蔡王丹 范碩 田偉 李艷清 祝成炎 張紅霞
摘要: 紡織品異味會(huì)刺激人的嗅覺器官,甚至危害人的生命健康。因此,如何檢測(cè)和分析紡織品異味及去除異味則成為紡織品領(lǐng)域的重要研究課題之一。為了進(jìn)一步深化研發(fā)紡織品異味檢測(cè)及去除技術(shù),本文對(duì)現(xiàn)階段國(guó)內(nèi)外紡織品異味檢測(cè)及去除技術(shù)進(jìn)行深入解讀,并著重論述紡織品異味的來(lái)源,兩種檢測(cè)異味的主要方法,即感官分析和儀器檢測(cè),以及三種去除異味方法,即物理、化學(xué)、感官,為后續(xù)制定紡織品異味的檢測(cè)及去除提供堅(jiān)實(shí)的理論與關(guān)鍵技術(shù)支撐。
關(guān)鍵詞: 紡織品;紡織品異味來(lái)源;異味檢測(cè);感官分析;頂空氣相色譜法;電子鼻技術(shù);除異味技術(shù)
中圖分類號(hào): TS101.8
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1001-7003(2023)03-0082-08
引用頁(yè)碼:
031111
DOI: 10.3969/j.issn.1001-7003.2023.03.011(篇序)
紡織品因其獨(dú)特的結(jié)構(gòu)特性,是一類常見的異味載體,極易從周圍的環(huán)境中吸收異味[1]。然而,帶有異味的紡織品不僅會(huì)破壞人們的心情,甚至?xí)?duì)人類生命健康造成一定程度的影響[2-3]。國(guó)際標(biāo)準(zhǔn)紡織協(xié)會(huì)標(biāo)準(zhǔn)OEKO-TEX Standard 100-016和中國(guó)標(biāo)準(zhǔn)GB/T 18401—2010《國(guó)家紡織產(chǎn)品基本安全技術(shù)規(guī)范》中也明確規(guī)定,產(chǎn)品中不得含有高沸程石油味、霉味、魚腥味、芳香烴氣味或香味等特殊氣味。此外,紡織品在穿著或使用過(guò)程中吸附的氣味,如腋臭、腳臭等,也同樣嚴(yán)重影響著人們的穿著體驗(yàn)[4-5]。因此,研究和分析紡織品如何去除異味尤為重要。
除異味是指在一定的時(shí)間或空間內(nèi),消除、減少或削弱空氣中異味氣體的過(guò)程[6]。隨著現(xiàn)代生活水平的提高,以及人們綠色環(huán)保意識(shí)的不斷增強(qiáng),消費(fèi)者對(duì)于紡織品除異味的關(guān)注度越來(lái)越高。因此,本文將紡織品異味作為研究基點(diǎn),系統(tǒng)闡述紡織品異味來(lái)源、異味檢測(cè)及除異味技術(shù),并對(duì)紡織品異味檢測(cè)方法及除異味方法的未來(lái)發(fā)展趨勢(shì)進(jìn)行展望。
1 紡織品異味來(lái)源
紡織品的異味通常來(lái)自人體內(nèi)部及外部環(huán)境[4]。體內(nèi)異味通常來(lái)源于皮膚表面產(chǎn)生的生理分泌物(汗液、皮脂)、上皮細(xì)胞及皮膚上的微生物群,它們之間相互作用,進(jìn)而導(dǎo)致?lián)]發(fā)性有機(jī)化合物的生成,產(chǎn)生異味。隨后在穿著服裝時(shí),分泌物、皮膚碎片和細(xì)菌會(huì)從身體轉(zhuǎn)移到衣服上,隨著時(shí)間的推移也會(huì)有異味的產(chǎn)生[5]。通常,這些揮發(fā)性有機(jī)化合物會(huì)在人體的各個(gè)部位,如腋窩、足部、頭部、口腔和背部等處因細(xì)菌的分解,以及小汗腺、頂泌汗腺和皮脂腺的分泌物氧化產(chǎn)生[7]異味。如腋臭是因頂泌汗腺產(chǎn)生分泌液,腋窩部位的細(xì)菌分解這些分泌液,產(chǎn)生C6~C10的不飽和支鏈脂肪酸,造成異味[8]。再比如,足部異味是由于人體的腳部分布有眾多小汗腺,出汗后會(huì)給細(xì)菌提供一個(gè)適合生長(zhǎng)繁殖的環(huán)境,一些表皮葡萄球菌在降解汗液中的亮氨酸時(shí)會(huì)產(chǎn)生異戊酸,造成腳部異味[9]。
人體外部異味來(lái)源主要來(lái)自以下三個(gè)方面:一是運(yùn)輸環(huán)節(jié)。紡織品在交通運(yùn)輸過(guò)程中,由于環(huán)境較為陰暗,給真菌、細(xì)菌創(chuàng)造了極為適合的生長(zhǎng)環(huán)境,這些微生物大量繁殖代謝,產(chǎn)生霉味。二是加工時(shí)的各種整理劑及助劑的異味殘留[10],如高沸程石油味、魚腥味、芳香烴氣味或香味等特殊氣味。高沸程石油味的產(chǎn)生主要是由于在加工紡織品時(shí),會(huì)使用油劑作為紡織助劑。例如,在紡制化纖類長(zhǎng)絲時(shí)常加入一些油劑,能夠減少靜電對(duì)織造過(guò)程的影響。除此之外,在紡織織造設(shè)備上,也常用到油劑,起潤(rùn)滑作用。高沸程石油是一種有毒物質(zhì),不慎吸入會(huì)對(duì)人體健康造成影響[10-11]??椢飵в恤~腥味,究其原因是織物在進(jìn)行后整理時(shí),沒(méi)有選擇合適的焙烘溫度及洗滌不充分。這些因素均會(huì)導(dǎo)致低級(jí)胺類的殘留[12]。含苯環(huán)的烴類化合物總稱為芳香烴,在紡織品的織造、染整等過(guò)程中使用的紡織品助劑常含有這類物質(zhì),也被歸屬于紡織品異味的一種[13]。三是周圍環(huán)境異味。紡織品因其多孔性,極易從周圍環(huán)境中吸附氣味,如香煙、油煙、農(nóng)藥、動(dòng)物氣味等[4]。
2 紡織品異味的檢測(cè)方法
2.1 紡織品異味的收集
在檢驗(yàn)紡織品異味時(shí),人體內(nèi)部的氣味無(wú)法直接進(jìn)行測(cè)試。因此,通常需要將人體內(nèi)部的氣味轉(zhuǎn)移到紡織品后進(jìn)行測(cè)試。其中,人體穿著實(shí)驗(yàn)被認(rèn)為是最有效且最具有代表性的檢測(cè)方法之一。McQueen等[5]和Rathinamoorthy等[14]均使用了人體穿著實(shí)驗(yàn)來(lái)收集人體內(nèi)的氣味,便于后續(xù)對(duì)內(nèi)衣紡織品異味的檢測(cè)。其中,McQueen等得出結(jié)論,即棉織物、羊毛織物及滌綸織物的腋臭強(qiáng)度與纖維吸濕性成反比。Rathinamoorthy等表明,經(jīng)訶子提取物處理過(guò)的織物異味程度會(huì)相對(duì)降低。然而,人體穿著實(shí)驗(yàn)對(duì)環(huán)境要求十分嚴(yán)格,需要在特定的人工氣候室中進(jìn)行。在實(shí)驗(yàn)過(guò)程中,受試者需要按照要求進(jìn)行模擬,以保證實(shí)驗(yàn)結(jié)果的真實(shí)和準(zhǔn)確性。
對(duì)于人體外的異味,不管是被微生物污染的,還是殘留的各類整理劑及助劑或者是在環(huán)境中吸附的異味,均可以對(duì)紡織品直接進(jìn)行測(cè)試,無(wú)需特意收集。
2.2 感官分析
感官分析即根據(jù)測(cè)試員的感官(味覺、嗅覺、視覺、觸覺、聽覺)來(lái)檢查產(chǎn)品的性質(zhì),如質(zhì)地、風(fēng)味、口感、外觀、氣味等的檢測(cè)方法[15]。其中,紡織品異味檢測(cè)則是采用感覺分析中的嗅覺法,也是國(guó)內(nèi)外紡織品異味檢測(cè)常用方法。目前,感官分析廣泛應(yīng)用于食品[16-18]、化妝品[19]、紡織品[20]等多個(gè)領(lǐng)域。韓耀軍等[21]指出,由于煙味的成分復(fù)雜、具有時(shí)段性、與環(huán)境關(guān)系密切等原因,一般無(wú)法通過(guò)儀器檢驗(yàn)得出,所以通過(guò)感官分析對(duì)煙味進(jìn)行檢測(cè)十分重要。
對(duì)于嗅覺法而言,檢測(cè)員的嗅覺靈敏度和辨別能力是從事此項(xiàng)檢測(cè)的重要前提。但不同的人在嗅聞同一種氣味物質(zhì)時(shí),其敏感度會(huì)有較大的區(qū)別,而同一個(gè)人在不同情況下他的嗅覺靈敏程度也有很大的不同。因此,檢測(cè)員的專業(yè)素質(zhì)成為影響檢測(cè)結(jié)果準(zhǔn)確性的主要因素[22]。感官分析的優(yōu)點(diǎn)在于,可以檢測(cè)出因異味化合物含量很少致使儀器難以檢測(cè)到的異味。如煙味成分復(fù)雜,通過(guò)儀器檢驗(yàn)僅能檢測(cè)出一種或幾種成分,并不能體現(xiàn)出異味的程度。然而,通過(guò)感官分析對(duì)紡織品異味進(jìn)行檢測(cè)時(shí),通常存在主觀差異性,重復(fù)性較差,同時(shí)部分異味物質(zhì)具有一定毒性,吸入時(shí)間過(guò)長(zhǎng)可能會(huì)導(dǎo)致檢測(cè)員健康受損。
2.3 儀器分析
目前,頂空氣相色譜法和電子鼻技術(shù)是針對(duì)紡織品異味的兩種常見儀器檢測(cè)方法[23]。
2.3.1 頂空氣相色譜法
頂空氣相色譜法是一種被化學(xué)分析工作者所廣泛認(rèn)同的分析揮發(fā)性及半揮發(fā)性有機(jī)物的方法。紡織品異味無(wú)論是來(lái)自人體內(nèi)部還是外部環(huán)境,大部分都是有機(jī)物質(zhì)所揮發(fā)出的令人感到不適的氣味。因此,通過(guò)檢測(cè)分析有機(jī)物的組成、濃度和分布等特點(diǎn),即可對(duì)紡織品異味進(jìn)行更為詳細(xì)的檢測(cè)。
頂空進(jìn)樣技術(shù)(HS)是氣相色譜法中一種方便快捷的樣品前處理方法。這種方法無(wú)需使用有機(jī)溶劑進(jìn)行萃取,避免溶劑峰和其他組分對(duì)分析造成的干擾、減少對(duì)進(jìn)樣口和色譜柱及檢測(cè)器的污染、提高了分析數(shù)據(jù)的可靠性[24]。相對(duì)于溶劑提取方法,HS對(duì)樣品中微量的有機(jī)揮發(fā)性物質(zhì)具有更高的靈敏度和更快的分析速度。
頂空分析法共有3種類型,分別為靜態(tài)頂空法(S-HS)、動(dòng)態(tài)頂空法(D-HS)和頂空固相微萃取法(HS-SPME)。靜態(tài)頂空是使系統(tǒng)在一定的溫度下加熱,揮發(fā)性化合物在樣品相和氣相間分配直至平衡,再進(jìn)入氣相色譜進(jìn)行分析[25],主要適用于高含量組分的測(cè)定,對(duì)低含量組分分析時(shí)必須進(jìn)行大體積的氣體進(jìn)樣。動(dòng)態(tài)頂空法使用惰性氣體,對(duì)樣品中的揮發(fā)性物質(zhì)進(jìn)行吹掃,通過(guò)捕集器將吹掃出來(lái)的組分進(jìn)行吸附,然后經(jīng)熱解吸將樣品送入氣相色譜儀進(jìn)行分析。儀器操作復(fù)雜但靈敏度較高,可分析較難揮發(fā)及濃度較低的組分,但在氣體吸附和解吸附時(shí)可能會(huì)造成樣品的損失[26-27]。固相微萃取技術(shù)的作用就是在抽提氣體樣本的時(shí)候采用涂有固定相的纖維來(lái)進(jìn)行吸附、富集,然后再解吸進(jìn)樣的一個(gè)原理。頂空固相微萃取技術(shù)的萃取頭十分重要,萃取頭的涂層會(huì)吸附頂空中的有機(jī)揮發(fā)性物質(zhì),然后解吸將樣品送入氣相色譜儀來(lái)進(jìn)行分析,常結(jié)合質(zhì)譜(MS)進(jìn)行檢測(cè)[23,28]。該方法樣本準(zhǔn)備簡(jiǎn)單方便,能有效地避免一些高沸點(diǎn)基質(zhì)對(duì)于質(zhì)譜的污染及液體進(jìn)樣前處理的誤差。但檢測(cè)范圍較窄,檢測(cè)周期較長(zhǎng),定量檢測(cè)的精確度不高。
氣相色譜技術(shù)(GC)是基于物質(zhì)的極性、吸附性和沸點(diǎn)的不同,使物質(zhì)在流動(dòng)相和固定相間分配技術(shù)存在差異,從而達(dá)到分離混合組分的目的,分離之后的組分會(huì)依次進(jìn)入檢測(cè)器,形成不同的色譜峰[29]。氣質(zhì)聯(lián)用技術(shù)(GC-MS)即樣品在經(jīng)過(guò)氣相色譜時(shí)分離成為更具體的成分,進(jìn)入接口,接口會(huì)把氣相色譜流出的各組分送入質(zhì)譜儀進(jìn)行檢測(cè),進(jìn)行離子化,最后進(jìn)行分析整合,就會(huì)呈現(xiàn)出一個(gè)具體的、由單一成分的質(zhì)譜圖[30]。氣質(zhì)聯(lián)用技術(shù)是一種靈敏度高、快速、準(zhǔn)確的定性定量分析技術(shù),已成為目前分析復(fù)雜混合物最為有效的手段之一[24]。
頂空氣相色譜-質(zhì)譜聯(lián)用技術(shù)(HS-GC-MS)目前被廣泛應(yīng)用于食品、植物學(xué)、醫(yī)藥、紡織工程等領(lǐng)域的氣味檢測(cè)。Wang等[31]采用靜態(tài)頂空氣相色譜-質(zhì)譜法測(cè)定了毛絨玩具中58種香味過(guò)敏原。周秀錦等[32]將D-HS與GC-MS相結(jié)合,建立了一種適用于部分海域海產(chǎn)品中苯系物的分析檢測(cè)方法。Feng等[33]在兩個(gè)生長(zhǎng)季節(jié),采用頂空固相微萃取-氣相色譜-質(zhì)譜等多種技術(shù),研究了果區(qū)葉片去除對(duì)黑比諾葡萄酒揮發(fā)性成分和花青素組成的影響。Goltz等[34]采用頂空固相微萃取氣相色譜-質(zhì)譜聯(lián)用技術(shù)對(duì)羊毛、棉花、聚酯、烯烴、絲綢、丙烯酸等原料中的揮發(fā)性化合物進(jìn)行了鑒定。
2.3.2 電子鼻技術(shù)
電子鼻是一種模擬動(dòng)物嗅覺器官開發(fā)出的一種產(chǎn)品,工作流程為待測(cè)氣體傳感器陣列信號(hào)處理與模式識(shí)別評(píng)估判斷。電子鼻系統(tǒng)以氣敏傳感器陣列為核心,可以將待測(cè)樣品中的組分信息轉(zhuǎn)化為可測(cè)物理量組,構(gòu)建目標(biāo)物質(zhì)的指紋圖譜,借助于模式識(shí)別系統(tǒng)與預(yù)置樣本信息庫(kù)中的信息進(jìn)行比對(duì)辨識(shí),從而能夠綜合的檢測(cè)、鑒別與分析氣體樣品[35-36]。其測(cè)定不受主觀因素影響,提高了判定的客觀性,同時(shí)由于分析速度快、高靈敏性、幾乎不使用有機(jī)溶劑、易于使用等優(yōu)勢(shì),目前已經(jīng)廣泛應(yīng)用于食品新鮮度檢測(cè)、疾病篩查與診斷、環(huán)境污染物檢測(cè)、可燃性氣體檢測(cè)等領(lǐng)域[37-39]。
Fens等[40]綜述了電子鼻呼吸系統(tǒng)對(duì)人體呼出氣體的分析在慢性呼吸道疾病診斷和監(jiān)測(cè)中的臨床驗(yàn)證及應(yīng)用現(xiàn)狀。并提出電子鼻技術(shù)在臨床應(yīng)用的下一步應(yīng)該是對(duì)疑似疾病的進(jìn)一步驗(yàn)證,評(píng)估不同共病的影響,以及預(yù)測(cè)治療反應(yīng)的可能性。Chen[41]等提出了一種E-nose/camera雙系統(tǒng),利用嗅覺和視覺信息來(lái)對(duì)水果成熟度進(jìn)行分類。該非破壞性系統(tǒng)旨在監(jiān)測(cè)果實(shí)成熟,并提供更好的準(zhǔn)確性,以確定果實(shí)成熟階段。Kinkeldei等[42]等研發(fā)出一款將電子鼻系統(tǒng)集成于紡織品上的智能紡織品,用這種智能紡織品來(lái)檢測(cè)不同的溶劑蒸汽,并對(duì)他們進(jìn)行分類。這一實(shí)驗(yàn)表明,將傳感器技術(shù)進(jìn)一步集成到紡織品中,并在紡織品集成過(guò)程后保留原有的傳感器功能是可行的。Deshmukh等[43]研究開發(fā)了一種基于金屬氧化物傳感器的電子鼻,用于快速測(cè)量紙漿和造紙廠等不同來(lái)源排放的主要還原性硫化合物的氣味濃度和相關(guān)氣味強(qiáng)度,并表明電子鼻具有作為在線或離線測(cè)量氣味濃度和氣味強(qiáng)度的設(shè)備的潛力。
儀器分析可以針對(duì)造成紡織品異味的化合物進(jìn)行識(shí)別和定量的分析,檢測(cè)精度高,應(yīng)用廣泛,但實(shí)驗(yàn)儀器價(jià)格昂貴。與之相比,雖然感官分析具有主觀差異性,但可以考慮到產(chǎn)品在時(shí)間上的釋放差異,以及由于注意力的集中、產(chǎn)品外觀而引起的感知變化,且檢測(cè)成本較低[44]。
對(duì)紡織品異味進(jìn)行檢測(cè),大多還是采用主觀嗅覺法,但目前還沒(méi)有一個(gè)公認(rèn)的評(píng)價(jià)方法可以在出現(xiàn)爭(zhēng)議時(shí)作出判斷。感官測(cè)試和儀器分析結(jié)合使用在這種情況下就顯得尤為重要。在檢測(cè)員們對(duì)異味產(chǎn)生爭(zhēng)議時(shí),可以使用儀器分析給出定論;同時(shí),如果沒(méi)有伴隨的感官分析,僅通過(guò)儀器手段檢測(cè)到的氣味也會(huì)與人體實(shí)際感知產(chǎn)生差異。
3 除異味技術(shù)
目前紡織品除異味方法分別有物理法(吸附作用)、化學(xué)法(化學(xué)反應(yīng)、光催化)和感覺法(掩蔽、抵消)。
3.1 物理法
物理除異味是依靠分子引力使空氣中的異味物質(zhì)被吸附劑吸附到織物表面,減少環(huán)境中異味物質(zhì)的濃度,從而進(jìn)行除臭[45]。物理法無(wú)需復(fù)雜加工,異味物質(zhì)和除臭劑在吸附過(guò)程中不發(fā)生化學(xué)反應(yīng),除臭劑本身性質(zhì)在吸附過(guò)程中不變化?;钚蕴?、β-環(huán)糊精、硅膠、沸石等多微孔物質(zhì)均為常見的吸附劑,不同吸附劑的吸附能力也有所區(qū)別。以活性炭這種非極性吸附劑為例,它能大量吸附非極性的有機(jī)分子,同時(shí)由于活性炭會(huì)在加工過(guò)程中形成寬孔徑,對(duì)一些極性物質(zhì)和一些特大分子的有機(jī)物質(zhì)仍具有優(yōu)良的吸附能力,故成為常用吸附劑[6,46]。朱樹平[47]對(duì)用椰殼制成的一種活性炭纖維進(jìn)行了綜述,并表明這種纖維具有良好的除異味效果。艾志偉[48]選用竹炭纖維混紡紗線,開發(fā)出多種針織物,并通過(guò)后處理使活性炭附著在織物上,通過(guò)實(shí)驗(yàn)證實(shí)該織物對(duì)甲醛的吸附能力隨著織物載炭量的增加而提高。對(duì)于有極性的吸附劑如沸石[49],其對(duì)吸附質(zhì)的吸附是靠靜電引力,因此它對(duì)直徑較小的異味物質(zhì)和不飽和化合物的吸附力較大。但物理法是可逆的,當(dāng)系統(tǒng)溫度升高或被吸附氣體的壓力下降時(shí),異味物質(zhì)會(huì)從除臭劑表面逸出。
3.2 化學(xué)法
化學(xué)法除異味機(jī)理是將臭氣源通過(guò)還原、分解、加成、氧化、縮合及等離子交換等方式進(jìn)行消除[50]。一般是讓氣味成分與其他化學(xué)物質(zhì)進(jìn)行化學(xué)反應(yīng),使之變成不產(chǎn)生氣味的成分?;瘜W(xué)法可以根據(jù)除臭劑是否隨著反應(yīng)的進(jìn)行而逐漸減少,分為化學(xué)反應(yīng)消臭與光觸媒消臭[51]。常用的化學(xué)反應(yīng)消臭劑有類黃酮系化合物[52](包括黃酮醇和黃烷醇)、電氣石[53]、環(huán)糊精[49,54]等?;瘜W(xué)除異味法效果很好,加工方便,除異味徹底,異味被去除后很難恢復(fù)[55]。光觸媒技術(shù)的機(jī)理是納米TiO2或納米ZnO等光觸媒材料受紫外線或光照后產(chǎn)生羥基自由基,與空氣中的有機(jī)物質(zhì)反應(yīng)后生成無(wú)毒的無(wú)機(jī)物,能有效分解甲醛、苯、氨氣等,并將其轉(zhuǎn)化成水和二氧化碳,以除去大氣中的硫化物、氨氮化物及各類異味化合物,消除惡臭,從而起到空氣凈化的作用[49]。光觸媒處理紡織品后可以有效降低其中含有的少量甲醛或者其他有害物質(zhì)的含量。光觸媒材料化學(xué)穩(wěn)定性高,對(duì)人體無(wú)毒無(wú)害,且光觸媒除異味法可多次使用,是一種綠色環(huán)保的除異味方式。王利婭[56]利用混紡紗與蜂窩狀微孔結(jié)構(gòu)光觸媒滌綸纖維(光觸媒材料為納米級(jí)二氧化鈦)進(jìn)行交織,研究發(fā)現(xiàn)混紡織物的除臭率會(huì)隨著光觸媒滌綸纖維、織物浮長(zhǎng)線與日光輻照時(shí)間的增加逐漸提高。
3.3 感覺法
感覺法除異味是在紡織品上用更濃郁的香味來(lái)掩蓋或中和異味。一般會(huì)采用玫瑰、桂花、薄荷醇等芳香物質(zhì)遮蓋異味;或者用植物精制油,如薰衣草精油、松節(jié)油、檸檬油等來(lái)作為中和劑中和異味[52]。
常用的感覺消臭劑有香精,植物提取物如艾蒿、薰衣草等。但感覺除臭僅僅是掩蓋或者中和了異味,異味化合物并未消失,若長(zhǎng)期接觸這類產(chǎn)品或者處于該環(huán)境下,可能會(huì)對(duì)人體健康產(chǎn)生影響。
在眾多除臭劑中,有些物質(zhì)具有雙重或多重除異味機(jī)理。如備長(zhǎng)炭既具有活性吸附除異味功能,同時(shí)也具有抗菌作用,可以破壞異味氣體的產(chǎn)生條件[6]。β-環(huán)糊精是一種疏水空腔結(jié)構(gòu)物質(zhì),接枝到紡織品上,既有物理吸附除異味功能,也可以與多種有機(jī)化合物形成包合物,從而允許這些活性化合物的后續(xù)控制釋放[57]。因此當(dāng)其與香料分子形成包合物,可以延長(zhǎng)織物的留香時(shí)間,達(dá)到持久除味的效果。一般市售的廁所除味劑會(huì)利用感覺掩蔽作用,同時(shí)以化學(xué)或物理去除作用的協(xié)同效果除味[58]。
4 結(jié) 論
為了進(jìn)一步了解紡織品異味,本文從紡織品異味的來(lái)源、紡織品異味檢測(cè)方式及紡織品除異味方式三個(gè)方面進(jìn)行了探究。
1) 紡織品異味的來(lái)源可以總結(jié)為人體內(nèi)部和外部。人體內(nèi)部主要來(lái)源于汗液、新陳代謝所產(chǎn)生的分泌物,以及人體攜帶的細(xì)菌分泌物等。人體外部來(lái)源可以分為三部分:一是在運(yùn)輸?shù)拳h(huán)節(jié)中,微生物會(huì)污染紡織品;二是加工時(shí)會(huì)采用各種整理劑及助劑,導(dǎo)致異味殘留;三是周圍環(huán)境的異味,如煙味、油煙味、農(nóng)藥味、動(dòng)物氣味等。
2) 紡織品異味的檢測(cè)方法包括感官測(cè)試和儀器測(cè)量。合理地將感官分析和儀器測(cè)量結(jié)合起來(lái)會(huì)提高紡織品異味檢測(cè)的質(zhì)量及效率。
3) 目前除異味方法分別有物理法(吸附作用)、化學(xué)法(化學(xué)反應(yīng)、光催化)和感覺法(掩蔽、抵消),這三種方法各有其優(yōu)缺點(diǎn),可以根據(jù)實(shí)際情況選擇合適的方法來(lái)達(dá)到去除紡織品異味的目的。
目前為了加快構(gòu)建綠色低碳循環(huán)發(fā)展體系,對(duì)于除異味產(chǎn)品也要能夠滿足綠色、高效、健康的理念,讓消費(fèi)者在使用過(guò)程中體會(huì)到可持續(xù)健康發(fā)展的概念。因此,在開發(fā)除臭劑時(shí),除了除異味效果、是否會(huì)對(duì)紡織品的性能產(chǎn)生影響,有無(wú)生態(tài)毒性、是否低碳環(huán)保等方面也需要被考慮在內(nèi)。
參考文獻(xiàn):
[1]李澤. 服裝質(zhì)量檢測(cè)與消費(fèi)者認(rèn)知差異化研究[D]. 石家莊: 河北科技大學(xué), 2019.
LI Ze. Research on Clothing Quality Detection and Consumer Cognitive Differentiation[D]. Shijiazhuang: Hebei University of Science and Technology, 2019.
[2]ABNEY S E, IJAZ M K, MCKINNEY J, et al. Laundry hygiene and odor control: State of the science[J]. Applied and Environmental Microbiology, 2021, 87(14): e03002.
[3]顧娟紅, 嚴(yán)敏, 柳艷, 等. 吹掃捕集-氣相色譜/質(zhì)譜法測(cè)定紡織品中多種異味物質(zhì)[J]. 印染助劑, 2021, 38(4): 55-59.
GU Juanhong, YAN Min, LIU Yan, et al. Determination of odour compounds in textiles by gas purge and trap-gas chromatography/mass spectrometry[J]. Textile Auxiliaries, 2021, 38(4): 55-59.
[4]MCQUEEN R H, VAEZAFSHAR S. Odor in textiles: A review of evaluation methods, fabric characteristics, and odor control technologies[J]. Textile Research Journal, 2020, 90(9/10): 1157-1173.
[5]MCQUEEN R H, LAING R M, DELAHUNTY C M, et al. Retention of axillary odour on apparel fabrics[J]. Journal of the Textile Institute, 2008, 99(6): 515-523.
[6]馬君志, 張洪賓. 除臭功能性黏膠纖維的制備及性能測(cè)試[J]. 針織工業(yè), 2021(5): 20-23.
MA Junzhi, ZHANG Hongbin. Development and performance testing of deodorant functional viscose fiber[J]. Knitting Industries, 2021(5): 20-23.
[7]HARA T, KYUKA A, SHIMIZU H. Butane-2, 3-dione: The key contributor to axillary and foot odor associated with an acidic note[J]. Chemistry & Biodiversity, 2015, 12(2): 248-258.
[8]茅廣宇, 楊松林. 腋臭癥發(fā)病機(jī)制的研究進(jìn)展[J]. 中國(guó)美容醫(yī)學(xué), 2008, 17(1): 152-154.
MAO Guangyu, YANG Songlin. Etology of axillary bromhidrosis: An update[J]. Chinese Journal of Aesthetic Medicine, 2008, 17(1): 152-154.
[9]ARA K, HAMA M, AKIBA S, et al. Foot odor due to microbial metabolism and its control[J]. Canadian journal of microbiology, 2006, 52(4): 357-364.
[10]張志榮, 張珍竹, 汪洋, 等. 淺談紡織品異味的來(lái)源、檢測(cè)方法及去除方法[J]. 西部皮革, 2020, 42(17): 22-24.
ZHANG Zhirong, ZHANG Zhenzhu, WANG Yang, et al. Discussion on the source, detection and removal of textile odor[J]. West Leather, 2020, 42(17): 22-24.
[11]劉莉, 程會(huì)英. 紡織品異味檢測(cè)存在的問(wèn)題及建議[J]. 中國(guó)纖檢, 2011(18): 64-65.
LIU Li, CHENG Huiying. Problems and suggestions exist in the test of odor of textile products[J]. China Fiber Inspection, 2011(18): 64-65.
[12]廖幗英, 花金龍, 李劍波, 等. 淺談紡織品中的異味物質(zhì)、來(lái)源及檢測(cè)方法[J]. 中國(guó)纖檢, 2013(8): 78-80.
LIAO Guoying, HUA Jinglong, LI Jianbo, et al. The odour substances and source and testing methods on textiles[J]. China Fiber Inspection, 2013(8): 78-80.
[13]高維全, 何勇, 韓冀彭, 等. 紡織品異味的來(lái)源及檢測(cè)標(biāo)準(zhǔn)[J]. 染整技術(shù), 2009, 31(5): 41-43.
GAO Weiquan, HE Yong, HAN Jipeng, et al. Odour origin of textile and its related standard[J]. Textile Dyeing and Finishing Journal, 2009, 31(5): 41-43.
[14]RATHINAMOORTHY R, THILAGAVATHI G. GC-MS analysis of worn textile for odour formation[J]. Fibers and Polymers, 2016, 17(6): 917-924.
[15]RUIZ C, HERRERO A M. Sensory analysis and consumer research in new product development[J]. Foods, 2021, 10(3): 582-585.
[16]徐肖晗, 朱夢(mèng)丹, 羅欣, 等. 感官分析在國(guó)內(nèi)外牛肉食用品質(zhì)研究中的應(yīng)用進(jìn)展[J]. 食品研究與開發(fā), 2022, 43(5): 183-188.
XU Xiaohan, ZHU Mengdan, LUO Xin, et al. Progress of application of sensory analysis in beef quality research[J]. Food Research and Development, 2022, 43(5): 183-188.
[17]蔣靖雯, 林思宇, 易燦, 等. 感官分析技術(shù)及其在乳制品中的應(yīng)用[J]. 中國(guó)乳業(yè), 2022(2): 110-116.
JIANG Jingwen, LIN Siyu, YI Can, et al. Sensory analysis technology and its application in dairy products[J]. China Dairy, 2022(2): 110-116.
[18]張嬌嬌, 梁明鋒, 雷顯仲, 等. 貴州迎賓酒綿柔醬香型白酒酒體感官特征與特征風(fēng)味的相關(guān)性分析[J]. 中國(guó)釀造, 2022, 41(2): 69-75.
ZHANG Jiaojiao, LIANG Mingfeng, LEI Xianzhong, et al. Correlation analysis of sensory characteristics and characteristic flavor of Guizhou yingbinjiu mianrou sauce-flavor baijiu[J]. China Brewing, 2022, 41(2): 69-75.
[19]林燕靜, 叢琳, 劉向前. 感官評(píng)價(jià)在發(fā)用產(chǎn)品中的應(yīng)用[J]. 廣東化工, 2018, 45(6): 137-138.
LIN Yanjing, CONG Lin, LIU Xiangqiang. The application of sensory evaluation in hair cosmetics[J]. Guangdong Chemical Industry, 2018, 45(6): 137-138.
[20]陳麗華, 高維全. 提高紡織品異味檢測(cè)準(zhǔn)確性的探討[J]. 針織工業(yè), 2011(1): 62-64.
CHEN Lihua, GAO Weiquan. Discussion on improving the accuracy of textile odor detection[J]. Knitting Industries, 2011(1): 62-64.
[21]韓耀軍, 程航, 武海良, 等. 紡織品吸附卷煙味的評(píng)價(jià)方法[J]. 紡織科技進(jìn)展, 2010(4): 62-64.
HAN Yaojun, CHENG Hang, WU Hailiang, et al. Study on the evaluation methods of restraining the cigarettes smell of textiles[J]. Progress in Textile Science & Technology, 2010(4): 62-64.
[22]何勇, 陳麗華, 龍莎, 等. 紡織品異味檢測(cè)員的遴選及培訓(xùn)方法探討[J]. 染整技術(shù), 2016, 38(10): 56-58.
HE Yong, CHEN Lihua, LONG Sha, et al. Research on the selection and training method of textile peculiar odor inspector[J]. Textile Dyeing and Finishing Journal, 2016, 38(10): 56-58.
[23]鄭勇, 莫月香, 羅峻. 淺析紡織品異味檢測(cè)現(xiàn)狀與發(fā)展[J]. 中國(guó)纖檢, 2017(1): 80-83.
ZHENG Yong, MO Yuexiang, LUO Jun. Discussion on the status and development of odor detection in textiles[J]. China Fiber Inspection, 2017(1): 80-83.
[24]張茜, 劉煒倫, 路亞楠, 等. 頂空氣相色譜-質(zhì)譜聯(lián)用技術(shù)的應(yīng)用進(jìn)展[J]. 色譜, 2018, 36(10): 962-971.
ZHANG Xi, LIU Weilun, LU Yanan, et al. Recent advances in the application of headspace gas chromatography-mass spectrometry[J]. Chinese Journal of Chromatography, 2018, 36(10): 962-971.
[25]CAGLIERO C, MASTELLONE G, MARENGO A, et al. Analytical strategies for in-vivo evaluation of plant volatile emissions: A review[J]. Analytica Chimica Acta, 2021, 1147: 240-258.
[26]SORIA A C, GARCIA M J, SANZ M L. Volatile sampling by headspace techniques[J]. Trac-Trends in Analytical Chemistry, 2015, 71: 85-99.
[27]BICCHI C, CORDERO C, LIBERTO E, et al. Headspace sampling of the volatile fraction of vegetable matrices[J]. Journal of Chromatography A, 2008, 1184(1/2): 220-233.
[28]JERKOVIC I, MARIJANOVIC Z, RADONIC A, et al. The application of headspace solid-phase microextraction as a preparation approach for gas chromatography with mass spectrometry[J]. Kemija u Industriji-Journal of Chemists and Chemical Engineers, 2020, 69(9/10): 515-520.
[29]楊水萌. 十三種藥用植物揮發(fā)性成分的SHS/GC-MS研究[D]. 西安: 西北大學(xué), 2018.
YANG Shuimeng. Study on the Volatile Components of Thirteen Medicinal Plants by SHS/GC-MS[D]. Xian: Northwest University, 2018.
[30]梅萍. 基于GC-MS鑒別木材樹種方法的研究[D]. 南京: 南京林業(yè)大學(xué), 2017.
MEI Ping. Study on Wood Identification Based on GC-MS[D]. Nanjing: Nanjing Forestry University, 2017.
[31]WANG Z J, ZHANG Q, LI H Y, et al. Rapid and green determination of 58 fragrance allergens in plush toys[J]. Journal of Separation Science, 2018, 41(3): 657-668.
[32]周秀錦, 楊會(huì)成, 邵宏宏, 等. HS-GC-MS/MS法檢測(cè)海產(chǎn)品中的7種苯系物[J]. 分析試驗(yàn)室, 2019, 38(2): 141-146.
ZHOU Xiujin, YANG Huicheng, SHAO Honghong, et al. Determination of 7 benzene series in seafood by headspace GC-MS/MS[J]. Chinese Journal of Analysis Laboratory, 2019, 38(2): 141-146.
[33]FENG H, SKINKIS P A, QIAN M C. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal[J]. Food Chemistry, 2017, 214: 736-744.
[34]GOLTZ D M, BRADFORD B H, AHMADI S, et al. Solid phase micro-extraction-gas chromatography-mass spectrometry to characterize pyrolysis products from textiles[J]. Analytical Letters, 2017, 50(14): 2217-2233.
[35]劉輝翔. MOS型電子鼻關(guān)鍵問(wèn)題研究及其應(yīng)用[D]. 北京: 北京科技大學(xué), 2020.
LIU Huixiang. Study on Key Issues of MOS-based E-Nose and Its Application[D]. Beijing: University of Science and Technology Beijing, 2020.
[36]BIKOV A, LAZAR Z, HORVATH I. Established methodological issues in electronic nose research: How far are we from using these instruments in clinical settings of breath analysis[J]. Journal of Breath Research, 2015, 9(3): 42-61.
[37]陳遠(yuǎn)濤. 電子鼻結(jié)合感官評(píng)價(jià)的食品新鮮度檢測(cè)研究[D]. 杭州: 浙江大學(xué), 2021.
CHEN Yuantao. Research on Food Freshness Detection Based on Electronic Nose and Sensory Evaluation[D]. Hangzhou: Zhejiang University, 2021.
[38]高明星, 王曉寧, 龔龑, 等. 電子鼻在棉織物異味檢測(cè)中的應(yīng)用研究[J]. 傳感器與微系統(tǒng), 2011, 30(6): 33-35.
GAO Mingxing, WANG Xiaoning, GONG Yan, et al. Study on application of electronic nose in cotton fabric odor detection[J]. Transducer and Microsystem Technologies, 2011, 30(6): 33-35.
[39]PERIS M, ESCUDER-GILABERT L. A 21st century technique for food control: Electronic noses[J]. Analytica Chimica Acta, 2009, 638(1): 1-15.
[40]FENS N, SCHEE V D M P, BRINKMAN P, et al. Exhaled breath analysis by electronic nose in airways disease: Established issues and key questions[J]. Clinical and Experimental Allergy, 2013, 43(7): 705-715.
[41]CHEN L Y, WU C C, CHOU T I, et al. Development of a dual MOS electronic nose/camera system for improving fruit ripeness classification[J]. Sensors, 2018, 18(10): 3256.
[42]KINKELDEI T, ZYSSET C, MNZENRIEDER N, et al. An electronic nose on flexible substrates integrated into a smart textile[J]. Sensors and Actuators B-Chemical, 2012, 174: 81-86.
[43]DESHMUKH S, JANA A, BHATTACHARYYA N, et al. Quantitative determination of pulp and paper industry emissions and associated odor intensity in methyl mercaptan equivalent using electronic nose[J]. Atmospheric Environment, 2014, 82: 401-409.
[44]ANDREWES P, BULLOCK S, TURNBULL R, et al. Chemical instrumental analysis versus human evaluation to measure sensory properties of dairy products: What is fit for purpose[J]. International Dairy Journal, 2021, 121: 105098.
[45]王利莎, 邢云英, 趙娟芝, 等. 紡織品消臭性能測(cè)定及評(píng)價(jià)的研究現(xiàn)狀[J]. 針織工業(yè), 2021(7): 107-109.
WANG Lisha, XING Yunying, ZHAO Juanzhi, et al. Research status of determination and evaluation of deodorant properties of textiles[J]. Knitting Industries, 2021(7): 107-109.
[46]黨小慶, 王琪, 曹利, 等. 吸附法凈化工業(yè)VOCs的研究進(jìn)展[J]. 環(huán)境工程學(xué)報(bào), 2021, 15(11): 3479-3492.
DANG Xiaoqing, WANG Qi, CAO Li, et al. Research progress of on purification of VOCs in industrial gas by aadsorption[J]. Chinese Journal of Environmental Engineering, 2021, 15(11): 3479-3492.
[47]朱樹平. 椰炭纖維的性能與應(yīng)用[J]. 針織工業(yè), 2012(4): 36-37.
ZHU Shuping. Properties and application of coir fiber[J]. Knitting Industries, 2012(4): 36-37.
[48]艾志偉. 竹炭纖維紡織品除異味功能的研究[D]. 西安: 西安工程大學(xué), 2011.
AI Zhiwei. Research on Removing Peculiar Smell Function of Bamboo Charcoal Fiber Textile[D]. Xian: Xian Polytechnic University, 2011.
[49]汪季娟. β-環(huán)糊精接枝棉織物及其在除臭整理中應(yīng)用的研究[D]. 天津: 天津工業(yè)大學(xué), 2006.
WANG Jijuan. Study on β-Cyclodextrin Grafted Cotton Fabric and Its Application in Deodorization Finishing[D]. Tianjin: Tiangong University, 2016.
[50]倪鵬程. 棉織物吸濕速干和消臭復(fù)合功能整理研究[D]. 上海: 東華大學(xué), 2021.
NI Pengcheng. Compound Functional Finishing for Odor-reducing Cotton Fabric with Moisture Absorption and Quick-drying Properties[D]. Shanghai: Donghua University, 2021.
[51]車蓉蓉. 高效除臭功能性粘膠纖維的研究[D]. 青島: 青島大學(xué), 2014.
CHE Rongrong. Study on Effective Deodorizing Functional Viscose Fiber[D]. Qingdao: Qingdao University, 2014.
[52]吳微微. β-環(huán)糊精包合兒茶素對(duì)羊毛織物的除臭整理研究[D]. 西安: 西安工程大學(xué), 2013.
WU Weiwei. Study on β-Cyclodextrin in Inclusion Catechin to the Deodorant Finishing of Wool Fabric[D]. Xian: Xian Polytechnic University, 2013.
[53]李雪梅, 劉亞楠, 祝成炎, 等. 負(fù)載核殼結(jié)構(gòu)維生素E納米顆粒的黏膠紗交織物性能研究[J]. 現(xiàn)代紡織技術(shù), 2022, 30(2):
127-133.
LI Xuemei, LIU Yanan, ZHU Chengyan, et al. Properties of viscose yarn interwoven fabric loaded with core-shell structure vitamin E nanoparticles[J]. Advanced Textile Technology, 2022, 30(2): 127-133.
[54]岳海瑩, 王振貴, 王芳. β-環(huán)糊精接枝棉織物的研究[J]. 印染助劑, 2021, 38(2): 47-50.
YUE Haiying, WANG Zhengui, WANG Fang. Study on cotton woven fabric grafted with β-cyclodextrin[J]. Textile Auxiliaries, 2021, 38(2): 47-50.
[55]黃勁旭. 基于β-環(huán)糊精的羊毛織物除臭劑的制備與應(yīng)用研究[D]. 上海: 東華大學(xué), 2011.
HUANG Jinxu. The Preparation and Applicaton Study of β-Cyclodextrin Deodorant on Wool Fabric[D]. Shanghai: Donghua University, 2011.
[56]王利婭. 光觸媒除臭混紡面料的設(shè)計(jì)與性能測(cè)試[J]. 毛紡科技, 2020, 48(12): 14-17.
WANG Liya. Design and properties test of photocatalyst deodorization blended fabric[J]. Wool Textile Journal, 2020, 48(12): 14-17.
[57]BEZERRA F M, LIS M J, FIRMINO H B, et al. The role of beta-cyclodextrin in the textile industry: Review[J]. Molecules, 2020, 25(16): 3624.
[58]黃漢生. 日本除臭纖維開發(fā)近況[J]. 現(xiàn)代化工, 2001(4): 53-56.
HUANG Hansheng. Recent development of deodorant fiber in Japan[J]. Modern Chemical Industry, 2001(4): 53-56.
Research status and progress of textile odors and deodorizing technology
CAI Wangdan, FAN Shuo, TIAN Wei, LI Yanqing, ZHU Chengyan, ZHANG Hongxia
(National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)
Abstract:
Because of their porous nature, textiles are easy to absorb odor, which stimulates the olfactory organs of human body, causing unhappiness and even harm to peoples health. At the same time, with the development of the times and the continuous progress of modern science and technology, peoples demand for clothing has changed from the original basic functions such as covering the body and maintaining body temperature to the more demanding composite functions. As a very important comfort index, textile odor is clearly stipulated in OEKO-TEX Standard 100-016 of the International OEKO-TEX Association and GB/T 18401-2010 National General Safety Technical Code for Textile Products, according to which products shall not contain high boiling range of petroleum smell, musty smell, fish smell, aromatic hydrocarbon smell or fragrance and other special smell. So how to remove the peculiar smell of textiles becomes an urgent problem to be solved. This paper takes the peculiar smell of textiles as the starting point, summarizes the research status and progress of the peculiar smell of textiles, and describes in detail the source of the peculiar smell of textiles, methods to detect the peculiar smell of textiles and the peculiar smell removal technology.
In order to further research textile odors, this paper probes into the source of textile odors, the detection method of textile odors and the way of removing textile odors.
(i) It can be summarized that the peculiar smell of textiles come from the inside and outside of the human body. The internal odor of human body mainly comes from sweat, secretion produced by metabolism, bacterial secretion carried by human body and so on. The source of human external odors can be divided into three parts. The first is the transport link. During the transportation of textiles, the dark environment creates a very suitable growth environment for fungi and bacteria, and these microorganisms multiply and metabolize in large quantities, resulting in musty smell. The second is the odor residue of various finishing agents and additives during processing, such as high boiling range petroleum smell, fishy smell, aromatic hydrocarbon smell or fragrance and other special smells. The third is the odor of the surrounding environment. Because of their porous nature, textiles are easy to absorb the smell from the surrounding environment, such as the smell of smoke, lampblack, agricultural medicine, animal smell and so on.
(ii) The detection methods of textile odors include the sensory test and the instrument measurement. The sensory test is to sniff and identify textiles by inspectors. In order to avoid the possible deviation of the sensory measurement, it is very important to select and train the inspectors and control the testing environment. In addition to sensory analysis, headspace gas chromatography and electronic nose technology are two common odor detection techniques. Headspace gas chromatography is a highly sensitive, rapid and accurate technique for qualitative and quantitative analysis. Electronic nose technology, as a bionic system, can use gas sensor array to achieve a rapid and comprehensive detection, identification and analysis of gas samples with the help of pattern recognition system and preset sample information database for comparison and identification.
(iii) Nowadays, odor removal methods include: the physical method (adsorption), the chemical method (chemical reaction and photocatalysis), the sensory method (masking and offset). Physical odor removal process is simple, but the adsorption is not durable, and the stability is poor. The chemical method has good effect, convenient processing and thorough elimination. Commonly used sensory deodorants include essence, plant extracts such as mugwort and lavender. However, this way of eliminating odors has certain saturation and timeliness, which is difficult to maintain the effect of eliminating odors for a long time.
At present, in order to accelerate the construction of a green and low-carbon cycle development system, deodorant products should also be able to meet the concept of green, efficiency and health, so that consumers can experience the concept of sustainable and healthy development in the process of use. Therefore, in the development of deodorant, in addition to the effect of odor removal, whether it will affect the performance of textiles, whether there is eco-toxicity, low-carbon environmental protection and other aspects also need to be considered.
From the consumer point of view, in four kinds of deodorant means, feeling method is the most convenient deodorant means. But feeling deodorization is just to cover up the smell, not to solve the odor problem. From the perspective of enterprises, not only the immediate interests should be considered, but enterprises should start from the product, to assume their own social responsibilities. For consumers, functional textiles that can continuously remove odors are produced. Among them, the photocatalytic odor removal may be widely used in textiles in the future because it is non-toxic and harmless to human body and durable.
Key words:
textiles; source of textile odor; odor detection; sensory analysis; headspace gas chromatography; electronic nose technology; odor removal technology
收稿日期:
2022-04-15;
修回日期:
2023-01-19
基金項(xiàng)目:
海寧市科技項(xiàng)目(海市科局〔2020〕29號(hào)(2020017))
作者簡(jiǎn)介:
蔡王丹(1998),女,碩士研究生,研究方向?yàn)榧徔椘吩O(shè)計(jì)。通信作者:張紅霞,教授級(jí)高工,hongxiazhang8@126.com。