin system[J]. Textile Dyeing and Finishing Journal, 2017, 39(3): 52-57.
[10]AN Y, MA J R, ZHU Z X, et al. Study on a water-saving and salt-free reactive dyeing of cotton fabrics in non-aqueous medium of liquid paraffin system[J]. The Journal of The Textile Institute, 2020, 111(10): 1538-1545.
[11]AN Y, MIAO J H, FAN J, et al. High-efficiency dispersant-free polyester dyeing using D5 non-aqueous medium[J]. Dyes and Pigments, 2021, 190: 109303.
[12]SALEEM M A, PEI L J, SALEEM M F, et al. Sustainable dyeing of nylon fabric with acid dyes in decamethylcyclopentasiloxane (D5) solvent for improving dye uptake and reducing raw material consumption[J]. Journal of Cleaner Production, 2021, 279: 123480.
[13]PEI L J, GU X M, WANG J P. Sustainable dyeing of cotton fabric with reactive dye in silicone oil emulsion for improving dye uptake and reducing wastewater[J]. Cellulose, 2021, 28(4): 2537-2550.
[14]PEI L J, LUO Y N, SALEEM M A, et al. Sustainable pilot scale reactive dyeing based on silicone oil for improving dye fixation and reducing discharges[J]. Journal of Cleaner Production, 2021, 279: 123831.
[15]TEIXEIRA M R, NOGUEIRA R, NUNES L M. Quantitative assessment of the valorisation of used cooking oils in 23 countries[J]. Waste Management, 2018, 78: 611-620.
[16]LIU L Y, MU B N, LI W, et al. Cost-effective reactive dyeing using spent cooking oil for minimal discharge of dyes and salts[J]. Journal of Cleaner Production, 2019, 227: 1023-1034.
[17]LIU L Y, MU B N, LI W, et al. Semistable emulsion system based on spent cooking oil for pilot-scale reactive dyeing with minimal discharges[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 13698-13707.
[18]LIU L Y, MU B N, LI W, et al. Clean cotton dyeing in circulated dyebath of waste cooking oil: A feasible industrialization strategy for pollution minimization[J]. Journal of Cleaner Production, 2021, 278: 123799.
[19]WANG Y M, TANG Y L, LEE C H, et al. A computer color-matching study of reverse micellar dyeing of wool with reactive dyes[J]. Polymers, 2019, 11(1): 132.
[20]ZHANG H J, YANG H, XIE K L, et al. Novel reactive dyes with intramolecular color matching combination containing different chromophores[J]. Dyes and Pigments, 2018, 159: 576-583.
[21]TANG A Y L, WANG Y M, LEE C H, et al. Comparison of computer colour matching of water-based and solvent-based reverse micellar dyeing of cotton fibre[J]. Coloration Technology, 2018, 134(4): 258-265.
[22]王先鋒, 趙濤, 鄭建范, 等. 小浴比染色用活性染料的配伍性能[J]. 印染, 2013, 39(12): 11-15.
WANG Xianfeng, ZHAO Tao, ZHENG Jianfan, et al. Compatibility of reactive dyes for low liquor ratio dyeing[J]. China Dyeing & Finishing, 2013, 39(12): 11-15.
[23]HUANG G, DAI J J, DONG F C, et al. Compatibility of a disperse dye mixture in supercritical carbon dioxide dyeing[J]. Coloration Technology, 2013, 129(4): 305-311.
[24]MU B N, LIU L Y, LI W, et al. A water/cottonseed oil bath with controllable dye sorption for high dyeing quality and minimum discharges[J]. Journal of Cleaner Production, 2019, 236: 117566.
[25]MU B N, LIU L Y, LI W, et al. High sorption of reactive dyes onto cotton controlled by chemical potential gradient for reduction of dyeing effluents[J]. Journal of Environmental Management, 2019, 239: 271-278.
Compatibility of a hetero-bifunctional dye mixture in the waste cooking oil/water binary system
LIU Linyun1, DONG Xuye1, LIU Zhijun1, LI Jinguan2, XU Jianing2
(1.School of Textile, Guangdong Polytechnic, Foshan 528000, China; 2.Prosperity Textiles Co., Ltd., Shaoguan 512000, China)
Abstract:
Up to now, the cotton fiber is still an important textile fiber, and it accounts for about 80% of the global annual output of natural fibers. The main problems of the reactive dyeing technology for cotton fibers in the processes of dyeing and finishing are high salt consumption, high water consumption, high sewage discharge, etc. The relevant costs from the removal of hydrolyzed reactive dyes from the dyed cotton fiber and degradation of hydrolyzed reactive dyes from the dyeing wastewater account for about 50% of the total cost of cotton fiber processing. During the past two decades of the 21st century, many improvement schemes, including cationic modification technology for cellulose, supercritical carbon dioxide dyeing technology, low-water foam dyeing technology, non-aqueous solvent dyeing technology, low-water solvent dyeing technology, etc. of the reactive dyeing technology for cotton fibers have been proposed. However, the new cotton fiber dyeing technology reported above is difficult to meet the requirements of the dyeing quality, production safety, and processing cost simultaneously. A low-water dyeing technology for cotton fibers with waste cooking oil as the dyeing medium was proposed in our previous research, and the dyeing mechanism, removal efficiency of waste cooking oil and recycling methods of waste cooking oil were investigated.
To expand the application scope of the low-water reactive technology with waste cooking oil as the dyeing medium, it is especially necessary to study the compatibility of commonly used hetero-bifunctional trichromatic dye mixture in the waste cooking oil/water binary dyeing system. In the waste cooking oil/water binary dyeing system, almost all the hetero-bifunctional trichromatic reactive dye droplets will enter the surface of cotton cloth from the waste cooking oil phase during the dyeing process. Firstly, the trichromatic reactive dye samples were taken at different fixation times during the cotton fibre dyeing process, and the effects of the fixation time on the relative rate of hetero-bifunctional trichromatic reactive dyes on cotton cloth were analyzed. On this basis, the input of hetero-bifunctional trichromatic reactive dyes in the waste cooking oil/water binary dyeing system was increased, and the impact of the hetero-bifunctional trichromatic reactive dye input on the fixation of hetero-bifunctional trichromatic reactive dyes on cotton cloth was investigated. The waste cooking oil in the dyeing residue was reused as the dyeing medium after deacidification, and the color matching stability of hetero-bifunctional trichromatic reactive dyes in the waste cooking oil/water binary dyeing system was studied. The traditional method of checking the compatibility of hetero-bifunctional trichromatic reactive dyes is mainly to test the dye uptake rate of a single hetero-bifunctional trichromatic reactive dye on cotton cloth. The dyeing compatibility of hetero-bifunctional trichromatic reactive dyes in the waste cooking oil/water binary dyeing system was characterized by testing the relative fixation rate and fixation amount of hetero-bifunctional trichromatic reactive dyes in the dyeing process of cotton cloth. The results show that there are few differences in the fixation of a single hetero-bifunctional trichromatic reactive dye in cotton cloth at a certain time; the total fixation of hetero-bifunctional trichromatic reactive dyes on cotton cloth increases linearly with the increase of the amount of hetero-bifunctional trichromatic reactive dyes; hetero-bifunctional trichromatic reactive dyes have good color matching stability in the waste cooking oil/water binary dyeing system; in the waste cooking oil/water binary dyeing system, the conventional color fastness of colored cotton cloth basically does not decrease.
For the reactive dye dyeing technology of cotton fibers, the products dyed with waste cooking oil as the dyeing medium could meet the requirements of dyeing quality, production safety, and processing cost simultaneously. The compatibility of hetero-bifunctional trichromatic reactive dyes, which are commonly used in the aqueous dyeing medium, will be of great significance for the industrial prospect of the waste cooking oil/water binary dyeing system.
Key words:
cellulose dyeing; application scope; hetero-bifunctional trichromatic dye mixture; waste cooking oil; binary dyeing system; compatibility
收稿日期:
2022-07-25;
修回日期:
2023-03-06
基金項目:
廣東省普通高校特色創(chuàng)新類項目(2021KTSCX210);廣東職業(yè)技術(shù)學院校級科研項目(ZXKY2022054);佛山市先進紡織技術(shù)工程技術(shù)研發(fā)中心項目(2120001009566);廣東職業(yè)技術(shù)學院校級科研項目(XJKY2021010);廣東職業(yè)技術(shù)學院高層次人才科研專項項目(GZGC202208)
作者簡介:
劉林云(1985),男,講師,主要從事生物質(zhì)材料的清潔生產(chǎn)的研究。