王怡 汪宇佳 陳方春 王雅思 代方銀 李智
摘要: 葡萄糖傳感器是糖尿病人監(jiān)控血糖濃度的必備工具?;谌嵝曰组_發(fā)可用于實時監(jiān)測的柔性葡萄糖傳感器是近年來研究的熱點,也是未來應(yīng)用發(fā)展的重要方向。蠶絲具有優(yōu)異的力學(xué)性能、生物相容性及生物可降解性,以蠶絲及蠶絲蛋白與導(dǎo)電活性物質(zhì)復(fù)合開發(fā)的柔性葡萄糖傳感器展現(xiàn)出優(yōu)異的傳感性能及出色的長期穩(wěn)定性。本文通過對基于絲蛋白、絲纖維、蠶絲織物開發(fā)的蠶絲基葡萄糖傳感器的研究進(jìn)展進(jìn)行綜述,對比所開發(fā)的蠶絲基葡萄糖傳感器的傳感性能,分析其特點及作用機(jī)制,并展望蠶絲基葡萄糖傳感器在柔性可穿戴傳感器領(lǐng)域的發(fā)展前景。
關(guān)鍵詞: 蠶絲;絲素蛋白;蠶絲織物;葡萄糖傳感器;葡萄糖氧化酶;柔性電子器件
中圖分類號: TS141.8
文獻(xiàn)標(biāo)志碼: A
文章編號: 1001-7003(2023)03-0008-08
引用頁碼:
031102
DOI: 10.3969/j.issn.1001-7003.2023.03.002(篇序)
糖尿病是由于體內(nèi)胰島素分泌缺陷等原因所引起的慢性代謝疾病,其主要特征是血液或代謝液中的葡萄糖濃度較高,當(dāng)空腹血糖超過7 mM即可診斷為糖尿病。國際糖尿病聯(lián)合會2021年發(fā)布數(shù)據(jù)顯示,全球糖尿病患者總數(shù)為5.37億,約占總數(shù)的10.5%。其中,中國糖尿病的患者人數(shù)約占1/4(數(shù)據(jù)來自IDF Diabetes Atlas)?;颊唛L期處于高血糖狀態(tài)易引起一系列的急性并發(fā)癥,嚴(yán)重情況下甚至?xí)T發(fā)器官衰竭而導(dǎo)致死亡。作為一種慢性疾病,糖尿病尚無有效治愈方法,目前主要治療手段是通過血糖監(jiān)測,及時給藥或注射胰島素以達(dá)到降血糖的目的。因此,實時準(zhǔn)確血糖監(jiān)測手段對于糖尿病診斷及治療至關(guān)重要。
葡萄糖傳感器可快速監(jiān)測血液和汗液中葡萄糖的指數(shù),是糖尿病患者日常監(jiān)測血糖的必備工具。葡萄糖傳感器分為酶式葡萄糖傳感器和非酶葡萄糖傳感器兩大類。酶式葡萄糖傳感器開發(fā)最早,其中應(yīng)用最廣泛的酶是葡萄糖氧化酶
(GOD),通過利用GOD對葡萄糖的特異性結(jié)合,催化葡萄糖氧化為葡萄糖酸內(nèi)酯和過氧化氫,從而實現(xiàn)對葡萄糖的高選擇性檢測。早在1967年,Updike等[1]率先開發(fā)出基于GOD的酶電極,隨后在不斷增長的醫(yī)療保健需求推動下,基于GOD的葡萄糖傳感器得以快速發(fā)展,目前商業(yè)上應(yīng)用廣泛的指刺式血糖儀便為其代表。非酶葡萄糖傳感器則是利用葡萄糖與酶以外的活性物質(zhì)發(fā)生化學(xué)反應(yīng),使電位發(fā)生變化從而實現(xiàn)對葡萄糖的定量檢測。常用的活性物質(zhì)有Pt[2-5]、Au[6]、Pd[7]、Ni[8]、Cu[9-11]、Co[12]、Mn[13]、Fe[14-16]等金屬及其氧化物,碳納米管[17-19]、石墨烯[20-21]等碳活性材料。
基于傳感機(jī)制的變化,酶式葡萄糖傳感器的開發(fā)主要經(jīng)歷三代的發(fā)展[22],如圖1所示。第一代葡萄糖生物傳感器[23]通常依賴于GOD催化的葡萄糖由O2天然底物氧化,并測量酶產(chǎn)生的過氧化氫產(chǎn)物或O2輔因子的消耗;第二代葡萄糖生物傳感器中用其他電子受體取代O2,利用各種有機(jī)和無機(jī)化合物作為電子穿梭媒介,其中二茂鐵衍生物和鐵氰化物[24]絡(luò)合物由于具有較低的操作電位和高化學(xué)穩(wěn)定性,應(yīng)用較為普遍;第三代葡萄糖生物傳感器在電極和葡萄糖氧化酶之間直接進(jìn)行電子轉(zhuǎn)移,是一種理想化的傳感器,無需外加氧氣等媒介體,極大地降低了干擾,具有更快的電子傳輸速率[25],但這類葡萄糖傳感器仍處于研究階段。
近年來,隨著智能可穿戴器件的快速發(fā)展,為生物傳感器的開發(fā)及應(yīng)用提出新的要求及高度,柔性可穿戴、可實時監(jiān)測和高穩(wěn)定性成為葡萄糖傳感器應(yīng)用發(fā)展的重要方向,成為近年來研究的熱點。紡織材料由于其廣泛的來源,良好的柔韌性及可加工性,是柔性智能可穿戴電子器件開發(fā)的理想載體。其中,具有悠久紡織應(yīng)用歷史的蠶絲,其優(yōu)異的力學(xué)性能、生物相容性、可降解性及易于加工特性而獲得廣泛的認(rèn)可,被應(yīng)用到柔性葡萄糖傳感器的開發(fā)及應(yīng)用研究[26-27]。
本文旨在總結(jié)和展望蠶絲材料在葡萄糖傳感器領(lǐng)域的應(yīng)用,從蠶絲在傳感器領(lǐng)域的主要應(yīng)用形態(tài)出發(fā),重點討論蠶絲基葡萄糖傳感器的研究進(jìn)展,以蠶絲織物和絲素蛋白兩種主要形式將蠶絲基葡萄糖傳感器進(jìn)行分類。分別討論了天然蠶絲纖維、蠶絲織物、碳化蠶絲織物及絲素膜、絲素紡絲纖維材料在葡萄糖傳感器領(lǐng)域的應(yīng)用,并對它們的制備方法、傳感性能進(jìn)行簡要分析。同時,對近年來利用蠶絲基制備的葡萄糖傳感器的相關(guān)性能進(jìn)行比較。最后,對蠶絲基葡萄糖傳感器在柔性可穿戴領(lǐng)域的挑戰(zhàn)及未來發(fā)展方向進(jìn)行了展望,以期能為設(shè)計和研究更多類似的開發(fā)高性能蠶絲基柔性葡萄糖傳感器提供參考。
1 蠶絲性能
蠶絲是由蠶絲腺合成的絲蛋白液通過吐絲結(jié)繭凝固而形成的連續(xù)長纖維,具有輕、柔、韌、潔、光的特點,享有“纖維皇后”的美譽(yù)。蠶絲內(nèi)部大量的β-折疊構(gòu)象及其高取向度賦予其優(yōu)異的力學(xué)性能,其良好的生物相容性和生物可降解性能更是其從傳統(tǒng)紡織領(lǐng)域拓展到生物醫(yī)學(xué)領(lǐng)域研究及應(yīng)用的關(guān)鍵。蠶絲纖維表面豐富的胺基(—CHNH)、氨基(—NH2)、羧基(—COOH)等活性基團(tuán)可用作制備復(fù)合材料的橋梁[28]。通過浸軋、抽濾或直接碳化的方法可以在蠶絲纖維及織物基礎(chǔ)上制備出具有導(dǎo)電性能的蠶絲基材料,組裝出電極、壓力傳感器及葡萄糖傳感器等柔性傳感器件[29]。此外,提取蠶絲中的絲膠和絲素成分,通過與導(dǎo)電物質(zhì)復(fù)合紡絲、成膜、成膠等方法,可制備出具有電化學(xué)性能的蠶絲蛋白基復(fù)合材料,開發(fā)出蠶絲基柔性傳感器件[30]。
2 蠶絲基葡萄糖傳感器的開發(fā)及應(yīng)用
2.1 基于蠶絲纖維、蠶絲絲織物的葡萄糖傳感器
天然蠶絲不具導(dǎo)電性,對不同外界刺激的敏感性、響應(yīng)性和對溫濕度的自適應(yīng)較弱。為構(gòu)建蠶絲傳感器,需要通過表面涂層或自身碳化處理兩種方式制備成導(dǎo)電復(fù)合物,再通過負(fù)載酶或其他葡萄糖敏感材料,如金屬及其氧化物等,制備成葡萄糖傳感器(圖2)。賦予天然蠶絲導(dǎo)電性能通常有三個途徑:在蠶絲纖維或紗線表面涂覆導(dǎo)電物質(zhì);在蠶絲織物表面涂層或印刷導(dǎo)電物質(zhì);通過碳化蠶絲織物直接獲得導(dǎo)電性。
在蠶絲纖維或紗線上涂覆導(dǎo)電物質(zhì),再通過編織等方式可制備成柔性傳感器件。Choudhary等[31]首先將碳墨與鐵氰化鉀混合涂布到蠶絲紗線上,烘干后再涂覆GOD,形成導(dǎo)電性能良好每厘米電阻僅100 Ω的工作電極,再將制備的多個電極編織成織物,形成傳感器陣列。通過在經(jīng)紗方向上使用脫膠(親水)和非脫膠真絲(疏水)的組合,可對單個傳感器中液體流動路徑進(jìn)行控制,實現(xiàn)對血液中葡萄糖和血紅蛋白的有效檢測。由于蠶絲表面光滑,直接在蠶絲纖維或紗線上涂覆導(dǎo)電物質(zhì)會有黏附性差而導(dǎo)致其結(jié)合效果不佳等的問題。為提高蠶絲表面與導(dǎo)電材料的相互作用,可通過對蠶絲表面進(jìn)行前處理,以提高蠶絲和導(dǎo)電物質(zhì)的結(jié)合效果。Ye等[32]利用特制的六氟異丙醇蝕刻蠶絲纖維表面而不破壞纖維的內(nèi)部結(jié)構(gòu),再將碳納米管涂覆到刻蝕后的蠶絲表面,制備成具有高機(jī)械性能、超疏水性、耐溶劑性和熱敏感性的復(fù)合纖維,并進(jìn)一步通過編織制備成對力、應(yīng)變、溫度等敏感的蠶絲傳感器。通過制備導(dǎo)電蠶絲纖維或紗線,再編織成傳感器的方法通常具有較好的柔性及傳感性能[33-34],但工藝較復(fù)雜,且在編織的過程中容易導(dǎo)致導(dǎo)電涂層的脫落,影響傳感器的性能。通過單根紗線形成微流體通道進(jìn)行液體傳輸,利用紗線將待測物轉(zhuǎn)移到檢測區(qū),使顯色劑與葡萄糖發(fā)生比色反應(yīng)顯示不同顏色,進(jìn)而實現(xiàn)不同濃度葡萄糖的響應(yīng)也是一種高效直觀的葡萄糖檢測方法,但目前針對織物類比色葡萄糖傳感器的研究還集中在棉紗及棉織物上[35-38],對于蠶絲方面還有待開發(fā)。盡管基于蠶絲纖維或紗線已開發(fā)出壓力、溫度、濕度等多種傳感器,但相應(yīng)的葡萄糖傳感器還較少,如何在導(dǎo)電蠶絲纖維或紗線上進(jìn)一步負(fù)載酶或葡萄糖響應(yīng)材料從而開發(fā)出葡萄糖傳感器還有待于更深入的探索及研究。
蠶絲織物表面進(jìn)行涂層或印刷導(dǎo)電活性物質(zhì)如碳基材料和導(dǎo)電聚合物等能獲得手感好、耐用性高、導(dǎo)電性能佳的傳感元件,再通過電化學(xué)沉積等方法負(fù)載葡萄糖響應(yīng)材料可開發(fā)出柔性葡萄糖傳感器。圖2表示了基于蠶絲纖維、織物開發(fā)的葡萄糖傳感器的制備方法。Cai等[39-40]利用三元溶劑對蠶絲織物進(jìn)行前處理,再將其浸漬于聚苯胺或還原氧化石墨烯分散液中,通過多次循環(huán)干燥復(fù)合,制備出具有超高電容保留率的多功能柔性蠶絲織物電極(圖2(a))。在此基礎(chǔ)上,再通過電化學(xué)沉積銅納米粒子制備成非酶葡萄糖傳感器,其靈敏度可達(dá)199.8 μA/mM(圖2(b),數(shù)據(jù)未發(fā)表)。研究表明,基于導(dǎo)電涂層的蠶絲織物開發(fā)的柔性葡萄糖傳感器具有較好的傳感性能及應(yīng)用前景。
高溫碳化絲織物可使其熱分解轉(zhuǎn)化為碳材料,賦予其良好的導(dǎo)電性能,再通過負(fù)載葡萄糖敏感元件可開發(fā)出具有高靈敏度的葡萄糖傳感器。He等[41]利用不同碳化溫度下得到的蠶絲織物作為工作電極和對電極,負(fù)載GOD后制備為葡萄糖傳感器貼片,用于實時和多路汗液中的葡萄糖監(jiān)測分析,其靈敏度為6.3 μA/mM,檢測下限低至5 μM(圖2(c))。當(dāng)溫度足夠高時,蠶絲內(nèi)部的β-微晶結(jié)構(gòu)可轉(zhuǎn)化為納米級石墨化晶區(qū),同時,蠶絲織物轉(zhuǎn)變?yōu)閾诫sN元素,且具有高導(dǎo)電性及強(qiáng)柔韌性的紡織結(jié)構(gòu)碳纖維制品。Chen等[42]將蠶絲織物浸漬多壁碳納米管分散液后高溫碳化,再通過鉑微球進(jìn)行表面修飾后滴加GOD制備成葡萄糖傳感器。添加的碳納米管具有較大的接觸面積,在碳化蠶絲纖維間形成更穩(wěn)定的連接,使開發(fā)的葡萄糖傳感器的靈敏度高達(dá)288.86 μA/mM,檢測下限低至0.05 mM。通過碳化蠶絲織物開發(fā)的葡萄糖傳感器相比于在蠶絲纖維或織物上涂覆導(dǎo)電物質(zhì)所開發(fā)的葡萄糖傳感器具有更優(yōu)異的傳感性能,這可能與導(dǎo)電基底的導(dǎo)電性能有關(guān),良好的導(dǎo)電基底更有利于電子的傳輸,從而提升葡萄糖傳感器的性能[43]。
目前,盡管以蠶絲纖維、紗線或織物為基底開發(fā)制備葡萄糖傳感器的研究已有一定進(jìn)展,但總體研究還較少,所使用的方法均較為復(fù)雜。制備獲得導(dǎo)電蠶絲復(fù)合物是開發(fā)葡萄糖傳感器的關(guān)鍵,也是難點,需要不斷探索及研究。此外,如何在導(dǎo)電蠶絲復(fù)合物上更穩(wěn)定地負(fù)載GOD及具有葡萄糖響應(yīng)的活性物質(zhì)也有待更深入的研究。
2.2 基于絲素蛋白的葡萄糖傳感器
蠶絲主要由絲素蛋白(Silk fibroin,SF)和絲膠蛋白(Silk sericin,SS)組成,其中絲素蛋白約占蠶絲質(zhì)量的70%~80%。通過脫膠溶解后提取得到的絲素蛋白是優(yōu)異的天然蛋白材料[44]。絲素蛋白含有大量活性基團(tuán),易與葡萄糖氧化酶結(jié)合,用于固定及負(fù)載葡萄糖氧化酶。此外,基于絲素蛋白極易制備出纖維、膜、水凝膠等不同結(jié)構(gòu)的材料,可開發(fā)出具有不同形態(tài)和功能的葡萄糖傳感器,如圖3所示。
Liu等[45]通過將絲素孵育得到絲素納米纖維(SFNFs),由于SFNFs具有更高結(jié)晶度,在納米纖維表面有大量殘基,因此,其具有更好的穩(wěn)定性和更多的結(jié)合位點,有助于提高酶的固定效率。通過戊二醛將酶與SFNFs交聯(lián)形成多孔酶膜,再將其與納米鉑/石墨烯膜嵌合,制備成葡萄糖傳感器(圖3(a))。由于納米鉑/石墨烯復(fù)合膜表面的羥基和羧基能牢牢地與酶結(jié)合,所產(chǎn)生的多孔酶膜能提供更大的比表面積用于與反應(yīng)物葡萄糖相互作用,該傳感器在2 μM~1 mM對葡萄糖具有良好的線性關(guān)系,靈敏度為31.02 μA/mM,且具有良好的循環(huán)重復(fù)性和長期穩(wěn)定性(25 h)。Lu等[46]研究了包括GOD在內(nèi)的三種具有不同物理和化學(xué)性質(zhì)的酶在水溶性和不溶性絲素蛋白膜中的長期穩(wěn)定性,分別從絲素結(jié)構(gòu)的變化、膜中酶的空間分布及酶的變性/復(fù)性等方面探討這些體系中酶穩(wěn)定性的機(jī)理(圖3(b)),結(jié)果表明絲素膜能在長達(dá)10個月的保存時間中保留75%的酶活性,且酶滲漏率僅為0.05%。這是由于絲素蛋白的結(jié)晶結(jié)構(gòu)、豐富的氫鍵交聯(lián)網(wǎng)絡(luò)及絲素蛋白鏈與酶分子之間的疏水作用,可限制GOD鏈的流動性,從而提高酶的穩(wěn)定性。研究表明,再生絲素蛋白是GOD的良好載體,是制備酶基葡萄糖傳感器的優(yōu)異材料。Marquez等[47]通過將酶直接溶解在SF的水溶液中,干燥結(jié)晶成膜后直接用于葡萄糖的傳感測試,結(jié)果表明負(fù)載GOD的SF膜具備過濾血細(xì)胞的能力,通過SF基質(zhì)與酶反應(yīng)產(chǎn)生的分子反應(yīng)可將葡萄糖測定的靈敏度提高2.5倍。其傳感機(jī)理主要是通過生物功能化的SF薄膜通過酶促反應(yīng)對葡萄糖作出響應(yīng),其中的氧化還原介質(zhì)與顯色物質(zhì)形成的復(fù)合物呈現(xiàn)出不同的顏色,從而測試出不同的葡萄糖濃度(圖3(c))。Molinnus等[48]以SF溶液為基底,首先將其滴鑄在硅晶片上,利用薄膜技術(shù)沉積鉑后,滴涂GOD/牛血清白蛋白/戊二醛/甘油的混合溶液形成工作電極,再利用厚膜技術(shù)絲網(wǎng)印刷Ag/AgCl糊到絲素基材上制成參比電極,組裝形成柔性葡萄糖生物傳感器芯片。得益于天然絲素蛋白的特性,該傳感器具有優(yōu)異的生物相容性和可降解性,電極10 d內(nèi)就可完全降解。為更好地固定GOD,保護(hù)GOD活性,提升傳感器的性能,還可以在制備過程中加入酶穩(wěn)定劑、聚合物、有機(jī)或無機(jī)功能納米材料。Zhao等[49]通過將SF/D-山梨醇復(fù)合材料和鉑、銀絲結(jié)合,再將GOD固定在微針集成鉑絲中,制備成新型微針葡萄糖生物傳感器系統(tǒng),用于血糖的微創(chuàng)連續(xù)監(jiān)測(圖3(d))。結(jié)果表明,GOD被固定在絲素/D-山梨醇基質(zhì)中,表現(xiàn)出更好的穩(wěn)定性,制備的傳感器具有低糖濃度下響應(yīng)快、生理條件下易于讀數(shù)等優(yōu)點,展示出1.7~10.4 mM葡萄糖的響應(yīng)范圍及31.7 μA/mM的靈敏度。目前為止,基于絲素蛋白的葡萄糖傳感器還主要以絲素蛋白膜為主要載體,開發(fā)制備的傳感器的傳感性能與蠶絲織物為載體的傳感器的性能相比,無明顯差異(表1),導(dǎo)電活性物質(zhì)的選擇及制備方法均會直接影響蠶絲基葡萄糖傳感器的傳感性能[26]。
現(xiàn)有研究表明,蠶絲纖維中的SF在從溶液到纖維的再折疊過程中,可以在介觀尺度上被重構(gòu)/功能化,即通過添加功能材料參與SF分子的折疊來促進(jìn)蠶絲功能化。簡單來說,就是通過在絲蛋白液中加入功能活性材料,利用養(yǎng)蠶添食法[50]、人工紡絲技術(shù)如濕法紡絲、干法紡絲、微流控紡絲、靜電紡絲[51-53]等制備出具有特殊尺寸和功能的絲素纖維。通過此方法引入導(dǎo)電活性物質(zhì)可以開發(fā)出具有電化學(xué)功能的蠶絲纖維,進(jìn)而開發(fā)出傳感器、執(zhí)行器、光纖、發(fā)光纖維和能量收集器傳感器件,這也可能成為未來蠶絲基葡萄糖傳感器研究的重要方向。
3 結(jié) 語
蠶絲由于其出色的性能,可應(yīng)用于柔性葡萄糖傳感器的研究,由簡單的蠶絲纖維、紗線到蠶絲織物,再到高性能碳化絲織物,由簡單的絲素蛋白到絲素膜,均可作為葡萄糖酶或葡萄糖響應(yīng)物質(zhì)的載體,所開發(fā)制備的葡萄糖傳感器展現(xiàn)出良好的傳感性能。但同時,葡萄糖氧化酶的固定率和穩(wěn)定性不高、蠶絲與導(dǎo)電材料復(fù)合后的牢度差、絲素蛋白膜力學(xué)性能不佳等問題也直接影響到蠶絲基葡萄糖傳感器的綜合性能,還有待進(jìn)一步解決。此外,蠶絲基葡萄糖傳感器的成本及維護(hù)也是應(yīng)用發(fā)展前不容忽視的因素。目前對于蠶絲基葡萄糖傳感器的開發(fā)主要集中在對蠶絲蛋白膜和碳化蠶絲織物的整理上,對于以蠶絲纖維、織物本身為基底的研究還較少。通過養(yǎng)蠶添食法及紡絲技術(shù)制備的功能化蠶絲,也可以應(yīng)用到蠶絲基葡萄糖傳感器的研究,這些都可能是未來蠶絲基葡萄糖傳感器研究的重要方向??傊?,盡管蠶絲基葡萄糖傳感器的開發(fā)研究還處于起步階段,其應(yīng)用前景不容忽視,未來發(fā)展值得期待。
參考文獻(xiàn):
[1]UPDIKE S J, HICKS G P. Enzyme electrode[J]. Nature, 1967, 214(5092): 986.
[2]ABELLAN-LLOBREGAT A, JEERAPAN I, BANDODKAR A, et al. A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration[J]. Biosensors & Bioelectronics, 2017, 91: 885-891.
[3]DONG L, LI R Y, WANG L Q, et al. Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose[J]. International Journal of Biological Macromolecules, 2021, 172: 289-298.
[4]LU Z W, WU L, DAI X X, et al. Novel flexible bifunctional amperometric biosensor based on laser engraved porous graphene array electrodes: Highly sensitive electrochemical determination of hydrogen peroxide and glucose[J]. Journal of Hazardous Materials, 2021, 402: 123774.
[5]XU Y, ZHANG B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications[J]. Chemical Society Reviews, 2014, 43(8): 2439-2450.
[6]LEE W C, KIM K B, GURUDATT N G, et al. Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer[J]. Biosensors & Bioelectronics 2019, 130: 48-54.
[7]KARIMI-MALEH H, CELLAT K, ARIKAN K, et al. Palladium-Nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing[J]. Materials Chemistry and Physics, 2020, 250: 123042.
[8]JIA H X, SHANG N Z, FENG Y, et al. Facile preparation of Ni nanoparticle embedded on mesoporous carbon nanorods for non-enzymatic glucose detection[J]. Journal of Colloid and Interface Science, 2021, 583: 310-320.
[9]ZHANG Y, LI N, XIANG Y J, et al. A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene[J]. Carbon, 2020, 156: 506-513.
[10]FRANCO F F, HOGG R A, MANJAKKAL L. Cu2O-based electrochemical biosensor for non-invasive and portable glucose detection[J]. Biosensors-Basel, 2022, 12(3): 174.
[11]LIN C H, DU Y, WANG S Q, et al. Glucose oxidase@Cu-hemin metal-organic framework for colorimetric analysis of glucose[J]. Materials Science & Engineering C-Materials for Biological Applications, 2021, 118: 111511.
[12]LI Y, XIE M W, ZHANG X P, et al. Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection[J]. Sensors and Actuators B: Chemical, 2019, 278: 126-132.
[13]GUMILAR G, KANETI Y V, HENZIE J, et al. General synthesis of hierarchical sheet/plate-like M-BDC (M=Cu, Mn, Ni, and Zr) metal-organic frameworks for electrochemical non-enzymatic glucose sensing[J]. Chemical Science, 2020, 11(14): 3644-3655.
[14]RAZA W, AHMAD K. A highly selective Fe@ZnO modified disposable screen printed electrode based non-enzymatic glucose sensor (SPE/Fe@ZnO)[J]. Materials Letters, 2018, 212: 231-234.
[15]LAKHDARI D, GUITTOUM A, BENBRAHIOM N, et al. A novel non-enzymatic glucose sensor based on NiFe(NPs)-polyaniline hybrid materials[J]. Food and Chemical Toxicology, 2021, 151: 112099.
[16]ZHAO W L, ZHANG G P, DU Y, et al. Sensitive colorimetric glucose sensor by iron-based nanozymes with controllable Fe valence[J]. Journal of Materials Chemistry B, 2021, 9(23): 4726-4734.
[17]WANG L Y, XIE S L, WANG Z Y, et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers[J]. Nature Biomedical Engineering, 2020, 4(2): 159-171.
[18]ZHOU Y, FANG Y, RAMASAMY R P. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development[J]. Sensors, 2019, 19(2): 392.
[19]KARIMI-MALEH H, CELLAT K, ARIKAN K, et al. Palladium-nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing[J]. Materials Chemistry and Physics, 2020, 250: 123042.
[20]LEE H, CHOI T K, LEE Y B, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy[J]. Nature Nanotechnology, 2016, 6(11): 566-572.
[21]SHAN C S, YANG H F, SONG J F, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene[J]. Analytical Chemistry, 2009, 6(81): 2378-2382.
[22]TEYMOURIAN H, BARFIDOKHT A, WANG J. Electrochemical glucose sensors in diabetes management: An updated review (2010-2020)[J]. Chemical Society Reviews, 2020, 49(21): 7671-7709.
[23]FREEMAN M H, HALL J R, LEOPOLD M C. Monolayer-protected nanoparticle doped xerogels as functional components of amperometric glucose biosensors[J]. Analytical Chemistry, 2013, 85(8): 4057-4065.
[24]LIN M J, WU C C, CHANG K S. Effect of poly-l-lysine polycation on the glucose oxidase/ferricyanide composite-based second-generation blood glucose sensors[J]. Sensors, 2019, 19(6): 1448.
[25]MARZO A, MAYORGA-MARTINEZ C C, PUMERA M. 3D-printed graphene direct electron transfer enzyme biosensors[J]. Biosensors & Bioelectronics, 2020, 151: 111980.
[26]張勇, 陸浩杰, 梁曉平, 等. 蠶絲基智能纖維及織物: 潛力、現(xiàn)狀與未來展望[J]. 物理化學(xué)學(xué)報, 2022, 38(9): 64-79.
ZHANG Yong, LU Haojie, LIANG Xiaoping, et al. Silk materials for intelligent fibers and textiles: Potential, progress and future perspective[J]. Acta Physico-Chimica Sinica, 2022, 38(9): 64-79.
[27]李勝優(yōu), 劉鎵榕, 文豪, 等. 蠶絲基可穿戴傳感器的研究進(jìn)展[J]. 物理學(xué)報, 2020, 69(17): 130-142.
LI Shengyou, LIU Jiarong, WEN Hao, et al. Recent advances in silk-based wearable sensors[J]. Acta Physica Sinica, 2020, 69(17): 130-142.
[28]WANG C Y, XIA K L, ZHANG Y Y, et al. Silk-based advanced materials for soft electronics[J]. Accounts of Chemical Research, 2019, 52(10): 2916-2927.
[29]CAI H H, GAO L Z, CHEN L, et al. An effective, low-cost and eco-friendly method for preparing UV resistant silk fabric[J]. Journal of Natural Fibers, 2022, 19(13): 5173-5185.
[30]XU M T, CAI H H, LIU Z L, et al. Skin-friendly corrugated multilayer microspherical sensor fabricated with silk fibroin, poly (lactic-co-glycolic acid), polyaniline, and kappa-carrageenan for wide range pressure detection[J]. International Journal of Biological Macromolecules, 2022, 194: 755-762.
[31]CHOUDHARY T, RAJAMANICKAM G P, DENDUKURI D. Woven electrochemical fabric-based test sensors (WEFTS): A new class of multiplexed electrochemical sensors[J]. Lab on A Chip, 2015, 15(9): 2064-2072.
[32]YE C, REN J, WANG Y L, et al. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles[J]. Matter, 2019, 1(5): 1411-1425.
[33]WANG L, WANG L Y, ZHANG Y, et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring[J]. Advanced Functional Material, 2018, 28(42): 1804456.
[34]王曉雷, 繆旭紅, 孫婉. 針織間隔導(dǎo)電織物的壓力電阻傳感性能[J]. 絲綢, 2020, 57(4): 17-21.
WANG Xiaolei, MIAO Xuhong, SUN Wan. Pressure resistance sensing properties of knitted spacer conductive fabrics[J]. Journal of Silk, 2020, 57(4): 17-21.
[35]NILGHAZ A, BAGHERBAIGI S, LAM C L, et al. Multiple semi-quantitative colorimetric assays in compact embeddable microfluidic cloth-based analytical device (mu CAD) for effective point-of-care diagnostic[J]. Microfluidics and Nanofluidics, 2015, 19(2): 317-333.
[36]ZHAO Z Q, LI Q J, DONG Y, et al. Core-shell structured gold nanorods on thread-embroidered fabric-based microfluidic device for Ex Situ detection of glucose and lactate in sweat[J]. Sensors and Actuators B-Chemical, 2022, 353: 131154.
[37]KARAKUS S, BAYTEMIR G, TASALTIN N. Digital colorimetric and non-enzymatic biosensor with nanoarchitectonics of Lepidium meyenii-silver nanoparticles and cotton fabric: Real-time monitoring of milk freshness[J]. Applied Physics A-Materials Science & Processing, 2022, 128(5): 390.
[38]ZHAO Z Q, LI Q J, CHEN L N, et al. A thread/fabric-based band as a flexible and wearable microfluidic device for sweat sensing and monitoring[J]. Lab on A Chip, 2021, 21(5): 916-932.
[39]CAI H H, LIU Z L, XU M T, et al. High performance flexible silk fabric electrodes with antibacterial, flame retardant and UV resistance for supercapacitors and sensors[J]. Electrochimica Acta, 2021, 390: 138895.
[40]CAI H H, WANG Y J, XU M T, et al. Low cost, green and effective preparation of multifunctional flexible silk fabric electrode with ultra-high capacitance retention[J]. Carbon, 2022, 188: 197-208.
[41]HE W Y, WANG C Y, WANG H M, et al. Integrated textile sensor patch for real-time and multiplex sweat analysis[J]. Science Advances, 2019, 5(11): eaax0649.
[42]CHEN C, RAN R, YANG Z Y, et al. An efficient flexible electrochemical glucose sensor based on carbon nanotubes/carbonized silk fabrics decorated with Pt microspheres[J]. Sensors and Actuators B: Chemical, 2018, 256: 63-70.
[43]WANG C Y, LI X, GAO E L, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors[J]. Advanced Materials, 2016, 28(31): 6640-6648.
[44]明津法, 黃曉衛(wèi), 寧新, 等. 絲素蛋白材料制備及應(yīng)用進(jìn)展[J]. 絲綢, 2021, 58(2): 20-26.
MING Jinfa, HUANG Xiaowei, NING Xin, et al. Preparation and application of silk fibroin materials[J]. Journal of Silk, 2021, 58(2): 20-26.
[45]LIU X, ZHANG W L, LIN Z F, et al. Coupling of silk fibroin nanofibrils enzymatic membrane with ultra-thin PtNPs/graphene film to acquire long and stable on-skin sweat glucose and lactate sensing[J]. Small Methods, 2021, 5(3): 2000926.
[46]LU S Z, WANG X Q, LU Q, et al. Stabilization of enzymes in silk films[J]. Biomacromolecule, 2009, 10(5): 1032-1042.
[47]MARQUEZ A, SANTOS M V, GUIRADO G, et al. Nanoporous silk films with capillary action and size-exclusion capacity for sensitive glucose determination in whole blood[J]. Lab on A Chip, 2021, 21(3): 608-615.
[48]MOLINNUS D, DRINIC A, IKEN H, et al. Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk[J]. Biosensors & Bioelectronics, 2021, 183: 113204.
[49]ZHAO L, WEN Z Z, JIANG F J, et al. Silk/polyols/GOD microneedle based electrochemical biosensor for continuous glucose monitoring[J]. RSC Advances, 2020, 10(11): 6163-6171.
[50]蔡海華, 程嵐, 李智, 等. 添食法制備改性蠶絲的研究進(jìn)展[J]. 材料導(dǎo)報, 2020, 34(23): 23190-23198.
CAI Haihua, CHENG Lan, LI Zhi, et al. Research progress on preparation of modified silk by feeding method[J]. Materials Reports, 2020, 34(23): 23190-23198.
[51]ZHAO Z C, LI B T, XU L Q, et al. A sandwich-structured piezoresistive sensor with electrospun nanofiber mats as supporting, sensing, and packaging layers[J]. Polymers, 2018, 10(6): 575.
[52]KHALID A, BAI D B, ABRAHAM A N, et al. Electrospun nanodiamond-silk fibroin membranes: A multifunctional platform for biosensing and wound-healing applications[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 48408-48419.
[53]ZHANG C, FAN S N, SHAO H L, et al. Graphene trapped silk scaffolds integrate high conductivity and stability[J]. Carbon, 2019, 148: 16-27.
[54]LU W D, JIAN M Q, WANG Q, et al. Hollow core-sheath nanocarbon spheres grown on carbonized silk fabrics for self-supported and nonenzymatic glucose sensing[J]. Nanoscale, 2019, 11(24): 11856-11863.
[55]WEI L, LI J H, CHEN C, et al. Ultrasensitive non-enzymatic glucose sensors based on hybrid reduced graphene oxide and carbonized silk fabric electrodes decorated with Cu nanoflowers[J]. Journal of the Electrochmical Society, 2020, 167(12): 127501.
[56]ASAKURA T, KITAGUCHI M, DEMURA M, et al. Immobilization of glucose-oxidase on nonwoven fabrics with bombyx-mori silk fibroin gel[J]. Journal of Applied Polymer Science, 1992, 46(1): 49-53.
[57]KOIKE K, SASAKI T, HIRAKI K, et al. Characteristics of an extended gate field-effect transistor for glucose sensing using an enzyme-containing silk fibroin membrane as the bio-chemical component[J]. Biosensors-Basel, 2020, 10(6): 57.
[58]YOU X Q, PAK J J. Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate[J]. Sensors and Actuators B: Chemical, 2014, 202: 1357-1365.
Research progress on silk-based glucose sensors
WANG Yi1, WANG Yujia1, CHEN Fangchun1b,c, WANG Yasi1b,c, DAI Fangyin1, LI Zhi1,2
(1a.State Key Laboratory of Silkworm Genome Biology; 1b.College of Sericulture, Textile and Biomass Sciences; 1c.Chongqing EngineeringResearch Center of Biomaterial Fiber and Modern Textile, Southwest University, Chongqing 400715, China; 2.Key Laboratory ofFlexible Devices for Intelligent Textile and Apparel, Soochow University, Suzhou 215123, China)
Abstract:
Glucose sensors, as a tool for diabetics to monitor blood glucose, are of great significance in the diagnosis and treatment of diabetes. With the rapid development of flexible smart wearable devices, the development of glucose sensors based on flexible substrate has also gradually become a research hotspot. Silk has good biocompatibility, degradability and flexibility, its surface is rich in chemical bonds such as carboxyl, hydroxyl and amide bonds which can interact with active substances, and it is a good conductive substrate material. The flexible glucose sensor developed by using silk and silk fibroin as the substrate, and by being compounded with conductive active materials has excellent sensing performance and good long-term stability. This article aims to review the research progress of silk-based glucose sensors developed based on silk fibroin, silk fiber and silk fabric, analyze their characteristics and mechanism, and prospect their development tendency.
In order to fully understand the application of silk in the field of glucose sensors, this paper starts with the development of glucose sensors, and focuses on the research progress of silk-based glucose sensors on basis of two main kinds of silk and silk fibroin. We first introduced the characteristics and properties of silk, and discussed the application of silk yarns, silk fabrics and carbonized silk fabrics in the field of glucose sensors. Then, we summarized the application of fibroin films and spun fibers based on silk fibroin in the field of glucose sensors. By reviewing the preparation methods and sensing performance of various silk-based glucose sensors, we analyzed the role of silk in them, and summarized the effect of the silk substrate on the glucose sensing performance. It is hoped that this paper can provide a reference for the design and development of high-performance silk-based flexible glucose sensors. Glucose sensors based on silk fabrics have better mechanical properties, higher conductivity and sensitivity, while those made of silk fibroin have better biocompatibility and degradability. Finally, we compared and analyzed the sensitivity, response time, detection limit, advantages and disadvantages of the silk-based glucose sensors. In sum, in virtue of its good characteristics, silk has the excellent application value in the field of flexible glucose sensors, and the developed glucose sensors show good sensing performance, which can also keep the original flexibility and biocompatibility of silk and show good conductivity and ultra-high response to glucose molecules. However, the problems such as the poor fixation rate of silk fibroin to glucose oxidase, the poor mechanical properties of silk fibroin films, and the weak binding between silk fabric and conductive materials still need to be solved urgently. In addition, the cost and maintenance of silk-based glucose sensors are also the factors that cannot be ignored.
At present, the development of silk-based glucose sensors is mainly based on the silk fibroin membrane and the carbonized silk fabric, and there are relatively few studies and applications based on the silk fiber and the silk fabric. The functionalized silk produced by the silkworm feeding method and spinning technology can be applied to the research and development of sensors, which would possibly become one of the important research directions of silk-based glucose sensors in the future. Overall, although the development of silk-based glucose sensors is still in its infancy, its application prospects are very broad, and it is worth looking forward to future development.
Key words:
silk; silk fibroin; silk fabric; glucose sensors; glucose oxidase; flexible electronic devices
收稿日期:
2022-08-01;
修回日期:
2023-02-03
基金項目:
重慶市教育委員會科學(xué)技術(shù)研究項目(KJQN202100203);紡織行業(yè)智能紡織服裝柔性器件重點實驗室開放課題資助項目(SDHY2111);重慶市留創(chuàng)計劃創(chuàng)新類資助項目(cx2019090);家蠶基因組生物學(xué)國家重點實驗室開放課題資助項目(sklsgb-2019KF13)
作者簡介:
王怡(1997),女,碩士研究生,研究方向為生物醫(yī)用紡織品。通信作者:李智,副教授,tclizhi@swu.edu.cn。