秦子軒 張恒 甄琪 李晗 王镕琛 宋衛(wèi)民
摘要: 熔噴非織造材料是一種由超細(xì)纖維直接組成的柔性多孔介質(zhì),具有纖維比表面積大、結(jié)構(gòu)蓬松和屏蔽性好等特點(diǎn),在醫(yī)療防護(hù)和個人衛(wèi)生等貼膚領(lǐng)域中具有廣泛應(yīng)用。然而,由于部分熔噴非織造原料的固有脆性,導(dǎo)致熔噴非織造材料存在柔軟舒適性差的問題。因此,提升熔噴非織造材料柔韌性,已經(jīng)成為貼膚用紡織品領(lǐng)域的研究熱點(diǎn)。本文整理熔噴聚合物原料共聚改性和共混改性研究進(jìn)展,介紹了熔噴非織造生產(chǎn)工藝對材料柔韌性影響規(guī)律,闡述了熔噴非織造材料在柔性貼膚領(lǐng)域應(yīng)用形式,為熔噴非織造材料柔韌性提升與貼膚性應(yīng)用提供研究思路。
關(guān)鍵詞: 熔噴;非織造材料;柔韌化改性;共聚改性;共混改性;貼膚應(yīng)用
中圖分類號: TS176
文獻(xiàn)標(biāo)志碼: A
文章編號: 1001-7003(2023)03-0073-09
引用頁碼:
031110
DOI: 10.3969/j.issn.1001-7003.2023.03.010(篇序)
熔噴非織造材料具有纖維線密度小、孔隙率高和質(zhì)地柔軟等特點(diǎn)[1-3],在醫(yī)療防護(hù)(口罩、防護(hù)服等)[4]、個人衛(wèi)生(面膜、濕巾等)[5]和智能調(diào)溫(服裝、家紡等)[6]等貼膚產(chǎn)品領(lǐng)域發(fā)揮著重要作用。在醫(yī)療防護(hù)領(lǐng)域,熔噴非織造材料所制備的口罩類醫(yī)療防護(hù)裝備,具備屏蔽細(xì)菌和過濾病毒等特性,在抗擊新型冠狀病毒肺炎(COVID-19)疫情中有效阻斷了病毒擴(kuò)散與傳播;在衛(wèi)生用品領(lǐng)域,熔噴非織造材料因具有材質(zhì)輕和結(jié)構(gòu)蓬松等特點(diǎn),在濕巾和尿不濕等產(chǎn)品中應(yīng)用廣泛。
目前,熔噴非織造原料以聚丙烯(PP)、聚乙烯(PE)為主,且隨著人們環(huán)保意識不斷增強(qiáng),聚乳酸(PLA)等新型可降解聚合物受到越來越多學(xué)者關(guān)注[7-9],這為熔噴非織造材料新產(chǎn)品開發(fā)和應(yīng)用帶來了新契機(jī)。然而,熔噴非織造材料用聚合物原料中含有較多剛性分子鏈段,從而導(dǎo)致非織造材料脆性較大且柔韌性差,限制了其在貼膚領(lǐng)域的應(yīng)用,而通過對熔噴非織造用聚合物原料進(jìn)行化學(xué)改性(共聚)或物理改性(共混),向聚合物大分子鏈中引入柔性分子鏈段或添加柔性聚合物,可以有效改善材料硬度[10],滿足人們對于舒適性能的需求。因此,探究采用共聚和共混改性的方法降低聚合物原料中分子鏈剛性,提升熔噴非織造材料柔韌性,并進(jìn)一步實(shí)現(xiàn)貼膚性應(yīng)用具有十分重要的意義。
此外,聚合物原料在熔噴工藝中因加工溫度、加工流程等導(dǎo)致其在應(yīng)用方面的局限性(脆性大、舒適性不足等)進(jìn)一步加大?;诖?,本文綜述了針對不同熔噴非織造材料用聚合物原料的柔韌化改性方法研究進(jìn)展,列舉了柔軟母粒在提升熔噴非織造材料柔韌性的應(yīng)用概況,并簡述了熔噴工藝特性和貼膚性應(yīng)用,以期為熔噴非織造材料柔韌性提升和貼膚性應(yīng)用開發(fā)提供參考和思路。
1 熔噴非織造材料原料柔韌化改性
熔噴非織造技術(shù)起源于傳統(tǒng)聚合物熔體紡絲,將單一或多種聚合物原料均勻混合后喂入螺桿擠出裝置,高溫熔融形成聚合物熔體后,在模頭處經(jīng)高速熱空氣充分牽伸,由噴絲孔噴出,快速冷卻成纖后,均勻鋪網(wǎng),形成非織造纖維材料,熔噴非織造生產(chǎn)工藝流程如圖1所示。相較于其他非織造材料成型工藝,熔噴工藝用聚合物原料具有較高熔融流動指數(shù)(MFI),同時其相對分子質(zhì)量分布較窄、熔融黏度較低,這不僅有助于聚合物熔體充分牽伸成纖,而且能夠引入其他物質(zhì)來改善非織造材料柔韌性。因此,到目前為止,在熔噴工藝中對聚合物原料進(jìn)行共聚和共混改性[11-13]提高聚合物柔韌性,是熔噴非織造原料柔韌化改性的常用方法之一。
1.1 共聚改性
共聚改性是通過化學(xué)反應(yīng)向聚合物大分子主鏈上引入某些特定作用分子鏈段,從而改變聚合物分子結(jié)構(gòu),并達(dá)到提高聚合物分子鏈柔韌性目的[14]。常用柔韌性分子鏈段主要包括馬來酸酐和甲基丙烯酸縮水甘油酯等,如表1所示。
Zhang等[21]在PLA-PEG-PLA共聚物(圖2(a))制備過程中,探究了聚乙二醇(PEG)對PLA柔韌化改性效果,結(jié)果表明該共聚物可以提高PEG分子在PLA基體中分散性,從而有效提高PLA大分子鏈段運(yùn)動能力,使材料具有更好的柔韌性。Theryo等[22]首先通過開環(huán)共聚方法制備了1,5-環(huán)辛二烯-co-5-降冰片烯-2-甲醇(PCN),然后側(cè)鏈接枝PLA生成了PCNL共聚物(圖2(b)),該樣品斷裂伸長率高達(dá)238%,比純PLA材料提高了1 700%。Yu等[23]先將羧基接枝到PE分子鏈上生成m-LDPE,然后再以聚苯乙烯-甲基丙烯酸縮水甘油酯(SG)為主要接枝鏈,接枝生成PLLA/m-LDPE共混物。結(jié)果發(fā)現(xiàn),PLLA和m-LDPE羧酸基可以與SG主鏈上環(huán)氧基團(tuán)發(fā)生反應(yīng),使共混體系界面相容性提高(圖2(c)),增容后共混物斷裂伸長率由9%提高至367%。
通過上述研究發(fā)現(xiàn),向聚合物大分子鏈段引入特定柔韌性分子鏈,能夠有效提升聚合物分子鏈柔韌度。因此,共聚改性是一種提升聚合物柔韌性的有效方法。
1.2 共混改性
共混改性具有操作流程簡便、生產(chǎn)成本低等優(yōu)點(diǎn),是改善聚合物柔韌性常用的物理改性方法,通常采用彈性體或低聚物等與聚合物進(jìn)行熔融共混。一方面,基體中加入彈性體,利用其柔韌性分子鏈段分散在聚合物基體中,降低共混物剛性;另一方面,低聚物中小分子可以分散在基體分子鏈段中,削弱分子間作用力,提高聚合物分子運(yùn)動能力,增加共混物柔韌性。
1.2.1 彈性體改性
熱塑性聚氨酯彈性體(TPU)是由柔性軟段和剛性硬段交替組成的聚合物,具有良好柔韌性和延展性[24]。有學(xué)者將TPU與PLA[25-26]等聚合物進(jìn)行共混熔噴(圖3(a)),制備出一種手感柔軟的熔噴非織造材料。研究表明,TPU在纖維內(nèi)以“島”的形式存在,為柔韌性和延伸性改善提供了橋梁作用,并且樣品柔韌性隨著TPU含量增大而增大。隨后,Zhang等[27]則以聚氨酯彈性體預(yù)聚體(PUEP)作為活性增容劑,對PLA/TPU進(jìn)行增容共混改性(圖3(b)(c)),加入PUEP后發(fā)現(xiàn),共混體系界面相容性顯著提高,共混物斷裂伸長率提高至92.6%。
同理,Lin等[28]以聚丙烯接枝馬來酸酐(PP-g-MA)為相容劑(圖4),進(jìn)行PP/TPU共混成型研究。結(jié)果發(fā)現(xiàn),當(dāng)共混物中TPU與PP-g-MA質(zhì)量分?jǐn)?shù)分別為20%和5%時,共混物樣品較純PP彈性提升了30%。綜上,加入相容劑不僅有助于共混物形態(tài)穩(wěn)定,同時共混物中加入TPU,其柔軟性鏈段有助于改善PP與PLA剛性,促進(jìn)PP/TPU和PLA/TPU等共混物柔韌性提升。
乙烯-辛烯彈性體(POE)與乙烯-醋酸彈性體(EVA)是辛烯軟鏈段和醋酸軟鏈段分別與乙烯結(jié)晶鏈段相互交聯(lián)而制成的共聚物。趙洪等[29]探究了POE/PP復(fù)合材料的力學(xué)性能,發(fā)現(xiàn)復(fù)合材料結(jié)晶度隨著POE含量增大而降低,當(dāng)POE含量為40%時,復(fù)合材料形變量增大至11.25%,遠(yuǎn)大于純PP的1.25%。同時,Chang等[30]研究了不同EVA含量對PP/EVA熔噴非織造材料性能影響,發(fā)現(xiàn)PP/EVA共混物具有良好熱穩(wěn)定性和流變性能,當(dāng)EVA比例在5%~30%時,樣品的斷裂伸長率明顯提高。
1.2.2 低聚物改性
低聚物與熔噴聚合物原料進(jìn)行共混改性時,能夠均勻分散在聚合物基體中,通過削弱分子間作用力,提高分子鏈運(yùn)動能力,從而降低聚合物脆性。常用的低聚物有檸檬酸脂類和聚乙二醇等。為了探究不同檸檬酸酯類物質(zhì)對聚乳酸柔韌化改性作用,尹靜波等[31]分別采用乙酰檸檬酸三正丁酯(ATBC)、檸檬酸三正丁酯(TBC)、檸檬酸三乙酯(TEC)等與PLA進(jìn)行共混。通過對樣品分析后發(fā)現(xiàn),檸檬酸酯類物質(zhì)與PLA有良好相容性。當(dāng)其添加量為10%~15%時,共混物的斷裂伸長率較純PLA提升了近40倍;同時,隨著檸檬酸酯中醇相對分子質(zhì)量越低,越有利于降低共混物玻璃化溫度,從而提高其柔韌性。類似的,Guo等[32]研究了不同相對分子質(zhì)量(600、2 000)聚乙二醇(PEG)對PLA改性效果。研究發(fā)現(xiàn),PEG增強(qiáng)了PLA分子鏈段運(yùn)動能力,當(dāng)共混物中PEG含量為20%時,其斷裂伸長率增大到370%~400%。
1.2.3 熔噴非織造材料用柔軟母粒
在熔噴非織造材料實(shí)際生產(chǎn)中,加入一定比例柔軟母粒能夠增加熔噴非織造材料柔韌性。目前,柔軟母粒一般由柔軟劑、潤滑劑、分散劑和彈性體等主要成分組成。同時,為滿足材料多功能性需要,柔軟母粒中還會含有抗菌劑、抗靜電劑、阻燃劑等成分。柔軟母粒功能及其種類如圖5所示。
通過柔軟母粒中多種組分協(xié)同作用,可以在實(shí)際生產(chǎn)中有效提升熔噴非織造材料柔韌性。如在專利《一種熔噴柔軟母粒及其制備方法》中提供了一種包括硬脂酸酰胺、乙撐雙硬脂酸酰胺、聚乙烯蠟和1-辛烯與乙烯等成分組成的柔軟母粒。應(yīng)用發(fā)現(xiàn),該柔軟母??梢杂行г黾泳酆衔锶垠w韌性,為生產(chǎn)超細(xì)柔軟熔噴非織造材料提供了技術(shù)支撐。專利《一種無紡布柔軟母粒及其制備方法》則提供了一種可以快速發(fā)揮穩(wěn)定作用的柔軟母粒。該母粒以油酸酰胺和芥酸酰胺為潤滑劑,在賦予熔噴非織造材料柔軟手感的同時,也能保證其柔性作用的耐久性。專利《一種柔軟母粒及其制備方法》提供了一種由殼聚糖、銅、鋁和聚乙烯組成的母粒,該母粒同時具有柔韌性、抗菌和防霉等功能性。此外,專利《一種聚丙烯抗靜電柔軟母粒及其制備方法》中提到在聚丙烯柔軟母粒中加入了抗靜電劑成分,獲得了一種制備聚丙烯非織造材料的抗靜電柔軟母粒。
圖6為近十年來關(guān)于熔噴非織造材料柔軟母粒專利在全球和中國的申請情況。從圖6可以看出,全球?qū)@暾垟?shù)量有867篇,在中國專利數(shù)量有520篇。需要注意的是,2020年柔軟母粒專利申請個數(shù)迎來了一個小高峰,國內(nèi)申請數(shù)量達(dá)到81篇,全球申請數(shù)量為114篇。這可能是由于COVID-19爆發(fā),導(dǎo)致全球范圍內(nèi)對醫(yī)療衛(wèi)生防護(hù)產(chǎn)品及其柔軟舒適性能的需求大幅增加。
2 成型工藝對非織造材料柔韌性影響規(guī)律
熔噴非織造材料在加工成型過程中,通過對接收距離(DCD)、熱風(fēng)壓力、熱風(fēng)溫度和模頭溫度等工藝參數(shù)調(diào)整,能夠獲得纖維直徑更細(xì),孔隙率更高和結(jié)構(gòu)更蓬松的柔韌性非織造材料。Zhang等[33]和彭夢娜等[34]分別通過改變DCD和熱風(fēng)溫度來研究非織造材料結(jié)構(gòu)與性能。如圖7所示,隨著DCD從10 cm增加至30 cm,材料的孔隙率增大,結(jié)構(gòu)變蓬松;對于PP/TPU非織造材料而言,隨著熱風(fēng)溫度不斷升高,熔噴非織造材料主要纖維直徑分布在6 μm以下,當(dāng)熱風(fēng)溫度從250 ℃升高到270 ℃時,PP/TPU熔噴非織造材料具有良好彈性回復(fù)和觸覺柔韌性。Yesil[35]研究了DCD、熱風(fēng)壓力和模頭溫度對聚乙烯(PE)熔噴非織造材料結(jié)構(gòu)和力學(xué)性能影響(圖8)。研究表明,隨著DCD從15 cm增加到25 cm時,樣品材料直徑明顯減小,而繼續(xù)增加會由于空氣冷卻原因?qū)е吕w維直徑很難再發(fā)生變化;風(fēng)壓增大,會使材料纖維直徑減小的同時,結(jié)構(gòu)也更加蓬松。此外,付小栓等[36-37]研究發(fā)現(xiàn),熔噴工藝參數(shù)改變對非織造材料結(jié)構(gòu)性能影響呈現(xiàn)出相同規(guī)律,即纖維直徑會隨著DCD和風(fēng)壓逐漸增大而減小,同時,模頭溫度在一定范圍內(nèi)逐漸升高,會提高材料流動性,有利于獲得纖維直徑更細(xì)的熔噴非織造材料。
通過對熔噴非織造生產(chǎn)工藝參數(shù)(DCD、熱風(fēng)壓力、溫度和模頭溫度等)進(jìn)行調(diào)整,對非織造材料纖維細(xì)度和結(jié)構(gòu)蓬松度等產(chǎn)生影響,進(jìn)而改善材料柔韌性。從上述研究可以得出,在工藝參數(shù)范圍內(nèi),DCD增加會使接收網(wǎng)簾纖維直徑減小;熱風(fēng)壓力及溫度增高,有助于熔體細(xì)流得到充分牽伸,從而獲得線密度更小的纖維。而對于非織造材料而言,固定其他參數(shù)不變的情況下,纖維直徑越小,使得材料厚度越小,蓬松度與孔隙率越高,材料柔韌性也就越好。因此,通過研究工藝參數(shù)的調(diào)控對非織造材料結(jié)構(gòu)和性能影響,能夠?yàn)檫M(jìn)一步改善熔噴非織造材料柔軟舒適性及開發(fā)貼膚用非織造材料提供參考。
3 熔噴非織造材料貼膚性應(yīng)用
熔噴非織造材料在防護(hù)服、口罩和面膜等貼膚領(lǐng)域具有廣泛應(yīng)用前景,已成為近年來熔噴非織造材料的重點(diǎn)應(yīng)用方向。圖9為熔噴非織造材料貼膚應(yīng)用場景。
3.1 醫(yī)療防護(hù)用品
熔噴非織造材料具有優(yōu)異屏蔽性、過濾性和透氣性[38],被廣泛用于口罩、防護(hù)服和手術(shù)服等醫(yī)療防護(hù)裝備。專利《一種口罩非織造布及工藝》采用PP熔噴非織造材料生產(chǎn)一種醫(yī)療防護(hù)用口罩,該產(chǎn)品不僅可以屏蔽病毒,同時使用過程中也能給人帶來柔軟貼膚的舒適感。此外,專利《防護(hù)服用原材料和防護(hù)服》利用熔噴非織造材料纖維線密度小、結(jié)構(gòu)蓬松等特性,制造了一種透氣性良好、質(zhì)量輕和手感柔軟的醫(yī)用防護(hù)服裝備,解決了傳統(tǒng)防護(hù)服穿著舒適性不足和柔軟貼膚性差等問題。隨著生物可降解聚合物不斷發(fā)展,也為熔噴非織造材料在醫(yī)療領(lǐng)域帶來更多應(yīng)用前景。如彭鵬等[39]以聚乳酸為原料,通過熔噴工藝制備了一種超細(xì)纖維醫(yī)用敷料,測試證明,該材料纖維直徑主要為2~5 μm,具有透氣性好,貼膚柔軟的同時具有很好的抗菌效果,對人體無毒副作用。
3.2 衛(wèi)生用品
隨著人們生活水平不斷提高,使得熔噴非織造材料在衛(wèi)生用品領(lǐng)域柔性應(yīng)用也越來越廣泛。專利《一種超柔軟貼膚面膜專用非織造布及其制造方法》為了解決當(dāng)前面膜基布存在貼膚性差等問題,采用PP與丙烯基彈性體為原料,生產(chǎn)了一種柔軟貼膚性好的熔噴非織造材料,該材料具有柔韌性高、密度小和貼膚性好等特點(diǎn)。為了提升熔噴非織造材料柔韌性,擴(kuò)大其在衛(wèi)生用品領(lǐng)域應(yīng)用,專利《一種柔性和透氣性較好的衛(wèi)生用品及復(fù)合無紡布》則制得了一種以柔韌性優(yōu)異的熔噴非織造材料為主的衛(wèi)生用品,該熔噴材料兼具有拒水和抗菌效果。
3.3 保暖材料
熔噴法非織造材料纖維線密度小,會使材料孔隙率增大,較多孔隙可以使材料內(nèi)部儲存空氣,起到保溫隔熱效果。仇何等[40]使用聚乳酸與聚酰胺彈性體為原料,通過將制備的熔噴超細(xì)纖維噴覆在直徑25 μm的長絲上,獲得具有類似鵝絨結(jié)構(gòu)的保暖材料,這類材料在具有良好保暖效果的同時,也擁有柔韌性好、親膚的特點(diǎn),可以廣泛地應(yīng)用于服裝,家紡等產(chǎn)品。
因此,通過上述分析可以發(fā)現(xiàn),熔噴非織造材料在醫(yī)療(口罩和防護(hù)服等)、個人衛(wèi)生(面膜和濕巾等)及保暖材料(服裝、家紡填充物)等貼膚領(lǐng)域應(yīng)用越來越廣泛。同時,這也對探究柔韌化改性熔噴非織造材料在貼膚應(yīng)用領(lǐng)域開發(fā)與推廣具有重要意義。
4 結(jié) 語
近年來,熔噴非織造材料作為一種超細(xì)纖維材料,在醫(yī)療防護(hù)和個人衛(wèi)生等貼膚領(lǐng)域應(yīng)用越來越廣泛。而在熔噴非織造材料開發(fā)應(yīng)用中,還存在脆性較大、柔軟舒適度不足等。因此,在提升熔噴非織材料柔韌性過程中,還存在一些亟須解決的問題:一方面,可用于熔噴非織造的聚合物種類繁多,需要采用不同的方法(化學(xué)或物理)來提升材料柔韌性,而目前較多的研究方法仍舊處于實(shí)驗(yàn)階段。因此,不僅要選擇合適的方法提高材料柔韌性,同時也要遵循操作簡便、成本低及可工業(yè)量產(chǎn)化等原則。另一方面,提升熔噴非織材料柔韌性能是提高其在貼膚材料領(lǐng)域應(yīng)用的前提,為了更好滿足人們對美好生活需求,就要對熔噴非織造材料多樣化的功能性應(yīng)用提升投入更多研究,這也會成為熔噴非織材料的未來發(fā)展方向。
參考文獻(xiàn):
[1]朱斐超, 張宇靜, 張強(qiáng), 等. 聚乳酸基生物可降解熔噴非織造材料的研究進(jìn)展與展望[J]. 紡織學(xué)報, 2022, 43(1): 49-57.
ZHU Feichao, ZHANG Yujing, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1): 49-57.
[2]ZHANG J, WANG H P, CHEN C L, et al. Analysis of microstructure and protective performance of melt-blown materials for medical protective masks[J]. Journal of Physics: Conference Series, 2022, 2194(1): 012010.
[3]孫煥惟, 張恒, 甄琪, 等. 丙烯基納微米彈性過濾材的熔噴成型及其過濾性能[J]. 紡織學(xué)報, 2020, 41(10): 20-28.
SUN Huanwei, ZHANG Heng, ZHEN Qi, et al. Filtrations of propylene-based micro-nano elastic filters via melt blowing process[J]. Journal of Textile Research, 2020, 41(10): 20-28.
[4]安琪, 付譯鋆, 張瑜, 等. 醫(yī)用防護(hù)服用非織造材料的研究進(jìn)展[J]. 紡織學(xué)報, 2020, 41(8): 188-196.
AN Qi, FU Yijun, ZHANG Yu, et al. Research progress of nonwovens for medical protective garment[J]. Journal of Textile Research, 2020, 41(8): 188-196.
[5]劉慧慧, 王云儀. 紙尿褲服用性能測評研究進(jìn)展[J]. 紡織學(xué)報, 2018, 39(6): 175-182.
LIU Huihui, WANG Yunyi. Progress in overall wearability evaluation of disposable diapers[J]. Journal of Textile Research, 2018, 39(6): 175-182.
[6]OZTURK M K, VENKATARAMAN M, MISHRA R. Influence of structural parameters on thermal performance of polypropylene nonwovens[J]. Polymers for Advanced Technologies, 2018, 29(12): 3027-3034.
[7]SANTOS A S, FERREIRA P J T, MALONEY T. Bio-based materials for nonwovens[J]. Cellulose, 2021, 28(14): 8939-8969.
[8]黃愛賓, 劉彩鳳, 張曉惠. 聚乳酸共混的研究進(jìn)展[J]. 材料導(dǎo)報, 2020, 34(S2): 1586-1589.
HUANG Aibin, LIU Caifeng, ZHANG Xiaohui. Research progress of polylactic acid blending[J]. Materials Reports, 2020, 34(S2): 1586-1589.
[9]韓萬里, 楊利宏, 王茹飄, 等. PLA微納米纖維復(fù)合過濾非織造布的制備與性能[J]. 工程塑料應(yīng)用, 2016, 44(2): 51-56.
HAN Wanli, YANG Lihong, WANG Rupiao, et al. Preparation and properties of PLA nano-microfibers composite filtration nonwovens[J]. Engineering Plastics Application, 2016, 44(2): 51-56.
[10]SHIRVANIMOGHADDAM K, BALAJI K V, YADAV R, et al. Balancing the toughness and strength in polypropylene composites[J]. Composites Part B: Engineering, 2021, 223: 109121.
[11]GRAZIANO A, JAFFER S, SAIN M. Review on modification strategies of polyethylene/polypropylene immiscible thermoplastic polymer blends for enhancing their mechanical behavior[J]. Journal of Elastomers & Plastics, 2019, 51(4): 291-336.
[12]RAI P, MEHROTRA S, PRIYA S, et al. Recent advances in the sustainable design and applications of biodegradable polymers[J]. Bioresource Technology, 2021, 325: 124739.
[13]ZHAO X P, ZHANG D F, YU S T, et al. Recent advances in compatibility and toughness of poly (lactic acid)/poly (butylene succinate) blends[J]. E-Polymers, 2021, 21(1): 793-810.
[14]李倫, 鄭紅娟. 醫(yī)用聚乳酸材料改性方法及研究進(jìn)展[J]. 工程塑料應(yīng)用, 2021, 49(8): 171-175.
LI Lun, ZHENG Hongjuan. Modification methods and research progress of medical polylactic acid[J]. Engineering Plastics Application, 2021, 49(8): 171-175.
[15]陳鴻, 趙健康, 黃凱文, 等. 不同改性聚丙烯電纜絕緣料的結(jié)構(gòu)與性能對比分析[J]. 電力工程技術(shù), 2022, 41(5): 233-239.
CHEN Hong, ZHAO Jiankang, HUANG Kaiwen, et al. Comparative analysis of atructure and properties of different modified polypropylene cable insulation materials[J]. Electric Power Engineering Technology, 2022, 41(5): 233-239.
[16]ZHU B D, HAN B E, DU J X, et al. Effect of multi-monomer grafted polyolefin elastomer/polypropylene on the structure and properties of polypropylene/montmorillonite nanocomposites[J]. Journal of Macromolecular Science Part B, 2020, 59(12): 836-852.
[17]陳康, 何嘯宇, 李文豪, 等. 乳酸接枝竹纖維/聚乳酸復(fù)合材料的制備與性能表征[J]. 材料導(dǎo)報, 2020, 34(20): 20171-20176.
CHEN Kang, HE Xiaoyu, LI Wenhao, et al. Preparation and characterization of lactic acid grafted bamboo fiber/polylactic acid composites[J]. Materials Reports, 2020, 34(20): 20171-20176.
[18]ZHU F C, SU J J, ZHAO Y H, et al. Influence of halloysite nanotubes on poly (lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly (lactic acid)[J]. Textile Research Journal, 2019, 89(19/20): 4173-4185.
[19]DANDAN M D, AYNALI F, DOGANCI E, et al. Mechanical, thermal and morphological properties of poly (lactic acid) by using star-shaped poly (ε-caprolactone) with POSS core[J]. European Polymer Journal, 2019, 121: 109316.
[20]DING Y, LU B, WANG P L, et al. PLA-PBAT-PLA tri-block copolymers: Effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends[J]. Polymer Degradation and Stability, 2018, 147: 41-48.
[21]ZHANG J M, DUAN Y X, DOMB A J, et al. PLLA mesophase and its phase transition behavior in the PLLA-PEG-PLLA copolymer as revealed by infrared spectroscopy[J]. Macromolecules, 2010, 43(9): 4240-4246.
[22]THERYO G, JING F, PITET L M, et al. Tough polylactide graft copolymers[J]. Macromolecules, 2010, 43(18): 7394-7397.
[23]YU Q L, YE C C, GU X Y, et al. Simultaneously grafting poly (lactic acid) (PLLA) and polyethylene (PE) chains onto a reactive SG copolymer: Formation of supertough PLLA/PE blends by reactive processing[J]. Industrial & Engineering Chemistry Research, 2020, 59(26): 12106-12113.
[24]DAS A, MAHANWAR P. A brief discussion on advances in polyurethane applications[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(3): 93-101.
[25]彭孟娜, 馬建偉. 熔噴工藝對PP/TPU非織造布結(jié)構(gòu)與性能影響的研究[J]. 產(chǎn)業(yè)用紡織品, 2020, 38(6): 11-15.
PENG Mengna, MA Jianwei. Study on effects of the melt blown technology on structure and properties of PP/TPU nonwovens[J]. Technical Textiles, 2020, 38(6): 11-15.
[26]RAHMAN M, 朱斐超, 楊瀟東, 等. 熱塑性聚氨酯增韌聚乳酸及其熔噴非織造材料研究[J]. 絲綢, 2021, 58(10): 28-35.
RAHMAN M, ZHU Feichao, YANG Xiaodong, et al. Study on toughened polylactic acid and its meltblown nonwovens by thermoplastic polyurethane[J]. Journal of Silk, 2021, 58(10): 28-35.
[27]ZHANG H C, KANG B H, CHEN L S, et al. Enhancing toughness of poly (lactic acid)/thermoplastic polyurethane blends via increasing interface compatibility by polyurethane elastomer prepolymer and its toughening mechanism[J]. Polymer Testing, 2020, 87: 106521.
[28]LIN T A, LIN J H, BAO L M. Polypropylene/thermoplastic polyurethane blends: Mechanical characterizations, recyclability and sustainable development of thermoplastic materials[J]. Journal of Materials Research and Technology, 2020, 9(3): 5304-5312.
[29]趙洪, 袁鑫, 楊佳明, 等. 彈性體/聚丙烯與塑性體/聚丙烯復(fù)合材料的力學(xué)及介電性能[J]. 高分子材料科學(xué)與工程, 2020, 36(10): 44-50.
ZHAO Hong, YUAN Xin, YANG Jiaming, et al. Mechanical and dielectric properties of elastomer/polypropylene and plastomer/polypropylene composites[J]. Polymer Materials Science & Engineering, 2020, 36(10): 44-50.
[30]CHANG L, XING X L, ZHOU Y F, et al. Effects of EVA content on properties of PP/EVA blends and melt-blown nonwovens[J]. Fibers and Polymers, 2022, 23(4): 882-890.
[31]尹靜波, 魯曉春, 曹燕琳, 等. 檸檬酸酯增塑改性聚乳酸[J]. 高分子材料科學(xué)與工程, 2008(1): 151-154.
YIN Jingbo, LU Xiaochun, CAO Yanlin, et al. Preparation and characterization of plasticized poly (lactic acid): Citrate esters as plasticizers[J]. Polymer Materials Science & Engineering, 2008(1): 151-154.
[32]GUO J W, LIU X, LIU M, et al. Effect of molecular weight of poly (ethylene glycol) on plasticization of poly (L-lactic acid)[J]. Polymer, 2021, 223: 123720.
[33]ZHANG H F, LIU J X, ZHANG X, et al. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture[J]. RSC Advances, 2018, 8(15): 7932-7941.
[34]彭孟娜, 賈慧瑩, 周彥粉, 等. 熱風(fēng)溫度對PP/TPU熔噴非織造布結(jié)構(gòu)與性能的影響[J]. 絲綢, 2018, 55(8): 35-40.
PENG Mengna, JIA Huiying, ZHOU Yanfen, et al. Study on effect of hot air temperature on structure and property of PP/TPU melt-blown nonwovens[J]. Journal of Silk, 2018, 55(8): 35-40.
[35]YESIL Y, BHAT G S. Structure and mechanical properties of polyethylene melt blown nonwovens[J]. International Journal of Clothing Science and Technology, 2016, 28(6): 780-793.
[36]付小栓. 熔噴用共混彈性聚合物切片性能分析[J]. 產(chǎn)業(yè)用紡織品, 2018, 36(5): 31-35.
FU Xiaoshuan. Performance analysis of blended elastomer polymer chips for melt-blown process[J]. Technical Textiles, 2018, 36(5): 31-35.
[37]YU Y, SHIM E. Process-structure-property relationship of meltblown poly (styrene-ethylene/butylene-styrene) nonwovens[J]. Journal Applied Polymer Science, 2021, 138(16): 50230.
[38]李娜, 錢曉明. 醫(yī)用非織造材料的發(fā)展與應(yīng)用[J]. 紡織導(dǎo)報, 2017(3): 67-70.
LI Na, QIAN Xiaoming. Development and application of medical nonwovens[J]. China Textile Leader, 2017(3): 67-70.
[39]彭鵬, 張瑜, 張偉, 等. 聚乳酸超細(xì)纖維醫(yī)用抗菌敷料的制備[J]. 上海紡織科技, 2014, 42(12): 18-20.
PENG Peng, ZHANG Yu, ZHANG Wei, et al. Preparation of polylactic acid superfine fiber anti-becterial medical dressings[J]. Shanghai Textile Science & Technology, 2014, 42(12): 18-20.
[40]仇何, 路綺雯, 張偉, 等. PLA/PAE仿鵝絨高效保暖材料的制備與工藝研究[J]南通大學(xué)學(xué)報(自然科學(xué)版), 2016, 15(1): 34-38.
QIU He, LU Qiwen, ZHANG Wei, et al. Preparation and process of PLA/PAE imitate down feather effective warm materials[J]. Journal of Nantong University (Natural Science Edition), 2016, 15(1): 34-38.
Research progress of flexible modification and applications of skin-fitting melt-blown nonwovens
QIN Zixuan1a, ZHANG Heng1a, ZHEN Qi1b, LI Han1a, WANG Rongchen1a, SONG Weimin2
(1a.College of Textiles; 1b.College of Fashion Technology, Zhongyuan University of Technology, Zhengzhou 451191, China;2.Suzhou Doro New Material Technology Co., Ltd., Suzhou 215600, China)
Abstract:
Melt-blown nonwovens, flexible porous media made up directly of superfine fibers, not only have a large fiber specific surface area, fluffy structure and good shielding properties, but also have a wide range of raw material sources, short production processes and many product variations, and are currently used in a wide range of skin-fitting applications such as medical protection, personal hygiene and intelligent temperature regulation. However, the polymer raw materials currently used in melt-blown nonwovens are mainly polymers such as polypropylene, polyethylene and polylactic acid, which contain multiple rigid molecular chain segments in their structure, resulting in brittle nonwovens that are not sufficiently tough. Therefore, how to improve the softness of melt-blown nonwovens so as to further develop their application in the field of skin-fitting products has become a major issue and research hotspot in the field of skin-fitting textiles.
This paper reviews the research progress on copolymer modification and blending modification of melt-blown polymer raw materials, summaries the influence of melt-blown nonwoven production processes on the flexibility of the materials and describes the forms of applications of melt-blown nonwovens in the field of flexible skin-fitting, providing references and new ideas for the flexibility improvement and skin-fitting application and development of melt-blown nonwovens.
The high melt flow index, narrow molecular weight distribution and low melt viscosity of the polymer raw materials used in the melt-blown process not only help the polymer melt to draw into fibers, but also improve the flexibility of the nonwoven materials by introducing other substances. A common method of improving the softness of polymers is therefore the copolymerization and blending of polymeric raw materials in the melt-blown process, and a great deal of work has been done by many researchers to improve the softness of polymers. Copolymer modification is to introduce the specific molecular chain segments into the main polymer macromolecule chain through a chemical reaction, so as to change the polymer molecular structure to improve the polymer molecular chain flexibility. In contrast, blending modification can be done by blending elastomers, small molecule oligomers or soft masterbatches to reduce the rigidity of the blends, which is a common physical modification method to improve the polymer flexibility, with the advantages of simple operation process and low production costs. In addition, the control of the forming process of melt-blown nonwovens can be easily regulated. The flexibility of the nonwoven material can be improved by making the resulting fibers finer in diameter, more porous and fluffier in structure by adjusting the process parameters such as the receiving distance, hot air pressure, hot air temperature and die head temperature. Therefore, the study of the influence of process parameters on the structure and properties of nonwovens can provide a reference for the further improvement of the softness and comfort of melt-blown nonwovens and the development of skin-fitting materials.
This paper presents a review of methods to improve the flexibility of melt-blown nonwovens and their skin-fitting applications. Based on this, it is found that adding flexible molecular chains to the macromolecular chains of polymer raw materials or melt blending them with flexible materials, or adjusting the parameters of the melt-blown nonwoven process, can effectively improve the flexibility of nonwovens. At the same time, there are several issues that need to be improved: (i) different types of polymer raw materials require different methods (chemical or physical) to improve material flexibility, and it should be considered that the method has the characteristics of simple operation, low cost and industrial mass production; (ii) it is also necessary to increase the diversity of functional applications of materials in improving the flexibility of melt-blown nonwovens, which is also a future melt-blown nonwovens research hotspot.
More and more scholars will pay attention to the research of melt-blown nonwovens for flexible skin-fitting application as the field of application of melt-blown nonwovens expands. This paper reviews the polymer modification methods, melt-blown nonwovens processes and applications of flexible skin-fitting nonwovens, with the aim of providing a reference for subsequent research on melt-blown nonwoven flexibility enhancement and its application in new skin-fitting products.
Key words:
melt-blown; nonwovens; toughness modification; copolymerization modification; blending modification; skin-fitting application
收稿日期:
2022-07-06;
修回日期:
2023-01-20
基金項(xiàng)目:
國家自然科學(xué)基金項(xiàng)目(52003306);河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(23A540003);河南省重大科技專項(xiàng)項(xiàng)目(221100310500);先進(jìn)紡織裝備技術(shù)省部共建協(xié)同創(chuàng)新中心項(xiàng)目(2021-CYY-001);中原工學(xué)院自主創(chuàng)新應(yīng)用研究項(xiàng)目(K2020YY002)
作者簡介:
秦子軒(1996),男,碩士研究生,研究方向?yàn)樾滦头强椩斐尚图夹g(shù)的研究。通信作者:張恒,副教授,zhangheng2699@zut.edu.cn。