国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

考慮樁土非完全粘結及樁底土波動效應的浮承樁縱向振動特性研究

2023-07-10 08:15孟坤崔春義許成順姚怡亦辛宇梁志孟
振動工程學報 2023年2期

孟坤 崔春義 許成順 姚怡亦 辛宇 梁志孟

摘要 為合理考慮浮承樁縱向振動問題中樁端土作用及樁?土界面相對位移條件,同時引入動力Winkler模型和虛土樁模型,建立了一種適用性更廣的浮承樁縱向振動特性研究方法。引入分離變量法對三維土體位移控制方程進行求解,結合土體表面及基巖處邊界條件得到三維土體位移基本解;通過將動力Winkler模型相關參數(shù)考慮為樁?土界面邊界條件在頻域內解析求解了樁縱向振動特性,并將所得頻域解析解拓展到時域,采用離散傅里葉逆變換方法(IFT)求解了樁頂速度時域響應;開展參數(shù)化分析探討了樁?土界面非完全粘結條件及虛土樁參數(shù)對浮承樁動力響應的影響,計算結果表明:樁?土界面完全耦合假定會過高估計樁側土對樁的約束作用,無法合理評估樁基的抗振性能,并會對樁基抗振防振設計及樁底反射信號識別產(chǎn)生不利影響;另外,針對浮承樁縱向振動問題,采用虛土樁模型描述其樁底土作用具有合理性和必要性。

關鍵詞 樁底土; 虛土樁; 樁?土相對滑移; 動力阻抗; 解析解

引 言

樁基礎作為一種承載性好、沉降小的深基礎,在近幾十年的眾多重點工程建設中被廣泛采用。實際工程中,樁基礎的受力情況一般較為復雜,不僅有靜荷載,還承受各類豎向動荷載作用,例如交通荷載;而樁?土縱向振動理論方法作為研究豎向動荷載作用下樁基礎振動特性的基石,引起越來越多的關注[1?5]。已有針對該理論方法的研究主要從樁側土和樁底土模型兩方面展開。對于樁側土振動模型而言,從Winkle模型[6]到Novak平面應變模型[7],再到理論上更為嚴謹?shù)娜S連續(xù)介質模型[8?10],發(fā)展已逐漸完善。在樁底土模型方面,端承樁僅采用固端支撐模擬樁底土作用即可滿足樁基縱向振動特性的計算精度[11?13]。由于浮承樁振動效應受樁底土影響顯著,其采用的樁底土模型對于此類問題研究的合理性與準確性顯得尤為重要。

樁底黏彈性支撐模型因其物理概念清晰、簡便等優(yōu)點,在浮承樁振動問題中得到廣泛應用[14?18],但該模型作為一種離散的彈簧?阻尼器元件,相關系數(shù)取值多依賴經(jīng)驗方法,主觀性較強且無法合理考慮樁底土體波動效應的影響?;诖它c考慮,Muki等[19]最早提出了彈性半空間模型引入樁底土波動效應,并結合虛擬桿疊加法對浮承樁縱向振動特性進行求解。該方法雖可在一定程度上彌補樁底黏彈性支撐假設的不足,但其僅適用于樁底基巖埋深較大的情況。為解決這一問題,楊冬英等[20]通過將樁底土體考慮為與實體樁等直徑的虛擬土柱,提出了一種理論上更為嚴格的虛土樁模型,建立了樁側土?樁?虛土樁?樁底土完全耦合動力相互作用體系,并對浮承樁縱向振動特性影響因素進行了系統(tǒng)分析。

上述針對樁?土縱向動力相互作用問題的研究均基于界面完全耦合假定,即忽略樁?土間的相對滑移。然而當樁頂激振作用較強時樁?土界面會產(chǎn)生明顯的相對位移,該現(xiàn)象對于浮承樁更加顯著,此時仍采用該假定將會引起不可避免的誤差[21]。因此,如何合理考慮樁?土界面效應,對于樁?土縱向振動問題而言尤為重要。Nogami等[22?23]和EI Naggar等[24]最早提出了包括遠場和近場兩部分的動力Winkler模型,其中遠場模型模擬樁側土作用,近場模型則描述樁?土間的相對滑移,推導得出了樁?土動力相互作用的時域解。欒茂田等[25]則基于三維連續(xù)介質模型考慮樁側土波動效應,并采用動力Winkler模型模擬樁?土界面非完全粘結,不考慮樁底邊界條件,解析求解了樁縱向振動問題。在此基礎上,李強等[26?27]分別將樁底考慮為固定和黏彈性支撐,對非完全粘結條件下樁的縱向振動特性進行了求解。

綜上所述,已有研究在考慮樁?土界面非完全粘結條件對浮承樁縱向振動特性進行分析時,或未考慮樁底邊界條件的影響,或僅采用簡化的固端支撐或黏彈性支撐模擬樁底土作用,理論上均不夠嚴格。鑒于此,本文同時引入樁?土界面動力Winkler模型和樁底虛土樁模型,建立三維軸對稱連續(xù)介質中非完全粘結浮承樁縱向振動體系,提出了一種適用性更廣的浮承樁縱向振動特性研究方法。

1 力學模型與定解問題

1.1 力學模型

基于樁側土三維連續(xù)介質、樁底土虛土樁(Fictitious Soil Pile, FSP)模型和樁?土界面動力Winkler模型建立的簡化力學模型如圖1所示。圖中H為基巖上土層總厚度,HP和HFSP分別為樁側土(樁長)和樁底土(虛土樁樁長)厚度,樁頂作用激振力q(t),r0為樁徑,τ1(z,t)和τ2(z,t)分別為相應位置處的剪應力。

本文建立的力學模型所采用的基本假定如下:

(1) 土體為均質黏彈性介質,樁側土與樁底土相互作用以彈簧和阻尼器并聯(lián)元件模擬,其中彈簧剛度系數(shù)為kS,阻尼系數(shù)為cS;

(2) 樁側土表面無應力,樁底土底部固定;

(3)本文僅針對樁側和樁底土層總體較均勻情況;

(4) 實體樁和虛土樁為均質等截面黏彈性Euler?Bernoulli桿,僅適用于長徑比大于5的細長樁,實體樁和虛土樁界面完全耦合;

(5)采用動力Winkler模型考慮樁?土界面效應,其剛度和阻尼系數(shù)分別為kf和cf。

1.2 定解問題

三維連續(xù)介質土體控制方程可寫為:

3.1 合理性驗證

李強[26]考慮樁?土界面滑移解析求解了飽和土中樁端固定時樁頂動力阻抗解析解;王奎華等[28]基于樁?土完全耦合假定,利用虛土樁模型考慮樁底土作用推導得出樁縱向振動特性解析解。將基于本文所建力學模型解析求解的樁頂動力阻抗解答退化到端承情況(HFSP→0)和樁?土界面完全耦合情況(kf→∞),分別與文獻[26]和文獻[28]已有解對比如圖2和3所示。由圖可見,本文退化解與已有解答吻合情況良好。

3.2 樁?土界面非完全粘結條件對樁動力響應的影響分析

圖4和5所示分別為樁?土界面動力Winkle模型的剛度和阻尼系數(shù)對樁頂動力阻抗的影響。綜合圖4和5可見,樁?土界面動力Winkle模型的剛度和阻尼系數(shù)的增大,會使得動剛度和等效阻尼曲線的共振幅值減小,即樁的抗振性能會隨樁側土約束的增強而增強。這就說明,針對存在明顯樁?土相對滑移的浮承樁縱向振動問題,若采用樁?土界面耦合假定則會高估樁側土的約束效應,無法合理評估樁基的抗振性能,并會對樁基抗振防振設計產(chǎn)生不利影響。此外,相對于樁?土界面阻尼系數(shù)而言,樁?土界面剛度系數(shù)對樁頂動力阻抗影響更顯著。

樁頂動力響應曲線隨樁?土界面剛度系數(shù)和阻尼系數(shù)的變化情況分別如圖6和7所示。由圖6可見,樁?土界面約束越強,波在傳播過程中的耗能也就越多,這種規(guī)律在樁頂動力響應上表現(xiàn)為:樁頂速度頻響振幅及樁底速度反射信號幅值均隨著樁?土界面動力Winkle模型的剛度和阻尼系數(shù)的增加而減小。該現(xiàn)象表明,在對樁頂動力響應進行分析時,采用樁?土界面完全耦合假定會使得樁底反射信號幅值降低,這對于識別樁底反射信號是不利的。對比圖6和7可知,相對于樁?土界面剛度系數(shù)而言,樁?土界面阻尼系數(shù)對樁頂動力響應的影響則可忽略。

3.3 虛土樁參數(shù)對樁動力響應的影響分析

圖8和9所示分別為樁底土層厚度,即虛土樁長度對樁縱向振動特性及速度響應的影響。由圖9(b)可見,HFSP→0時樁底反射信號與入射信號反相,這與端承樁反射信號特征相符,而采用虛土樁模型(HFSP=r0)計算所得樁底反射信號與入射信號同相,符合浮承樁反射信號特征。此外,由圖8和9(a)可見,HFSP→0的樁動力阻抗和速度導納(頻域)曲線上波峰與HFSP=r0時對應曲線上波谷頻率相同,這是典型的端承樁與浮承樁振動特性的差異,而HFSP→0代表端承樁,也就是說采用虛土樁模型可以很好地反映浮承樁的振動特性。綜上所述,可以說明虛土樁模型在應用到浮承樁縱向振動問題時的合理性,且其可退化到端承樁情況(HFSP→0),即虛土樁模型對于樁土縱向振動問題具有更廣泛的適用性。

4 結 論

本文通過建立浮承樁理論模型并求解其解析解,探討了樁?土界面非完全粘結條件和虛土樁參數(shù)對樁振動特性和速度響應的影響規(guī)律,計算結果表明:

(1) 針對存在明顯樁?土相對滑移的浮承樁縱向振動問題,若采用樁?土界面耦合假定會高估樁側土的約束效應,無法合理評估樁基的抗振性能,并會對樁基抗振防振設計產(chǎn)生不利影響。

(2) 樁?土界面約束越強,波在傳播過程中的耗能也就越多,這種規(guī)律在樁頂動力響應上就表現(xiàn)為:樁頂速度頻響振幅及樁底速度反射信號幅值均隨著樁?土界面動力Winkle模型的剛度和阻尼系數(shù)的增加而減小。該現(xiàn)象表明,在對樁頂動力響應進行分析時,采用樁?土界面完全耦合假定會對樁底反射信號的識別產(chǎn)生不利影響。

(3) 基于樁端固定模型與虛土樁模型所得樁動力響應解均呈現(xiàn)出典型的端承樁與浮承樁振動特性的差異,說明了采用虛土樁模型描述浮承樁樁底土體的合理性與必要性。此外,樁底土層厚度達到一倍樁徑后再繼續(xù)增加,其對樁縱向振動特性的影響則可忽略。

參考文獻

1Varghese R, Boominathan A, Banerjee S. Stiffness and load sharing characteristics of piled raft foundations subjected to dynamic loads[J]. Soil Dynamics and Earthquake Engineering,2020,133: 106177.

2Xu Y , Zeng Z , Wang Z , et al. Seismic study of a widened and reconstructed long-span continuous steel truss bridge[J]. Structure and Infrastructure Engineering, 2020, 17(1):1-11.

3Meng Kun, Cui Chunyi, Li Haijiang. An ontology framework for pile integrity evaluation based on analytical methodology[J]. IEEE Access, 2020, 8: 72158-72168.

4吳文兵, 王奎華, 楊冬英,等. 成層土中基于虛土樁模型的樁基縱向振動響應[J]. 中國公路學報, 2012, 25(2):72-80.

WU Wenbing, WANG Kuihua, YANG Dongying, et al. Longitudinal dynamic response to the pile embedded in layered soil based on fictitious soil pile model[J]. China Journal of Highway & Transport, 2012, 25(2):72-80.

5孟坤, 崔春義,許成順,等.三維飽和層狀土?虛土樁?實體樁體系縱向振動頻域分析[J].巖石力學與工程學報,2019,38(7):1470-1484.

MENG Kun, CUI Chunyi, XU Chengshun, et al. Frequency analysis of longitudinal vibration of three dimensional system including saturated layered soils,virtual soil pile and solid pile[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(7):1470-1484.

6Novak M, Beredugo Y O. Vertical vibration of embedded footings[J]. Soil Mechanics and Foundation Division, 1972, 98(12): 1291-1131.

7Novak M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal, 1974, 11(4):574-598.

8Nogami T, Novak M. Soil‐pile interaction in vertical vibration[J]. Earthquake Engineering & Structural Dynamics, 1976, 4(3):277-293.

9胡昌斌, 王奎華, 謝康和. 考慮樁土耦合作用時彈性支承樁縱向振動特性分析及應用[J]. 工程力學, 2003, 20(2), 146-154.

HU Changbin, WANG Kuihua, XIE Kanghe. Soil-pile interaction in vertical vibrations of a pile with elastic bottom boundaries and its applications[J]. Engineering Mechanics, 2003, 20(2):146-154.

10王奎華, 闕仁波, 夏建中.考慮土體真三維波動效應時樁的振動理論及對近似理論的校核[J]. 巖石力學與工程學報, 2005, 24(8), 1363-1370.

WANG Kuihua, QUE Renbo, XIA Jianzhong. Theory of pile vibration considering true three-dimensional wave effect of soil and its check on the approximate theories[J]. Chinese Journal of Rock Mechanics & Engineering, 2005, 24(8): 1363-1370.

11Naggar M H, Novak M. Nonlinear axial interaction in pile dynamics[J]. Journal of Geotechnical Engineering, 1994, 120(4): 678-696.

12王奎華, 謝康和, 曾國熙. 有限長樁受迫振動問題解析解及其應用[J]. 巖土工程學報, 1997, 19(6): 27-35.

WANG Kuihua, XIE Kanghe, ZENG Guoxi. Analytical solution to vibration of finite length pile under exciting force and its application[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(6): 27-35.

13王海東, 尚守平. 瑞利波作用下徑向非均質地基中的單樁豎向響應研究[J]. 振動工程學報, 2006, 19(2): 258-264.

WANG Haidong, SHANG Shouping. Research on vertical dynamic response of single-pile in radially inhomogeneous soil during the passage of Rayleigh waves[J]. Journal of Vibration Engineering, 2006, 19(2): 258-264.

14Nogami T, Konagai K. Time domain axial response of dynamically loaded single piles[J]. Journal of Engineering Mechanics, 1986, 112(11): 1241-1252.

15胡昌斌, 黃曉明. 成層粘彈性土中樁土耦合縱向振動時域響應研究[J]. 地震工程與工程振動, 2006, 26(4): 205-211.

HU Changbin, HUANG Xiaoming. A quasi-analytical solution to soil-pile interaction in longitudinal vibration in layered soils considering vertical wave effect on soils[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(4): 205-211.

16孔德森, 欒茂田, 楊慶. 樁土相互作用分析中的動力Winkler模型研究評述[J]. 世界地震工程, 2005, 21(1):12-17.

KONG Desen, LUAN Maotian, YANG Qing. Review of dynamic Winkler model applied in pile-soil interaction analyses[J]. World Earthquake Engineering, 2005, 21(1):12-17.

17王奎華, 應宏偉. 廣義Voigt土模型條件下樁的縱向振動響應與應用[J]. 固體力學學報, 2003, 24(3):293-303.

WANG Kuihua, YING Hongwei. Vibration of inhomogeneous pile embedded in layered soils with general Voigt models[J]. Acta Mechanica Solida Sinica, 2003, 24(3):293-303.

18馮世進, 陳云敏, 劉明振. 成層土中粘彈性樁縱向振動分析及工程應用[J]. 中國公路學報, 2004, 17(2):59-63.

FENG Shijin, CHEN Yunmin, LIU Mingzhen. Analysis and application in engineering on vertical vibration of viscoelasticity piles in layered soil[J]. China Journal of Highway & Transport, 2004, 17(2): 59-63.

19Muki R, Sternberg E. Elastostatic load transfer to a half space from a partially embedded axially loaded rod[J].International Journal of Solids and Structures, 1970, 6(1): 69-90.

20楊冬英, 王奎華. 非均質土中基于虛土樁法的樁基縱向振動[J]. 浙江大學學報(工學版), 2010, 44(10): 2021-2028.

YANG Dongying, WANG Kuihua. Vertical vibration of pile based on fictitious soil-pile model in inhomogeneous soil[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(10): 2021-2028.

21Manna B, Baidya D K. Dynamic nonlinear response of pile foundations under vertical vibration-theory versus experiment[J]. Soil Dynamics and Earthquake Engineering, 2010,30:456-469.

22Nogami K, Konagai K, Otani J. Nonlinear time domain numerical model for pile group under transient dynamic forces[C]. Proceeding of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 1991, 3: 881-888.

23Nogami T , Otani J , Konagai K , et al. Nonlinear soil-pile interaction model for dynamic lateral motion[J]. Journal of Geotechnical Engineering, 1992, 118(1):89-106.

24El Naggar M H , Novak M . Nonlinear lateral interaction in pile dynamics[J]. Journal of Geotechnical Engineering, 1995, 14(4):678-696.

25欒茂田,孔德森. 單樁豎向動力阻抗計算方法及其影響因素分析[J]. 振動工程學報, 2004, 17(4):500-505.

LUAN Maotian, KONG Desen. Simplified computational model and parametric studies of vertical dynamic impedance for single pile[J]. Journal of Vibration Engineering, 2004, 17(4):500-505.

26李強. 飽和土中端承樁非完全黏結下的豎向振動特性[J]. 水利學報, 2007, 38(3):349-354.

LI Qiang. Vertical vibration of piles embedded in saturated soil considering the imperfect contact[J]. Journal of Hydraulic Engineering, 2007, 38(3):349-354.

27李強, 鄭輝, 王奎華. 飽和土中摩擦樁豎向振動解析解及應用[J]. 工程力學, 2011, 28(1):157-162.

LI Qiang, ZHENG Hui, WANG Kuihua. Analytical solution and its application of vertical vibration of a friction pile in saturated soil[J]. Engineering Mechanics, 2011, 28(1):157-162.

28王奎華, 王寧, 劉凱, 等. 三維軸對稱條件下基于虛土樁法的單樁縱向振動分析[J]. 巖土工程學報, 2012, 34(5):885-889.

WANG K H,WANG N,LIU K,et al. Longitudinal vibration of piles in 3D axisymmetric soil based on fictitious soil pile method[J]. Chinese Journal of Geotechnical Engineering,2012,34(5):885-892.

Vertical vibration characteristics for floating pile considering the incomplete bonding condition of pile-soil and the wave propagation effect of soil beneath pile

MENG Kun 1,2 ?CUI Chun-yi 1 ?XU Cheng-shun 3Yao Yi-yi 1Xin Yu 1LIANG Zhi-meng 1

1. Department of Civil Engineering, Dalian Maritime University, Dalian 116026, China;

2. College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China;

3. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China

Abstract Based on dynamic Winkler model and fictitious soil pile model to consider the relative sliding at pile-soil interface and the propagation effect of soil beneath pile toe, respectively, the dynamic interaction system for a floating pile with incomplete bonding condition embedded in three-dimensional continuum is established. The separation variable method is introduced to solve the three-dimensional soil displacement control equation. Combined with the boundary conditions of soil surface and bedrock, the general solution of soil displacement is obtained. Considering the relevant parameters of the dynamic Winkler model as the boundary condition of the pile-soil interface, the longitudinal vibration characteristics of the pile are solved analytically in the frequency domain, and the obtained frequency domain analytical solution is extended to the time domain. The time domain response of the velocity is solved by using the inverse Fourier transform (IFT). Extensive parametric analyses are performed to investigate the effects of incomplete bonding condition at pile-soil interface and parameters of fictitious soil pile. The results show that the assumption of complete coupling of pile-soil interface may overestimate the restraint effect of pile surrounding soil on pile, which has an adverse impact on the anti-vibration design of pile foundation and the identification for reflected signal of pile toe. In addition, for the longitudinal vibration of floating bearing pile, it is reasonable and necessary to use the fictitious soil pile model to describe the soil action under the pile.

Keywords soil beneath pile toe; fictitious soil pile; relative sliding at the pile-soil interface; dynamic impedance; analytical solution