陳順洪 胥巧 陳鴻錦 劉佳偉 王牟博 朱曉東
(文章編號(hào):1004-5422(2023)02-0184-05
DOI:10.3969/j.issn.1004-5422.2023.02.012
收稿日期:2022-11-14
基金項(xiàng)目:四川省科技廳應(yīng)用基礎(chǔ)研究項(xiàng)目(19YJ0664);四川省高等教育人才質(zhì)量和教學(xué)改革項(xiàng)目(JG2021-1104、JG2021-1105);成都大學(xué)大學(xué)生創(chuàng)新計(jì)劃項(xiàng)目(CDUCX2022013、CDUCX2022070、CDUCX2022086)
作者簡(jiǎn)介:陳順洪(1993—),男,碩士,助教,從事智能材料設(shè)計(jì)研究.E-mail:chenshunhong@cdu.edu.cn
摘要:采用溶膠—凝膠法在550 ℃熱處理?xiàng)l件下制備純TiO2及CuO/TiO2復(fù)合光催化材料.通過(guò)X射線衍射、掃面電子顯微鏡和熒光光譜等方法對(duì)催化劑的晶體結(jié)構(gòu)、微觀形貌,以及光生電子和空穴復(fù)合率進(jìn)行表征,并以亞甲基藍(lán)作為目標(biāo)污染物,研究其光催化性能.結(jié)果表明,采用550 ℃熱處理工藝制備的純TiO2為銳鈦礦結(jié)構(gòu),Cu元素加入后,TiO2中出現(xiàn)了微量的金紅石,促進(jìn)了銳鈦礦向金紅石轉(zhuǎn)變,并且產(chǎn)生了CuO相,形成了CuO/TiO2復(fù)合材料.CuO的產(chǎn)生有利于抑制光生電子與空穴的復(fù)合,但CuO/TiO2對(duì)亞甲基藍(lán)的降解率低于純TiO2,這可能是CuO/TiO2復(fù)合材料的納米顆粒團(tuán)聚現(xiàn)象增強(qiáng),比表面積降低所致.
關(guān)鍵詞:溶膠—凝膠法;CuO/TiO2復(fù)合材料;光催化性能
中圖分類號(hào):TB332;O643.36
文獻(xiàn)標(biāo)志碼:A
0引言
利用光解催化劑處理污水因其方式簡(jiǎn)單,效果明顯而受到極大地關(guān)注[1-7].為提高光催化性能,研究人員采用多種方式對(duì)光催化劑進(jìn)行改性處理.其中,包括光敏化處理[8-9]、半導(dǎo)體復(fù)合[10-13]、引入助催化劑[14-16]和摻雜處理[17-20]等.TiO2因其化學(xué)性質(zhì)穩(wěn)定、無(wú)毒無(wú)害、廉價(jià)易得和可重復(fù)使用等優(yōu)點(diǎn)在光催化領(lǐng)域備受青睞[21-23].但純TiO2光生電子—空穴對(duì)極易復(fù)合,并且可見(jiàn)光利用率較低[24-25],因此需要對(duì)TiO2進(jìn)行改性以提高光催化性能.半導(dǎo)體復(fù)合是近年來(lái)改性的一個(gè)研究熱點(diǎn),當(dāng)其他半導(dǎo)體與TiO2復(fù)合后,由于復(fù)合材料中半導(dǎo)體價(jià)帶和導(dǎo)帶能級(jí)位置不同,當(dāng)受到光照產(chǎn)生光生電荷后,可以在界面間加快轉(zhuǎn)移,抑制復(fù)合,從而提高光催化性能[26-28].Kusior等[29]采用溶膠—凝膠法制備SnO2/TiO2復(fù)合材料,光生電子由銳鈦礦導(dǎo)帶向SnO2遷移,空穴從SnO2轉(zhuǎn)移到TiO2,從而有效抑制電子與空穴的復(fù)合,延長(zhǎng)載流子壽命,相比純TiO2擁有更高的光催化活性.
本研究采用溶膠—凝膠法在550 ℃熱處理下制備純TiO2及CuO/TiO2復(fù)合材料光催化劑,對(duì)光催化材料進(jìn)行晶體結(jié)構(gòu)、微觀形貌,以及光生電子和空穴復(fù)合率分析,以亞甲基藍(lán)(MB)為目標(biāo)污染物,對(duì)其進(jìn)行光催化降解實(shí)驗(yàn),研究純TiO2及CuO/TiO2復(fù)合材料的光催化性能.
1材料與方法
1.1儀器
UV-6100A型紫外可見(jiàn)分光光度計(jì)(上海元析儀器有限公司),Solar-350型氙燈光源(北京紐比特科技有限公司),DHG-9030型電熱恒溫鼓風(fēng)干燥箱(上海鴻都電子科技有限公司),HC-2064型高速離心機(jī)(安徽中科中佳科學(xué)儀器有限公司),DX-2700型X射線衍射儀(XRD)(上海精密儀器儀表有限公司),F(xiàn)50型掃描電子顯微鏡(SEM)(美國(guó)FEI公司),F(xiàn)-4600型熒光光譜分析儀(PL)(日立高新技術(shù)有限公司).
1.2材料
鈦酸四丁酯(C16H36O4Ti,分析純)、無(wú)水乙醇(C2H6O,分析純)、冰乙酸(CH3COOH,分析純)、三水硝酸銅(Cu(NO3)2·3H2O,分析純),均購(gòu)自成都市科隆化學(xué)品有限公司.
1.3樣品制備
首先量取一定量的C16H36O4Ti和C2H6O,配制成溶液A;再取適量的去離子水、CH3COOH和C2H6O,配制成溶液B;隨后稱取一定量的Cu(NO3)2·3H2O溶于溶液B中,超聲5 min,得到溶液C.將所得C液滴加入A液中,攪拌30 min使溶液混合均勻,靜置24 h后,在100 ℃烘箱中干燥.將得到的粉體在550 ℃條件下進(jìn)行熱處理,制備得到CuO/TiO2復(fù)合材料,其中Cu/Ti摩爾比為20%.其他條件相同,不加Cu(NO3)2·3H2即可制得純TiO2.
1.4表征技術(shù)
采用XRD表征樣品晶體結(jié)構(gòu),采用SEM分析樣品表面形貌,采用PL檢測(cè)光生電子與空穴的復(fù)合率.
1.5光催化實(shí)驗(yàn)
以10 mg/L MB為目標(biāo)污染物,量取100 mL MB溶液,加入0.1 g光催化劑(TiO2或CuO/TiO2).超聲5 min后在閉光環(huán)境中攪拌30 min,然后以250 W氙燈作為光源,光照下1 h后取4~5 mL MB溶液于離心管中,離心后取上層清液,在波長(zhǎng)λ為664 nm的條件下測(cè)試其吸光度A,降解率計(jì)算公式為,? ? ?Φt =(A0-At)/A0×100%(1)
式中,Φt 為t時(shí)刻的降解率,A0和At分別為初始和t時(shí)刻溶液吸光度.
2結(jié)果與分析
2.1晶體結(jié)構(gòu)分析
圖1為樣品的XRD圖譜.純TiO2在25.3°、37.8°和48.1°等位置出現(xiàn)了衍射峰,分別對(duì)應(yīng)銳鈦礦晶型的(101)、(004)和(200)等晶面.圖譜中并未出現(xiàn)金紅石衍射峰,表明此時(shí)純TiO2為單一銳鈦礦結(jié)構(gòu).當(dāng)Cu加入后,在27.3°處出現(xiàn)了金紅石(110)晶面衍射峰,表明有金紅石的產(chǎn)生,此時(shí)為銳鈦礦與金紅石組成的混晶結(jié)構(gòu).不僅如此,在XRD圖譜中,35.6°、38.7°、48.9°和61.8°處出現(xiàn)了CuO的相關(guān)衍射峰,對(duì)應(yīng)氧化銅的(11-1)、(111)、(20-2)和(11-3)等晶面.表明Cu元素加入后,形成了CuO/TiO2復(fù)合材料.Cu元素的加入促進(jìn)了銳鈦礦向金紅石的轉(zhuǎn)變,這與王保偉等[30]的研究結(jié)果一致.TiO2 和 CuO/TiO2 平均晶粒尺寸計(jì)算公式[31]為,
D= kλ /(βcosθ)(2)
式中,D 為 TiO2 平均晶粒尺寸;λ 為 X 射線入射波長(zhǎng),k 為常數(shù),0.89;β 為XRD 衍射峰的半高寬;θ為布拉格衍射角度的1/2.計(jì)算結(jié)果顯示,純TiO2的銳鈦礦晶粒尺寸為23.5 nm,CuO/TiO2中銳鈦礦的晶粒尺寸為32.3 nm.
混晶中金紅石質(zhì)量百分?jǐn)?shù)的計(jì)算公式[32]為,
XR=1/(1+0.8IA /IR )(3)
式中,XR 為 TiO2 混合物中金紅石質(zhì)量百分?jǐn)?shù);IA為銳鈦礦(101) 晶面衍射峰的相對(duì)強(qiáng)度;IR為金紅石(110)晶面衍射峰的相對(duì)強(qiáng)度,計(jì)算可知,金紅石質(zhì)量分?jǐn)?shù)為4.9%,銳鈦礦質(zhì)量分?jǐn)?shù)為95.1%.
2.2表面形貌分析
圖2為純TiO2與CuO/TiO2復(fù)合材料的SEM圖,圖2(A)中純TiO2顆粒尺寸分布在30 nm~200 nm.CuO復(fù)合后所得材料出現(xiàn)了進(jìn)一步的團(tuán)聚,顆粒尺寸大致分布在100~500 nm,如圖2(B)所示.TiO2光催化材料尺寸范圍在納米級(jí),而納米材料中位錯(cuò)、孿晶和層錯(cuò)等晶體缺陷會(huì)在晶界處堆積,產(chǎn)生很大的畸變能與缺陷,易與其他粒子結(jié)合形成團(tuán)聚體[33-35].
2.3光生電子和空穴復(fù)合率分析
半導(dǎo)體價(jià)帶上的電子受到光子激發(fā)時(shí),由價(jià)帶躍遷至導(dǎo)帶,形成導(dǎo)帶上的光生電子,同時(shí)在價(jià)帶留下相應(yīng)的光生空穴.但是導(dǎo)帶上的光生電子容易返回價(jià)帶與光生空穴復(fù)合,同時(shí)釋放出光子,從而產(chǎn)生熒光,稱為“光致發(fā)光”.因此,光致發(fā)光(PL)光譜強(qiáng)度越低,則表明光生電子和空穴的復(fù)合率越低.圖3為純TiO2及CuO/TiO2復(fù)合材料的PL光譜圖.純TiO2的PL光譜的最強(qiáng)峰在398 nm附近,此峰可歸因于光生電子從導(dǎo)帶返回到價(jià)帶而引起,位于波長(zhǎng)450~470 nm區(qū)間內(nèi)的峰可能是晶體表面缺陷引起的[36-37].純TiO2 PL峰強(qiáng)度相較于CuO/TiO2更高,這表明CuO的生成明顯地降低了材料光生電荷的復(fù)合率.CuO與TiO2復(fù)合后,促進(jìn)了光生電荷在兩相界面間轉(zhuǎn)移,抑制了復(fù)合,因此表現(xiàn)出了更低的PL峰強(qiáng)度[38].圖3TiO2和CuO/TiO2的PL光譜
2.4光催化結(jié)果分析
圖4為純TiO2和CuO/TiO2復(fù)合材料的光降解結(jié)果柱狀圖.純TiO2在1 h時(shí)對(duì)MB的降解率Φ為31.2%,而CuO/TiO2復(fù)合材料的降解率出現(xiàn)了一定幅度的下降,降解率Φ為5.8%.實(shí)驗(yàn)結(jié)果表明,CuO/TiO2的光催化活性低于純TiO2.有研究表明,復(fù)合材料光催化活性與Cu/Ti的摩爾比例有關(guān),低濃度的Cu有利于促進(jìn)電子—空穴對(duì)的分離,而較高濃度的Cu會(huì)導(dǎo)致晶格缺陷和氧空位的增加,形成新的電子—空穴復(fù)合中心,降低光催化活性[39].本研究中,當(dāng)在TiO2中引入Cu時(shí),其PL光譜較純TiO2表現(xiàn)出更低的峰強(qiáng)度,雖然Cu/Ti摩爾比達(dá)到20%,但并未形成新的復(fù)合中心.因此,這不是光催化活性下降的原因.結(jié)合SEM圖觀察結(jié)果,CuO/TiO2團(tuán)聚現(xiàn)象較純TiO2更嚴(yán)重,顆粒尺寸明顯增大,這會(huì)減小催化劑的比表面積,使光催化降解反應(yīng)的活性位點(diǎn)減少,導(dǎo)致光催化活性降低.
3結(jié)論
本研究采用溶膠—凝膠法制備了純TiO2和CuO/TiO2復(fù)合光催化材料.Cu加入有利于銳鈦礦向金紅石的轉(zhuǎn)變,同時(shí)生成了CuO相,形成了CuO/TiO2復(fù)合材料.PL光譜結(jié)果表明,CuO/TiO2加快了光生電荷在兩相界面的遷移,明顯降低了光生電子—空穴的復(fù)合.形貌分析表明,CuO/TiO2顆粒團(tuán)聚現(xiàn)象比純TiO2嚴(yán)重,團(tuán)聚體尺寸增加.CuO/TiO2復(fù)合材料對(duì)亞甲基藍(lán)染料的降解率較純TiO2出現(xiàn)了下降,這可能是團(tuán)聚增加,減小了比表面積所致.
參考文獻(xiàn):
[1]Yu J,Xiang Q,Zhou M.Preparation,characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures[J].Appl Catal,2009,90(3/4):595-602.
[2]Wang Z Y,Lv K L,Wang G H,et al.Study on the shape control and photocatalytic activity of high-energy anatase titania[J].Appl Catal,2010,100(1/2):378-385.
[3]Yu J G,Xiang Q J,Ran J R,et al.One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets[J].Crystengcomm,2010,12(3):872-879.
[4]Zhang H,Huang H,Ming H,et al.Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light[J].J Mater Chem,2012,22(21):10501-10506.
[5]Kudo A,Miseki Y.Heterogeneous photocatalyst materials for water splitting[J].Chem Soc Rev,2009,38(1):253-278.
[6]Li X,Yu J G,Jaroniec M.Hierarchical photocatalysts[J].Chem Soc Rev,2016,45(9):2603-2636.
[7]Gao C,Wang J,Xu H X,et al.Coordination chemistry in the design of heterogeneous photocatalysts[J].Chem Soc Rev,2017,46(10):2799-2823.
[8]Youngblood W J,Lee S H A,Maeda K,et al.Visible light water splitting using dye-sensitized oxide semiconductors[J].Acc Chem Res,2009,42(12):1966-1973.
[9]Tran P D,Wong L H,Barber J,et al.Recent advances in hybrid photocatalysts for solar fuel production[J].Energy Environ Sci,2012,5(3):5902-5918.
[10]Qu Y Q,Duan X F.Progress,challenge and perspective of heterogeneous photocatalysts[J].Chem Soc Rev,2013,42(7):2568-2580.
[11]Wang H L,Zhang L S,Chen Z G,et al.Semiconductor heterojunction photocatalysts:design,construction,and photocatalytic performances[J].Chem Soc Rev,2014,43(15):5234-5244.
[12]Gao X H,Wu H B,Zheng L X,et al.Formation of mesoporous heterostructured BiVO4/Bi2S3 hollow discoids with enhanced photoactivity[J].Angew Chem Int Ed,2014,53(23):5917-5921.
[13]Zhao Y F,Li Z H,Li M Z,et al.Reductive transformation of layered-double-hydroxide nanosheets to fe-based heterostructures for efficient visible-light photocatalytic hydrogenation of CO[J].Adv Mater,2018,30(36):1803127-1-1803127-8.
[14]Yang J H,Wang D G,Han H X,et al.Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J].Acc Chem Res,2013,46(8):1900-1909.
[15]Ran J R,Zhang J,Yu J G,et al.Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J].Chem Soc Rev,2014,43(22):7787-7812.
[16]Ran J R,Jaroniec M,Qiao S Z.Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction:Achievements,Challenges,and Opportunities[J].Adv Mater,2018,30(7):1704649-1-1704649-31.
[17]Bai S,Jiang W Y,Li Z Q,et al.Surface and interface engineering in photocatalysis[J].Chem Nano Mat,2015,1(4):223-239.
[18]Scanlon D O,Dunnill C W,Buckeridge J,et al.Band alignment of rutile and anatase TiO2[J].Nat Mater,2013,12:798-801.
[19]Yu H J,Shi R,Zhao Y X,et al.Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J].Adv Mater,2017,29(16):1605148-1-1605148-8.
[20]Ajmal A,Majeed I,Malik R N,et al.Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts:a comparative overview[J].RSC Adv,2014,4(70):37003-37026.
[21]Pirkanniemi K,Sillanp M.Heterogeneous water phase catalysis as an environmental application:a review[J].Chemosphere,2002,48(10):1047-1060.
[22]Adyani S M,Ghorbani M.A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe,Gd and P single and tri-doped TiO2 nanomaterials[J].J Rare Earths,2018,36(1):72-85.
[23]朱曉東,王娟,羅宇浩,等.金紅石型TiO2/ZnTiO3復(fù)合材料的制備及其光催化性能[J].發(fā)光學(xué)報(bào),2020,41(8):964-970.
[24]Zhang Y,Wang T,Zhou M,et al.Hydrothermal preparation of Ag-TiO2 nanostructures with exposed {001}/{101} facets for enhancing visible light photocatalytic activity[J].Ceram Int,2017,43(3):3118-3126.
[25]Li X,Xiong J,Huang J,et al.Novel g-C3N4/h'ZnTiO3-a'TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity[J].J Alloy Comp,2019,774:768-778.
[26]賈艷蓉,武志剛,王瑤,等.SnO2-TiO2復(fù)合半導(dǎo)體光催化劑制備及性能評(píng)價(jià)[J].水處理技術(shù),2017,43(1):36-39.
[27]張文治,張秀麗,李莉,等.CTAB作用下納米復(fù)合材料ZnO-TiO2制備與多模式光催化降解羅丹明B[J].分子催化,2013,27(5):474-482.
[28]肖灑,談恒,吳珊妮,等.CuO/Er-Yb-TiO2的制備及在模擬可見(jiàn)光下催化CO2合成甲醇[J].材料導(dǎo)報(bào),2020,34(2):2005-2009.
[29]Kusior A,Zych L,Zakrzewska K,et al.Photocatalytic activity of TiO2/SnO2 nanostructures with controlled dimensionality/complexity[J].Appl Surf Sci,2019,471:973-985.
[30]王保偉,孫啟梅,李艷平,等.簡(jiǎn)單浸漬法制備納米CuO/TiO2及其光催化劑活性[J].燃料化學(xué)學(xué)報(bào),2013,41(6):741-747.
[31]Uvarov V,Popov I.Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials[J].Mater Charact,2013,85:111-123.
[32]Spurr R,Myers H.Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer[J].Anal Chem,1957,29(5):760-762.
[33]Zhao Z,He H,Zhu Y,et al.An ordered fish scale-like Co-TiO2/GO inverse opal photonic crystal as the multifunctional SERS substrate[J].J Alloy Compd,2020,858:158356-1-158356-12.
[34]馮黛麗,馮妍卉,袁思偉,等.顆粒團(tuán)聚對(duì)納米尺度熔化行為的影響[J].工程熱物理學(xué)報(bào),2015,36(2):397-401.
[35]宋曉嵐,王海波,吳雪蘭,等.納米顆粒分散技術(shù)的研究與發(fā)展[J].化工進(jìn)展,2005,25(1):47-52.
[36]Fan X,F(xiàn)an J,Hu X Y,et al.Preparation and characterization of Ag deposited and Fe doped TiO2 nanotube arrays for photocatalytic hydrogen production by water splitting[J].Ceram Int,2014,40(10):15907-15917.
[37]Gao X T,Zhang S,Liu J C,et al.Enhanced active oxidative species generation over Fe-doped defective TiO2 nanosheets for boosted photodegradation[J].RSC Adv,2020,10(67):40619-40624.
[38]Li J L,Zhang M,Guan Z J,et al.Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2[J].Appl Catal,2017,206:300-307.
[39]Zhu X D,Xu H Y,Yao Y,et al.Effects of Ag0-modification and Fe3+-doping on the structural,optical and photocatalytic properties of TiO2[J].RSC Adv,2019,9(68):40003-40012.(實(shí)習(xí)編輯:姚運(yùn)秀)
Study on Preparation of CuO/TiO2 Composite Material and Its Photocatalytic Performance
CHEN Shunhong,XU Qiao,CHEN Hongjin,LIU Jiawei,WANG Mubo,ZHU Xiaodong
(School of Mechanical Engineering,Chengdu University,Chengdu 610106,China)
Abstract:
Pure TiO2 and CuO/TiO2 composite photocatalytic materials were prepared by sol-gel method at 550 ℃.X-ray diffractometer,scanning electron microscope,fluorescence spectroscopy were used to analyze the crystal structure,surface morphology,and recombination rate of photogenerated electron and holes of the samples.Methylene blue,as a photocatalytic degradation target,was used to evaluate the photocatalytic performance of the prepared photocatalysts.The results show that the pure TiO2 exists as anatase crystalline phase at 550 ℃.Cu adding makes the emergence of a small amount of rutile,promoting the transformation of anatase to rutile.In addition,CuO phase is yielded,forming CuO/TiO2 composite material.The formation of CuO is useful to inhibit the recombination of photogenerated electrons and holes;however,the photocatalytic activity of CuO/TiO2 is lower than that of pure TiO2.This may be caused by the increased aggregation of nanoparticles of CuO/TiO2 composite material and the decrease in specific surface area.
Key words:
sol-gel method;CuO/TiO2 composite materials;photocatalytic performance