[摘要]目的本研究旨在檢測腎性高血壓大鼠糞便中異常表達的miRNA,并對其靶基因進行生物學(xué)功能及通路富集分析。方法將16只SD大鼠隨機分為假手術(shù)組(Sham組,8只)、模型組(Model組,8只),Sham組分離左腎動脈不結(jié)扎,Model組分離左腎動脈并用0.2 mm銀夾結(jié)扎。收集糞便,并用miRNA測序篩選差異表達miRNA,對顯著差異表達的miRNA進行靶基因預(yù)測,對靶基因進行GO功能和KEGG通路富集。結(jié)果術(shù)后血壓比較,Model組收縮壓水平高于Sham組,差異有統(tǒng)計學(xué)意義(Plt;0.05)。糞便miRNA差異分析中,Model組有6個差異表達的miRNA(Plt;0.001),其中4個上調(diào)miRNA(rno-miR-335-5p、rno-miR-466-3p、rno-miR-218a-5p、rno-miR-3557-3p)、2個下調(diào)miRNA(rno-let-7a-5p、rno-miR-200b-5p),共預(yù)測miRNA下游靶基因288個,GO富集主要集中在蛋白質(zhì)定位、NK T細胞分化和酶活性等方面;KEGG通路富集主要集中在mTOR信號通路、MAPK信號通路等。結(jié)論在腎性高血壓大鼠糞便中miRNA呈顯著差異表達,其靶基因可能通過免疫細胞活化的生物學(xué)功能及mTOR和MAPK等信號通路參與高血壓的發(fā)展。
[關(guān)鍵詞]腎性高血壓;miRNA;靶基因
doi:10.3969/j.issn.1674-7593.2023.05.002
Differential Expression and Cluster Analysis of miRNA in Fecal Stool of Ratswith Renal Hypertension
Chen Zhangjun1,Wang Zhanli2,Hu Hai1,Yu Hui1**
1School of Basic Medicine and Forensic Medicine,Baotou Medical College,Baotou014040;2Key Laboratory of Disease Related Biomarkersof Inner Mongolia Autonomous Region,Baotou014040
**Corresponding author:Yu Hui,email:huiyu2008@hotmail.com
[Abstract]ObjectiveTo detect aberrantly expressed miRNAs in feces of renally hypertensive rats and perform biological function and pathway enrichment analysis of their target genes,this study was carried out.Methods16 SD rats were randomly divided into sham operation group(Sham group,8) and model group(Model group,8).The left renal artery was separated without ligation in sham operation group,and the left renal artery was separated and ligated with 0.2 mm silver clip in model group.Feces were collected and differentially expressed miRNAs were screened by miRNA sequencing.Target genes of significantly differentially expressed miRNAs were predicted,and GO function and KEGG pathway enrichment of target genes were performed.ResultsCompared with the postoperative blood pressure,the systolic blood pressure level in the Model group was higher than that in the Sham group,and the difference was statistically significant(Plt;0.05 ).In the differential analysis of fecal miRNAs,there were 6 differentially expressed miRNAs in the Model group(Plt;0.001),including 4 up-regulated miRNAs(rno-miR-335-5p,rno-miR-466-3p,rno-miR-218a-5p,rno-miR-3557-3p) and 2 down-regulated miRNAs(rno-let-7a-5p,rno-miR-200b-5p).A total of 288 downstream target genes of miRNAs were predicted.GO enrichment mainly focused on protein localization,NK T cell differentiation and enzyme activity.The enrichment of KEGG pathway was mainly concentrated in mTOR signaling pathway,MAPK signaling pathway and so on.ConclusionmiRNA is significantly differentially expressed in the feces of renal hypertensive rats,and its target genes may be involved in the development of hypertension through the biological function of immune cell activation and signaling pathways such as mTOR and MAPK.
[Key words]Renal hypertension;miRNA;Target gene
研究表明全球90個國家中約有31%成年人患有高血壓,高血壓被認為是引起心血管疾病的易感因素[1]。高血壓復(fù)雜的發(fā)病機制是臨床治療和血壓控制不佳的主要因素,其中免疫和炎癥反應(yīng)增強、血容量和代謝水平增加等是引起高血壓的關(guān)鍵[2]。微小RNA(MicroRNA,miRNA)的異常表達對高血壓的發(fā)展有至關(guān)重要的影響,如參與調(diào)節(jié)生物過程和下游基因[3]。miRNA是小的內(nèi)源性非編碼RNA,由21~25個核苷酸組成,它們可以通過參與靶mRNA的降解、翻譯過程,調(diào)節(jié)基因的表達[4]。有報道指出miRNA參與調(diào)節(jié)基因的數(shù)目占細胞總數(shù)的1/3[5]。單個miRNA可以與數(shù)百個mRNA分子相互作用,影響目標基因的表達,改變其生物學(xué)過程。研究表明,miR-34a、miR-21和miR-126的表達水平與收縮壓顯著相關(guān)[6]。在原發(fā)性高血壓中hsa-miR-637低表達會促進血管炎癥產(chǎn)生[7]。此外,有研究指出,糞便miRNA可以進入細菌體內(nèi),調(diào)節(jié)細菌的基因表達過程,影響細菌生長,并且腸道菌群的組成和其代謝產(chǎn)物參與高血壓的發(fā)展過程[8-9]。目前關(guān)于高血壓的miRNA的研究主要聚焦于心臟、腎臟方面[10],對高血壓大鼠糞便miRNA研究知之甚少。所以,本實驗通過篩選腎性高血壓大鼠糞便中差異表達miRNA,探討miRNA與靶基因之間的調(diào)控關(guān)系,尋找與高血壓發(fā)病相關(guān)的機制,在基因?qū)用鏋榉乐胃哐獕禾峁┬滤悸贰?/p>
1材料與方法
1.1實驗動物
16只100~140 g的4~5周齡SPF級雄性SD大鼠,購買于北京維通利華有限公司,實驗動物使用許可證號:SYXK(蒙)2020-0004。實驗動物均飼養(yǎng)在內(nèi)蒙古科技大學(xué)包頭醫(yī)學(xué)院SPF級動物房中,室溫24~26℃,晝夜循環(huán)12 h,動物實驗研究經(jīng)包頭醫(yī)學(xué)院醫(yī)學(xué)倫理委員會批準,批件號:包醫(yī)倫理動物2021第(036)號。
1.2試劑及儀器
RNA酶清除劑(Thermo,AM7006);TRIzol(Invitrogen,15596026);Agilent 2100 Bioanalyzer生物分析儀(Agilent 2100,美國Agilent);Qubit 2.0熒光定量儀(Qubit 2.0,美國ThermoFisher);QubitTM dsDNA BR定量試劑盒(Q32850,美國Invitrogen);核酸純化試劑盒(A63880,美國Beckman);文庫構(gòu)建試劑盒(FC-121-3001,美國Illumina);無創(chuàng)血壓測量儀(成都泰盟科技有限公司,BP-300A);生物機能實驗系統(tǒng)(成都泰盟科技有限公司,BL-420S);采用MGI2000 50SE測序平臺樣本進行高通量測序(由上海華大基因科技有限公司實驗室完成)。
1.3方法
1.3.1動物分組及造模動物適應(yīng)性飼養(yǎng)1周,適應(yīng)性期間測量大鼠血壓,后隨機分為假手術(shù)組(Sham組,8只)、模型組(Model組,8只)。
采用兩腎一夾方法制備高血壓大鼠模型,造模時間共計28 d。在無菌操作下,兩組大鼠腹腔注射3%的戊巴比妥鈉麻醉,隨后在劍突下1 cm處打開腹腔。Model組:左腎動脈中段套0.2 mm的銀夾,導(dǎo)致腎臟缺血;Sham組:打開腹腔后只進行左腎動脈分離但不套銀夾。術(shù)后3 d內(nèi)每天給予每只大鼠0.5萬單位青霉素,第2周血壓測量較術(shù)前升高20 mmHg(1 mmHg=0.133 kPa)視為造模成功。
1.3.2大鼠血壓測量采用成都泰盟BP300A全自動無創(chuàng)血壓測量儀測量大鼠尾動脈血壓,儀器提前預(yù)熱30 min,將大鼠裝進黑色固定器中,調(diào)整固定器使大鼠處于放松狀態(tài),固定器放置加熱板上,隨后把充氣氣囊和脈搏感受器套入尾巴根部,大鼠處于安靜狀態(tài)10 min后,采用無創(chuàng)血壓測量系統(tǒng)進行測量,每只大鼠測量3次收縮壓,記錄其平均值。
1.3.3樣本收集造模結(jié)束后,每組收集1~2 g新鮮糞便,放入液氮中迅速冷凍,后放置于-80 ℃冰箱保存,每組選取3個樣本進行高通量測序。
1.3.4測序方法Trizol法提取糞便總RNA,使用Agilent 2100對RNA進行質(zhì)檢,用Qubit熒光定量儀對RNA進行定量;用聚丙烯酰胺凝膠進行電泳,并回收18~30 nt Small RNA;3′和5′接頭連接;配置反轉(zhuǎn)錄體系,進行反轉(zhuǎn)錄,后進行PCR擴增;用聚丙烯酰胺凝膠分離110~130 bp的產(chǎn)物;文庫定量和制備環(huán)狀DNA分子,對構(gòu)建的文庫進行質(zhì)量檢測,合格后上機測序。
1.3.5差異miRNA篩選、靶基因預(yù)測及功能富集分析將測序得到的reads與miRNA數(shù)據(jù)庫及miRNA成熟體比對,計算miRNA表達量。用DESeq軟件對Sham組、Model組進行差異表達分析,篩選差異表達miRNA,計算每個樣本的表達量和組內(nèi)均值,計算組間差異倍數(shù)(Fold change),再計算log2(Fold change),當(dāng)滿足P值≤0.05且log2(Fold change)≥2時,認為在組間有顯著差異,使用R軟件中的phyper函數(shù)進行富集分析,計算P值。
1.4統(tǒng)計學(xué)方法
采用SPSS20.0統(tǒng)計軟件進行統(tǒng)計學(xué)檢驗,計量資料以±s表示。對大鼠手術(shù)前后的血壓比較,采用重復(fù)測量方差分析。使用R語言數(shù)據(jù)包差異表達分析(Differentially expressed genes from RNA-seq data,DEGseq)對miRNA進行鑒定分析,假設(shè)觀測到基因A對應(yīng)的reads數(shù)為x,已知在一個大文庫中,每個基因的表達量只占所有基因表達量的一部分,λ為基因A的真實轉(zhuǎn)錄數(shù),方法公式為:P(x)=e-λλx/x!。差異基因的差異用log2FC表示;Plt;0.05表示差異有統(tǒng)計學(xué)意義。
2結(jié)果
2.1血壓結(jié)果
時間、組間效應(yīng)差異有統(tǒng)計學(xué)意義(Plt;0.05);血壓與時間無交互影響(Plt;0.001)。組內(nèi)比較:Model組,術(shù)后收縮壓呈明顯上升趨勢,且組間差異均具有統(tǒng)計學(xué)意義(Plt;0.05);Sham組手術(shù)前后收縮壓比較差異無統(tǒng)計學(xué)意義(Pgt;0.05)。組間比較:術(shù)后,Model組收縮壓水平高于Sham組,差異具有統(tǒng)計學(xué)意義(Plt;0.05),見表1。
2.2Model組差異表達的miRNA
與Sham組相比,Model組共6個表達有顯著差異的miRNA,其中上調(diào)的4個,下調(diào)的2個,見表2。
2.3miRNA靶基因預(yù)測結(jié)果
根據(jù)miRNA與其靶基因間的關(guān)聯(lián)互作關(guān)系,共預(yù)測miRNA的靶基因288個,見圖1。
2.4GO功能分析結(jié)果
2.4.1生物過程分析對288個靶基因的生物過程進行分析,根據(jù)Plt;0.05篩選條件,共篩出269個生物過程。主要涉及自然殺傷T(Natural killer T,NK T)細胞分化、白細胞脫粒反應(yīng)等方面。相關(guān)度前5位的生物過程的條目注釋及關(guān)聯(lián)靶基因個數(shù)見表3。
2.4.2細胞成分分析根據(jù)Plt;0.05篩選條件,篩出29個細胞成分,主要涉及雷帕霉素受體
(Target of rapamycin,TOR)激酶復(fù)合體、泛素連接酶等,相關(guān)度前5位的細胞成分條目注釋及關(guān)聯(lián)靶基因個數(shù)見表4。
2.4.3分子功能分析根據(jù)Plt;0.05篩選條件,篩出46個分子功能,主要涉及酪氨酸/蘇氨酸磷酸酶活性、調(diào)控基因表達等方面。相關(guān)度前5位的分子功能條目注釋及關(guān)聯(lián)靶基因個數(shù)見表5。
2.5miRNA靶基因KEGG通路富集分析
以Plt;0.05作為顯著富集通路的篩選標準,共篩出24條通路,主要涉及雷帕霉素靶蛋白(Mammalian target of rapamycin,mTOR)信號通路、絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)信號通路等途徑,相關(guān)的信號通路條目注釋及關(guān)聯(lián)靶基因個數(shù)見表6、富集通路氣泡圖見圖2。
3討論
高血壓發(fā)病機制是復(fù)雜的,探究發(fā)病過程中分子機制對高血壓防治至關(guān)重要。miRNA通過靶向mRNA調(diào)控基因表達發(fā)揮作用,如參與炎癥反應(yīng)、細胞增殖和凋亡等[11]。大量研究證明,miRNA可以通過調(diào)節(jié)腎素、血管重構(gòu)和氧化應(yīng)激參與高血壓發(fā)展過程[12-13]。
本研究在腎性高血壓大鼠中篩選到6個差異miRNA,包括4個上調(diào)miRNA(rno-miR-335-5p、rno-miR-466-3p、rno-miR-218a-5p、rno-miR-3557-3p)和2個下調(diào)miRNA(rno-let-7a-5p、rno-miR-200b-5p)。鈣/鈣調(diào)素依賴性蛋白激酶Ⅱ是高血壓的重要調(diào)節(jié)因子,可以與鈣調(diào)素結(jié)合,Ma等發(fā)現(xiàn)miR-335-5p會影響鈣調(diào)素表達,在肺動脈高壓的小鼠右心室加入miR-335-5p拮抗劑會減輕血管緊張素Ⅱ誘導(dǎo)的心肌肥大并且上調(diào)鈣調(diào)素表達[14]。Wu等通過篩選自發(fā)性高血壓大鼠(Spontaneously hypertensive rats,SHR)miRNA表達譜發(fā)現(xiàn),與正常血壓的大鼠相比,SHR大鼠腦微血管細胞外泌體let-7a-5p、let-7c-5p和let-7b-5p表達均上調(diào),并且KEGG富集結(jié)果顯示,靶基因主要富集在亞油酸、α-亞麻酸代謝等代謝通路上[15]。此外,亞油酸和α-亞麻酸可以通過調(diào)節(jié)血清內(nèi)皮源性血管因子發(fā)揮抗高血壓作用[16]。研究發(fā)現(xiàn),miR-200b-5p過表達可以減少炎癥因子分泌,如白細胞介素6、腫瘤壞死因子α,并且炎癥因子被認為是影響高血壓發(fā)展的關(guān)鍵因素[17]。長期炎癥過程會增加活性氧(Reactive oxygen species,ROS)的產(chǎn)生,進而引起氧化應(yīng)激,導(dǎo)致內(nèi)皮功能障礙,最終導(dǎo)致血壓升高[18]。Wang等在12月齡自發(fā)性高血壓大鼠的miRNA測序中發(fā)現(xiàn),miR-218a-5p的高表達與心室受損、ROS增加相關(guān)[19]。rno-miR-3557-3p與rno-miR-466-3p還未發(fā)現(xiàn)與高血壓有關(guān),但有研究表明,其表達水平與脂質(zhì)代謝、細胞增殖和分化相關(guān)[20-21]。
探究miRNA相關(guān)靶基因有助于進一步了解靶基因相關(guān)作用機制。本研究預(yù)測了288種靶基因,GO和KEGG通路富集涉及多個生物學(xué)過程及通路,值得注意的有mTOR信號通路、MAPK信號通路、血管內(nèi)皮生長因子(Vascular endothelial growth factor,VEGF)信號通路和鞘脂信號通路。mTOR和MAPK信號通路在調(diào)節(jié)高血壓大鼠血壓、炎癥及纖維化中起重要作用[22-23]。程晶晶等用生長激素釋放肽治療SHR大鼠,發(fā)現(xiàn)磷脂酰肌醇-3-激酶/蛋白激酶B/mTOR信號通路表達水平降低,血壓降低[24]。Temiz-Resitoglu等發(fā)現(xiàn)醋酸脫氧皮質(zhì)酮鹽性高血壓大鼠中,氧化應(yīng)激水平和巨噬細胞浸潤增加,細胞外調(diào)節(jié)蛋白激酶和p38 MAPK表達水平提高,用mTOR抑制劑干預(yù)后,逆轉(zhuǎn)了上述變化[22]。血清硫苷脂是脂蛋白中的關(guān)鍵糖鞘脂,在高血壓小鼠模型中,使用氯沙坦降壓藥可以改善血清硫苷脂代謝水平[25]。VEGF的異常調(diào)節(jié)會改變血管狀態(tài),在高血壓患者中VEGF信號通路表達水平升高與早期微血管和靶器官損傷相關(guān),治療后VEGF水平顯著降低[26]。上述研究表明,miRNA相關(guān)靶基因調(diào)節(jié)的通路可能成為高血壓防治的關(guān)鍵作用靶點。
本研究揭示了miRNA與其靶基因在高血壓中的調(diào)控作用,進一步完善了高血壓疾病相關(guān)的分子機制,對高血壓防治有重要意義。
參考文獻
[1]Liao CT,Toh HS,Sun L,et al.Cost-effectiveness of intensive vs standard blood pressure control among older patients with hypertension[J].JAMA Netw Open,2023,6(2):e230708.
[2]Brandsma E,Kloosterhuis NJ,Koster M,et al.Aproinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis[J].Circ Res,2019,124(1):94-100.
[3]Shi J,Ren Y,Liu Y,et al.Circulating miR-3135b and miR-107 are potential biomarkers for severe hypertension[J].J Hum Hypertens,2021,35(4):343-350.
[4]Letafati A,Najafi S,Mottahedi M,et al.MicroRNA let-7 and viral infections:focus on mechanisms of action[J].Cell Mol Biol Lett,2022,27(1):14.
[5]Moukette B,Kawaguchi S,Sepulveda MN,et al.MiR-150 blunts cardiac dysfunction in mice with cardiomyocyte loss of β1-adrenergic receptor/β-arrestin signaling and controls a unique transcriptome[J].Cell Death Discov,2022,8(1):504.
[6]Hijmans JG,Diehl KJ,Bammert TD,et al.Association between hypertension and circulating vascular-related microRNAs[J].J Hum Hypertens,2018,32(6):440-447.
[7]He X,Bao X,Tao Z,et al.The microarray identification circular RNA hsa_circ_0105015 up-regulated involving inflammation pathway in essential hypertension[J].J Clin Lab Anal,2021,35(2):e23603.
[8]徐樂,郭子宏.腸道微生物與高血壓的關(guān)系及其機制研究進展[J].中華高血壓雜志,2018,26(3):214-218,200.
[9]Liu S,da Cunha AP,Rezende RM,et al.The host shapes the gut microbiota via fecal microRNA[J].Cell Host Microbe,2016,19(1):32-43.
[10]沐嘉馨,林利.微小RNA——心血管疾病的新興要素[J].醫(yī)學(xué)研究雜志,2020,49(8):9-13.
[11]Zhao J,Li X,Hu J,et al.Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J].Cardiovasc Res,2019,115(7):1205-1216.
[12]Li X,Wei Y,Wang Z.microRNA-21 and hypertension[J].Hypertens Res,2018,41(9):649-661.
[13]Li H,Zhang X,Wang F,et al.MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation[J].Circulation,2016,134(10):734-751.
[14]Ma H,Ye P,Zhang AK,et al.Upregulation of miR-335-5p contributes to right ventricular remodeling via calumenin in pulmonary arterial hypertension[J].Biomed Res Int,2022,2022:9294148.
[15]Wu Q,Yuan X,Li B,et al.Differential miRNA expression analysis of extracellular vesicles from brain microvascular pericytes in spontaneous hypertensive rats[J].Biotechnol Lett,2020,42(3):389-401.
[16]Guo L,Guo Y,Wu P,et al.Camellia oil lowering blood pressure in spontaneously hypertension rats[J].J Funct Foods,2020,70.doi:10.1016/j.jff.2020.103915.
[17]Lu X,Crowley SD.Inflammation in salt-sensitive hypertension and renal damage[J].Curr Hypertens Rep,2018,20(12):103.
[18]Griendling KK,Camargo LL,Rios FJ,et al.Oxidative stress and hypertension[J].Circ Res,2021,128(7):993-1020.
[19]Wang J,Zhang J,Ding X,et al.Differential microRNA expression profiles and bioinformatics analysis between young and aging spontaneously hypertensive rats[J].Int J Mol Med,2018,41(3):1584-1594.
[20]Ruiz-Roso MB,Gil-Zamorano J,López de Las Hazas MC,et al.Intestinal lipid metabolism genes regulated by miRNAs[J].Front Genet,2020,11:707.
[21]Liu W,Li L,Liu S,et al.MicroRNA expression profiling screen miR-3557/324-targeted caMK/mTOR in the rat striatum of parkinson's disease in regular aerobic exercise[J].Biomed Res Int,2019,2019:7654798.
[22]Temiz-Resitoglu M,Guden DS,Senol SP,et al.Pharmacological inhibition of mammalian target of rapamycin attenuates deoxycorticosterone acetate salt-induced hypertension and related pathophysiology: regulation of oxidative stress,inflammation,and cardiovascular hypertrophy in male rats[J].J Cardiovasc Pharmacol,2022,79(3):355-367.
[23]Zhang J,Cao L,Wang X,et al.The E3 ubiquitin ligase TRIM31 plays a critical role in hypertensive nephropathy by promoting proteasomal degradation of MAP3K7 in the TGF-β1 signaling pathway[J].Cell Death Differ,2022,29(3):556-567.
[24]程晶晶,張銳波,王恒東.生長激素釋放肽通過抑制PI3K/AKT/mTOR信號通路影響自發(fā)性高血壓大鼠mTOR和Caspase-3表達[J].解剖學(xué)研究,2018,40(6):510-513,523.
[25]Guo R,Hu X,Yamada Y,et al.Effects of hypertension and antihypertensive treatments on sulfatide levels in serum and its metabolism[J].Hypertens Res,2019,42(5):598-609.
[26]Quintanilha JCF,Liu Y,Etheridge AS,et al.Plasma levels of angiopoietin-2,VEGF-A,and VCAM-1 as markers of bevacizumab-induced hypertension:CALGB 80303 and 90401(Alliance)[J].Angiogenesis,2022,25(1):47-55.
(2023-01-31收稿)