[摘要]Shati/Nat8l 是具有N-乙?;D(zhuǎn)移酶活性的N-乙酰轉(zhuǎn)移酶-8樣蛋白(Nat8l),在多個(gè)大腦區(qū)域表達(dá),主要調(diào)節(jié)N-乙酰-L-天冬氨酸(NAA)的量,參與神經(jīng)系統(tǒng)的神經(jīng)發(fā)生、髓鞘形成、神經(jīng)可塑性、神經(jīng)營(yíng)養(yǎng)因子調(diào)節(jié)、多巴胺能系統(tǒng)等的生理病理過(guò)程,與認(rèn)知功能障礙等多種神經(jīng)系統(tǒng)疾病的發(fā)病機(jī)制相關(guān)。本文綜述Shati/Nat8l在神經(jīng)系統(tǒng)中的作用及其分子機(jī)制,以期為神經(jīng)系統(tǒng)疾病的診治提供新方向。
[關(guān)鍵詞]Shati/Nat8l;N-乙酰-L-天冬氨酸;神經(jīng)發(fā)生;神經(jīng)可塑性;多巴胺能系統(tǒng);髓鞘形成
doi:10.3969/j.issn.1674-7593.2023.05.021
Advances in Understanding the Neurological Function and Mechanisms of Shati/Nat8l
Zhou Yuanqing1,2,Liu Haijun1,Xu Ping1**
1Neurology Department,Affiliated Hospital of Zunyi Medical University,Zunyi563000;2Brain Science Laboratory of Zunyi Medical University,Zunyi563003
**Corresponding author:Xu Ping,email:xuping527@vip.sina.com
[Abstract]Shati/Nat8l,a notable N-acetyltransferase-8-like protein(Nat8l),orchestrates vital functions within the nervous system by modulating N-acetyltransferase activity.This activity is pivotal in regulating the concentration of N-acetyl-L-aspartate(NAA) across multiple cerebral regions.Beyond its enzymatic role,Shati/Nat8l exerts influence over critical physiological and pathological processes encompassing neurogenesis,myelinogenesis, neuroplasticity,regulation of neurotrophic factors,and modulation of the dopaminergic system.Intriguingly,its intricate involvement extends to the intricate landscape of neurological disorders,including cognitive impairments.This comprehensive paper illuminates the multifaceted role of Shati/Nat8l in the nervous system,unraveling its molecular mechanisms.By doing so,it not only broadens our comprehension but also points towards novel avenues for the diagnosis and therapeutic intervention of a spectrum of neurological disorders.
[Key words]Shati/Nat8l;N-acetyl-L-aspartate;Neurogenesis;Neuroplasticity;Dopaminergic system;Myelination
Shati/Nat8l是從連續(xù)接受甲基苯丙胺的大鼠的伏隔核(腹側(cè)紋狀體)中鑒定出來(lái),與大腦發(fā)育和功能密切相關(guān)的蛋白質(zhì),具有N-乙酰基轉(zhuǎn)移酶活性,在大腦中催化乙酰輔酶A和L-天冬氨酸合成N-乙酰-L-天冬氨酸(N-acetyl-L-aspartate,NAA),NAA可部分被轉(zhuǎn)化為N-乙酰天冬氨酸谷氨酸酯(N-acetylaspartylglutamate,NAAG)[1]。NAA是所有神經(jīng)元的直接能量底物,乙酰輔酶A,是神經(jīng)系統(tǒng)中的主要儲(chǔ)存和運(yùn)輸形式,神經(jīng)元因其獨(dú)特的結(jié)構(gòu)和功能而具有極高的能量密集性,因此NAA對(duì)大腦的能量代謝至關(guān)重要。NAA可能是胰島素分泌的調(diào)節(jié)因子,這進(jìn)一步可能使其成為全身能量平衡的關(guān)鍵能量代謝物[2]。NAAG是一種作用于代謝型谷氨酸受體(Metabotropic glutamate receptor,mGluRs)且廣泛分布的神經(jīng)遞質(zhì)。NAAG可能經(jīng)突觸小泡從神經(jīng)末梢釋放,并抑制突觸前谷氨酸囊泡釋放,調(diào)節(jié)突觸后密度蛋白和通路激活后的突觸后受體表達(dá),以維持皮質(zhì)突觸可塑性和神經(jīng)遞質(zhì)穩(wěn)態(tài),NAAG在認(rèn)知和記憶中起重要作用[3]。本文綜述Shati/Nat8l在神經(jīng)系統(tǒng)生理病理過(guò)程中的作用及機(jī)制,為神經(jīng)系統(tǒng)疾病的治療靶點(diǎn)提供理論依據(jù)。
1Shati/Nat8l與神經(jīng)發(fā)生
神經(jīng)發(fā)生受損是腦卒中、阿爾茨海默?。ˋlzheimer′s disease,AD)、術(shù)后認(rèn)知功能障礙、帕金森?。≒arkinson's disease,PD)等疾病的重要發(fā)病機(jī)制。成年期大腦的神經(jīng)發(fā)生維持在兩個(gè)主要區(qū)域:側(cè)腦室的室下區(qū)和海馬齒狀回的顆粒下區(qū)。海馬的神經(jīng)發(fā)生與腦的生理功能有關(guān),如記憶編碼和情緒調(diào)節(jié)。成人海馬神經(jīng)發(fā)生起始于齒狀回區(qū)的神經(jīng)前體細(xì)胞,神經(jīng)前體細(xì)胞經(jīng)歷分裂、清除、分化和成熟后形成神經(jīng)顆粒細(xì)胞,每一步均可能受到環(huán)境、藥物干預(yù)和神經(jīng)遞質(zhì) (如多巴胺)的影響[4]。Shati/Nat8l敲除的成年小鼠海馬齒狀回區(qū)神經(jīng)發(fā)生受損和成熟受到抑制,多巴胺能標(biāo)志物酪氨酸羥化酶標(biāo)記的陽(yáng)性細(xì)胞數(shù)目顯著減少。因海馬齒狀回區(qū)接受多巴胺能神經(jīng)元的投射,而多巴胺信號(hào)調(diào)節(jié)神經(jīng)前體細(xì)胞的增殖[5]。由于神經(jīng)干細(xì)胞(Neural stem cells,NSCs)的存在,成人神經(jīng)發(fā)生和突觸重塑這種獨(dú)特的結(jié)構(gòu)在海馬齒狀回和側(cè)腦室的室下區(qū)持續(xù)存在。利用質(zhì)子磁共振波譜檢測(cè)缺氧缺血性損傷后的大腦,發(fā)現(xiàn)腦內(nèi)NAAG、谷胱甘肽和肌酸含量在12~24 h達(dá)到峰值,這與海馬NSCs和神經(jīng)元的功能恢復(fù)時(shí)間一致,其中NAAG可競(jìng)爭(zhēng)性結(jié)合mGluR3來(lái)降低谷氨酸的興奮毒性作用,從而減少細(xì)胞損傷并促進(jìn)損傷修復(fù)[6]。自噬缺陷可加重神經(jīng)發(fā)生受損。而長(zhǎng)鏈非編碼RNA(Long non-coding RNA,LncRNA) GAS5可激活miRNA-31-5p/NAT8L信號(hào)通路促進(jìn)自噬[7]。神經(jīng)發(fā)生的調(diào)節(jié)機(jī)制廣泛而復(fù)雜,作為NAA與NAAG合成的關(guān)鍵酶,Shati/Nat8l在神經(jīng)發(fā)生中具有明確的作用,并從神經(jīng)發(fā)生途徑解釋神經(jīng)細(xì)胞損傷與修復(fù)的機(jī)制,有助于臨床上為相關(guān)疾病患者提供合適的診療手段,提升患者的治療效果。
2Shati/Nat8l與多巴胺能系統(tǒng)
多巴胺(Dopamine,DA)是一種參與運(yùn)動(dòng)控制、情感和情緒狀態(tài)調(diào)節(jié)、獎(jiǎng)勵(lì)機(jī)制、行為強(qiáng)化和選擇性高級(jí)認(rèn)知功能等多種生理功能的關(guān)鍵神經(jīng)遞質(zhì)。多巴胺能傳遞障礙是幾種極具破壞性的神經(jīng)與精神疾病如PD、精神分裂癥、雙相情感障礙和藥物成癮的核心改變[8]。伏隔核中Shati/Nat8l的過(guò)表達(dá),間接導(dǎo)致NAAG增加,激活Ⅱ組mGluR來(lái)抑制多巴胺能系統(tǒng)。此研究還發(fā)現(xiàn)多巴胺D1受體拮抗劑SCH23390能夠抑制小鼠伏隔核Shati/Nat8l上調(diào)[9]。內(nèi)側(cè)前額葉皮質(zhì)Shati/Nat8l的過(guò)表達(dá)可降低伏隔核的神經(jīng)細(xì)胞外DA的水平,可能機(jī)制為Shati/Nat8l通過(guò)從內(nèi)側(cè)前額葉皮質(zhì)投射到伏隔核的谷氨酸能神經(jīng)元作用于Ⅱ組 mGluR進(jìn)而影響伏隔核的DA水平[10]。加蘭他敏可通過(guò)α7型煙堿乙酰膽堿受體(Alpha 7 nicotinic acetylcholine receptor,α7nAChRs)增加海馬的DA釋放并激活多巴胺D1受體以改善Shati/Nat8l缺陷小鼠的注意障礙[5]。
3Shati/Nat8l與髓鞘形成
膠質(zhì)細(xì)胞可調(diào)節(jié)中樞神經(jīng)系統(tǒng)功能,特別是髓鞘,可支持神經(jīng)元信號(hào)傳導(dǎo)。髓鞘功能障礙可導(dǎo)致社交活動(dòng)減少和其他行為缺陷。Shati/Nat8l mRNA的表達(dá)隨著全腦發(fā)育而增加,Shati/Nat8l除了與神經(jīng)軸突延長(zhǎng)和ATP合成呈正相關(guān),還可正向調(diào)控皮質(zhì)髓鞘堿性蛋白(Myelin basic protein,MBP)水平。Shati/Nat8l缺失, NAA合成減少,幼年小鼠前額葉皮質(zhì)MBP的水平下降,從而抑制髓鞘形成并影響情緒行為[11]。使用液相色譜-串聯(lián)質(zhì)譜和高效薄層色譜對(duì) NAT8L敲除小鼠進(jìn)行脂質(zhì)組學(xué)分析發(fā)現(xiàn),大腦中的鞘磷脂和磺胺脂含量減少。經(jīng)NAA處理的原代少突膠質(zhì)細(xì)胞培養(yǎng)物的代謝組學(xué)分析顯示,可以激活組蛋白脫甲基酶活性的α-酮戊二酸水平升高,組蛋白H3甲基化水平增加,出現(xiàn)4號(hào)賴氨酸的三甲基化(H3K4me3)、9號(hào)賴氨酸的二、三甲基化(H3K9me2和H3K9me3)[12]。H3K4me3可調(diào)節(jié)細(xì)胞能量、代謝和生長(zhǎng)。而H3K9me3與發(fā)育中少突膠質(zhì)細(xì)胞轉(zhuǎn)錄抑制的改變有關(guān)[13]。NAA在神經(jīng)元合成,但可影響膠質(zhì)細(xì)胞的功能,出現(xiàn)神經(jīng)-膠質(zhì)串?dāng)_,Shati/Nat8l 與 NAA一起參與少突膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的成熟、髓鞘磷脂的產(chǎn)生和DA依賴性腦信號(hào)傳導(dǎo)[1]??赡転樗枨拾l(fā)育障礙與損傷指出新的研究方向。
4Shati/Nat8l與神經(jīng)營(yíng)養(yǎng)因子
腦源性神經(jīng)營(yíng)養(yǎng)因子(Brain-derived neurotrophic factor,BDNF)是研究最多的神經(jīng)營(yíng)養(yǎng)因子,與神經(jīng)元維持、存活、可塑性和神經(jīng)遞質(zhì)調(diào)節(jié)有關(guān)。背側(cè)紋狀體中Shati/Nat8l的升高誘導(dǎo)BDNF啟動(dòng)子 Ⅳ的表觀遺傳修飾,即組蛋白H3第9位賴氨酸乙?;℉3K9ac)增強(qiáng),提示Shati/Nat8l可影響海馬BDNF的 mRNA 水平[14]。同時(shí)H3K9ac的升高可以通過(guò)敲除背側(cè)紋狀體中Shati/Nat8l而發(fā)生逆轉(zhuǎn)[15]。組蛋白乙?;揎椡ǔ?huì)增強(qiáng)基因轉(zhuǎn)錄。而背側(cè)紋狀體中Shati/Nat8l的升高可通過(guò)組蛋白H3K9ac調(diào)控BDNF表達(dá)水平,BDNF表達(dá)調(diào)控在各種神經(jīng)功能缺損的疾病中具有重要意義,而Shati/Nat8l可能成為一個(gè)新靶點(diǎn)。
5Shati/Nat8l與神經(jīng)系統(tǒng)疾病
5.1Shati/Nat8l與認(rèn)知功能障礙
缺乏Shati/Nat8l的小鼠在發(fā)育階段認(rèn)知功能下降。隨著年齡的增長(zhǎng),小鼠背側(cè)海馬中的Shati/Nat8l mRNA表達(dá)減少。在老齡小鼠中觀察到的認(rèn)知功能障礙可通過(guò)背側(cè)海馬中Shati/Nat8l過(guò)表達(dá)及進(jìn)一步增加已減少的 NAA而逆轉(zhuǎn)。AD是癡呆癥最常見(jiàn)的病因,AD小鼠海馬中如果出現(xiàn)Shati/Nat8l過(guò)表達(dá),則可上調(diào)BDNF mRNA水平并改善認(rèn)知障礙[16]。β淀粉樣蛋白(Beta-amyloid peptide ,Aβ)沉積是AD主要病理特征之一,NAA中的甲基(- CH3)可能與Aβ低聚物中任意兩個(gè)黏附多肽之間的CH3-CH3相互競(jìng)爭(zhēng),破壞分子間疏水作用,從而暴露單體單元掩蓋的疏水基團(tuán),并最終溶解和阻礙Aβ形成[17-18]。Aβ沉積和淀粉樣前體蛋白(Amyloid precursor protein,APP)的增多可致AD的海馬神經(jīng)發(fā)生受損與突觸可塑性降低。移植NSCs的AD小鼠海馬中NAA和谷氨酸水平升高,并導(dǎo)致Aβ的斑塊與沉積顯著減少,突觸素(Synapsin,SYN)與突觸后致密蛋白-95(Postsynapticdensity-95,PSD-95)水平升高,最終促進(jìn)內(nèi)源性神經(jīng)發(fā)生和突觸重塑,改善記憶[19]。大鼠Shati/Nat8l mRNA在內(nèi)側(cè)前額葉皮質(zhì)表達(dá)水平高于其他大腦區(qū)域[20]。Shati/Nat8l的缺失可能降低前額葉皮質(zhì)錐體神經(jīng)元和海馬樹(shù)突的復(fù)雜性,而且樹(shù)突長(zhǎng)度縮短和增殖減少。這些與增加興奮性γ-氨基丁酸傳遞有關(guān)[5]。Shati/Nat8l的缺失最終可通過(guò)干擾突觸活動(dòng)損害新物體識(shí)別和上下文記憶能力。
5.2Shati/Nat8l與抑郁癥
大鼠背側(cè)紋狀體中過(guò)表達(dá)的Shati/Nat8l可通過(guò)中縫背側(cè)mGluR3調(diào)節(jié)5-羥色胺能神經(jīng)元導(dǎo)致抑郁癥的行為缺陷和社交退縮,Shati/Nat8l及其下游的mGluR3神經(jīng)傳遞可能是用于開(kāi)發(fā)治療重度抑郁癥的藥物療法潛在的新靶點(diǎn)[21-22]。紋狀體Shati/Nat8l-BDNF通路可能是一種通過(guò)調(diào)節(jié)應(yīng)激敏感性治療抑郁癥的新型治療機(jī)制[14]。因缺少生物標(biāo)志物和客觀檢查手段,基于臨床病史的采集很難早期發(fā)現(xiàn)和診斷抑郁癥。有研究者采用焦磷酸測(cè)序評(píng)估抑郁癥患者Shati/Nat8l的基因啟動(dòng)子區(qū)域的DNA甲基化,發(fā)現(xiàn)未服藥患者外周血中CpG島位點(diǎn)甲基化水平顯著高于健康對(duì)照組。相反,藥物治療組在同一區(qū)域的甲基化水平較健康對(duì)照組顯著降低[23]。隨著檢驗(yàn)技術(shù)的迭代和檢驗(yàn)精度的不斷提高,初治抑郁癥患者Shati/Nat8l的基因啟動(dòng)子區(qū)域的甲基化狀態(tài)可能是一種可靠的診斷標(biāo)志物。
5.3Shati/Nat8l與Canavan病
Canavan病是一種進(jìn)行性、致命的神經(jīng)系統(tǒng)疾病,始于嬰兒期,由天冬氨?;福ˋspartoacylase,ASPA)的基因突變引起,ASPA是一種催化NAA脫乙?;癁榇姿猁}和天冬氨酸的酶?;純捍竽X中NAA水平的升高是Canavan病的標(biāo)志之一。編碼Shati/Nat8l的基因NAT8L的缺失可使NAA水平正常化,并改善了幾種基因工程Canavan病模型小鼠的癥狀[24]。此外,通過(guò)對(duì)成年ASPA缺陷小鼠進(jìn)行Shati/Nat8l鎖定核酸反義寡核苷酸的注射來(lái)抑制Shati/Nat8l表達(dá)以減少NAA的合成,可減輕小腦與丘腦的空泡化以及浦肯野細(xì)胞的樹(shù)突萎縮,改善共濟(jì)失調(diào)[25]。Canavan病的現(xiàn)有治療方案均無(wú)法逆轉(zhuǎn)和阻止其進(jìn)展,Shati/Nat8l與NAA可能成為Canavan病治療的突破口。
5.4Shati/Nat8l與脊髓小腦共濟(jì)失調(diào)2型
脊髓小腦共濟(jì)失調(diào)2型(Spinocerebellar ataxia type 2,SCA2)是一種常染色體顯性遺傳的神經(jīng)退行性疾病,由ATXN2基因的CAG擴(kuò)增突變引起,主要影響脊髓運(yùn)動(dòng)神經(jīng)元和小腦浦肯野細(xì)胞。目前對(duì)SCA2尚無(wú)有效預(yù)后評(píng)估方法。SCA2和其他多種神經(jīng)退行性疾病大腦中的NAA水平較低,且NAA下降的程度與SCA2的進(jìn)展高度相關(guān)[26]。ATXN2與mRNA翻譯調(diào)節(jié)和應(yīng)激反應(yīng)相關(guān),ATXN通過(guò)其N端Lsm結(jié)構(gòu)域(Like -sm,Lsm)和LsmAD結(jié)構(gòu)域(Like -smAD,LsmAD)高度選擇性結(jié)合并作用于Shati/Nat8l 的mRNA,降低Shati/Nat8l 的mRNA表達(dá),使Shati/Nat8l翻譯減少,從而降低NAA合成,SCA2患者血液中Shati/Nat8l可能成為評(píng)估預(yù)后的外周生物標(biāo)志物[26-27]。
6小結(jié)與展望
綜上所述, Shati/Nat8l對(duì)于神經(jīng)系統(tǒng)疾病有較為廣泛的作用,與神經(jīng)發(fā)生、髓鞘形成等相關(guān),為神經(jīng)系統(tǒng)多種疾病的發(fā)病機(jī)制提供新的思路和新的治療靶點(diǎn)。但仍需大量實(shí)驗(yàn)進(jìn)行深入的機(jī)制研究。有關(guān)Shati/Nat8l的研究主要通過(guò)基因敲除或過(guò)表達(dá)進(jìn)行,如果能夠通過(guò)藥物增強(qiáng) Shati/Nat8l的功能以及調(diào)控表達(dá),對(duì)認(rèn)識(shí)Shati/Nat8l的生理作用以及新療法的開(kāi)發(fā)都能帶來(lái)新的啟發(fā)。此外,現(xiàn)階段少有基礎(chǔ)研究結(jié)果應(yīng)用于臨床研究,因此,深入掌握Shati/Nat8l不同信號(hào)通路相互作用的網(wǎng)絡(luò)以及其中的關(guān)鍵靶點(diǎn),促使 Shati/Nat8l表型的轉(zhuǎn)換并面向臨床,亦是下一步研究方向。
參考文獻(xiàn)
[1]Kowalski R,Pikul P,Lewandowski K,et al.The cAMP inducers modify N-acetylaspartate metabolism in Wistar rat brain[J].Antioxidants(Basel),2021,10(9).doi:10.3390/antiox10091404.
[2]Hofer DC,Zirkovits G,Pelzmann HJ,et al.N-acetylaspartate availability is essential for juvenile survival on fat-free diet and determines metabolic health[J].FASEB J,2019,33(12):13808-13824.
[3]Li K,Lu M,Cui M,et al.The regulatory role of NAAG-mGluR3 signaling on cortical synaptic plasticity after hypoxic ischemia[J].Cell Commun Signal,2022,20(1):55.
[4]Zhang TY,Keown CL,Wen X,et al.Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus[J].Nat Commun,2018,9(1):298.
[5]Wulaer B,Kunisawa K,Hada K,et al.Shati/Nat8l deficiency disrupts adult neurogenesis and causes attentional impairment through dopaminergic neuronal dysfunction in the dentate gyrus[J].J Neurochem,2021,157(3):642-655.
[6]Li K,Zheng Y,Wang X.Self-regulation of cerebral metabolism and its neuroprotective effect after hypoxic-ischemic injury:evidence from 1H-MRS[J].Front Neuroanat,2021,15:672412.
[7]Wu Q,Zhou X,Wang Y,et al.LncRNA GAS5 promotes spermidine-induced autophagy through the miRNA-31-5p/NAT8L axis in pulmonary artery endothelial cells of patients with CTEPH[J].Mol Med Rep,2022,26(4).doi:10.3892/mmr.2022.12813.
[8]Zell V,Steinkellner T,Hollon NG,et al.VTA glutamate neuron activity drives positive reinforcement absent dopamine co-release[J].Neuron,2020,107(5):864-873.e4.
[9]Uno K,Miyazaki T,Sodeyama K,et al.Methamphetamine induces Shati/Nat8L expression in the mouse nucleus accumbens via CREB- and dopamine D1 receptor-dependent mechanism[J].PLoS One,2017,12(3):e0174196.
[10]Haddar M,Uno K,Azuma K,et al.Inhibitory effects of Shati/Nat8l overexpression in the medial prefrontal cortex on methamphetamine-induced conditioned place preference in mice[J].Addict Biol,2020,25(3):e12749.
[11]Sumi K,Uno K,Noike H,et al.Behavioral impairment in SHATI/NAT8L knockout mice via dysfunction of myelination development[J].Sci Rep,2017,7(1):16872.
[12]Singhal NK,Huang H,Li S,et al.The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition[J].Exp Brain Res,2017,235(1):279-292.
[13]Liu J,Magri L,Zhang F,et al.Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation[J].J Neurosci,2015,35(1):352-365.
[14]Miyanishi H,Nitta A.A role of BDNF in the depression pathogenesis and a potential target as antidepressant: the modulator of stress sensitivity “Shati/Nat8l-BDNF system” in the dorsal striatum[J].Pharmaceuticals(Basel),2021,14(9):889.
[15]Miyanishi H,Muramatsu SI,Nitta A.Striatal Shati/Nat8l-BDNF pathways determine the sensitivity to social defeat stress in mice through epigenetic regulation[J].Neuropsychopharmacology,2021,46(9):1594-1605.
[16]Chino K,Izuo N,Noike H,et al.Shati/Nat8l overexpression improves cognitive decline by upregulating neuronal trophic factor in Alzheimer's disease model mice[J].Neurochem Res,2022,47(9):2805-2814.
[17]Warepam M,Mishra AK,Sharma GS,et al.Brain metabolite,N-acetylaspartate is a potent protein aggregation inhibitor[J].Front Cell Neurosci,2021,15:617308.
[18]丁鴻莉,第五永長(zhǎng),劉奇,等.微生物-腸-腦軸與阿爾茨海默病相關(guān)性的研究進(jìn)展[J].國(guó)際老年醫(yī)學(xué)雜志,2023,44(1):87-90.
[19]Zhang W,Gu GJ,Zhang Q,et al.NSCs promote hippocampal neurogenesis,metabolic changes and synaptogenesis in APP/PS1 transgenic mice[J].Hippocampus,2017,27(12):1250-1263.
[20]Haddar M,Azuma K,Izuo N,et al.Impairment of cognitive function induced by Shati/Nat8l overexpression in the prefrontal cortex of mice[J].Behav Brain Res,2021,397:112938.
[21]Uno K,Miyanishi H,Sodeyama K,et al.Vulnerability to depressive behavior induced by overexpression of striatal Shati/Nat8l via the serotonergic neuronal pathway in mice[J].Behav Brain Res,2019,376:112227.
[22]賈建平,賈健民,周衛(wèi)東,等.Differential acetylcholine and choline concentrations in the cerebrospinal fluid of patients with Alzheimer's disease and vascular dementia[J].中華醫(yī)學(xué)雜志(英文版),2004,117(8):1161-1164.
[23]Miyanishi H,Uno K,Iwata M,et al.Investigating DNA methylation of SHATI/NAT8L promoter sites in blood of unmedicated patients with major depressive disorder[J].Biol Pharm Bull,2020,43(7):1067-1072.
[24]Neuta O,Thomas AG,Alt J,et al.High throughput screening cascade to identify human aspartate N-acetyltransferase(ANAT) inhibitors for canavan disease[J].ACS Chem Neurosci,2021,12(18):3445-3455.
[25]Hull V,Wang Y,Burns T,et al.Antisense oligonucleotide reverses leukodystrophy in vanavan fisease mice[J].Ann Neurol,2020,87(3):480-485.
[26]Sen NE,Canet-Pons J,Halbach MV,et al.Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation[J].Neurobiol Dis,2019,132:104559.
[27]Shen ZC,Xia ZX,Liu JM,et al.APT1-mediated depalmitoylation regulates hippocampal synaptic plasticity[J].J Neurosci,2022,42(13):2662-2677.
(2022-12-26收稿)