趙洪山 常杰英 曲岳晗 孫承妍 郭瀟鎂
基于二元非線性Wiener隨機過程的變壓器油紙絕緣剩余壽命預(yù)測方法
趙洪山 常杰英 曲岳晗 孫承妍 郭瀟鎂
(華北電力大學(xué)(保定)電力工程系 保定 071000)
針對傳統(tǒng)單性能退化量的油浸式電力變壓器油紙絕緣剩余壽命預(yù)測方法難以全面反映油紙絕緣退化行為,且缺乏對多性能退化量間相關(guān)性的考慮,該文充分考慮退化過程的隨機性和非線性,提出了一種基于二元非線性Wiener隨機過程的變壓器油紙絕緣剩余壽命預(yù)測方法。首先,基于非線性Wiener隨機過程建立單性能退化量的油紙絕緣退化模型,刻畫油紙絕緣退化過程的隨機性和非線性;然后,基于Copula函數(shù)建立兩性能相關(guān)的退化模型,更加全面地分析兩性能退化量所反映的變壓器油紙絕緣聯(lián)合退化行為;最后,采用MCMC-Gibbs抽樣算法估計模型未知參數(shù),實現(xiàn)變壓器油紙絕緣剩余壽命預(yù)測。該文以糠醛和甲醇含量作為性能退化量,依托加速熱老化實驗數(shù)據(jù)進行實例驗證,對比單性能、兩性能獨立、兩性能相關(guān)三種情況下的可靠度曲線及剩余壽命預(yù)測結(jié)果,結(jié)果表明,該文所提方法能夠更加合理全面地描述退化過程,可靠度曲線更貼近真實結(jié)果。
電力變壓器 油紙絕緣 剩余壽命 二元非線性Wiener Copula函數(shù)
作為電力系統(tǒng)的核心設(shè)備,油浸式電力變壓器的運行壽命對電網(wǎng)的可靠供電具有重要意義[1-2]。對變壓器進行性能可靠性分析和剩余壽命預(yù)測的目的在于預(yù)知其退化趨勢與壽命終點,以便在變壓器壽命終結(jié)前及時采取檢修措施,避免停電事故發(fā)生。
變壓器運行壽命主要取決于其絕緣性能,因此絕緣性能的可靠性分析和剩余壽命預(yù)測具有重要意義[3-4]。變壓器投運初期,油紙絕緣系統(tǒng)有較好的物理和化學(xué)性能,但隨著運行時間的延長,其性能逐漸發(fā)生不可逆的劣化。由于受環(huán)境、負荷等條件的影響,油紙絕緣退化過程復(fù)雜,呈現(xiàn)出隨機性、非線性的特點。
傳統(tǒng)的變壓器油紙絕緣退化模型大多基于單性能退化量建立:例如早期以聚合度(Degree of Polymerization, DP)為性能退化量的零階、一階、二階動力學(xué)油紙絕緣退化模型[5]和聚合度損失累積模型[6]。但零階和一階動力學(xué)模型缺乏對DP降解速率變化的考慮,在劣化后期誤差較大;而二階動力學(xué)模型和聚合度損失累積模型只適用于實驗室溫度條件,適用性低。為實現(xiàn)在線監(jiān)測并提高適用性,有學(xué)者基于機器學(xué)習(xí)算法預(yù)測油紙絕緣剩余壽命:K. S. Madhavan等以糠醛含量為性能退化量,提出一種基于廣義神經(jīng)回歸網(wǎng)絡(luò)的變壓器油紙絕緣剩余壽命預(yù)測模型[7];范賢浩等融合頻域介電譜(Frequency Domain Spectroscopy, FDS)及支持向量機提出了一種考慮水分-老化協(xié)同效應(yīng)的變壓器油浸紙絕緣老化狀態(tài)評估方法[8]。上述兩種模型能夠?qū)崿F(xiàn)在線監(jiān)測,但樣本需求量較大,難以在工程實際中實現(xiàn)??紤]到油紙絕緣系統(tǒng)退化過程的隨機性,有學(xué)者提出了基于隨機過程的建模方法:張明澤等以糠醛含量作為性能退化量,提出了基于線性Wiener模型的變壓器油紙絕緣剩余壽命預(yù)測方法[9],該模型雖然考慮到了變壓器油紙絕緣劣化過程的隨機性和剩余壽命預(yù)測的不確定性,但采用的線性模型不能很好地刻畫油紙絕緣退化過程的非線性特性。
上述文獻都是基于單性能退化量的建模方法,然而變壓器油紙絕緣系統(tǒng)往往具有多個性能退化量,僅考慮單性能退化量的油紙絕緣退化模型難以全面地反映其退化過程,與實際情況偏差較大,因此,應(yīng)考慮多個性能層面進行綜合可靠性評估。為了更全面地描述變壓器油紙絕緣系統(tǒng)的退化過程,部分學(xué)者綜合考慮多個性能退化量建立油紙絕緣系統(tǒng)退化模型:R. Madavan基于數(shù)理統(tǒng)計建立了Weibull分布模型[10],此模型考慮到了介電強度、酸度等多個性能退化量,但為獲得其平均壽命數(shù)據(jù)需進行多次不可逆的失效試驗,實用性較低;M. M. Nezami等根據(jù)碳氧化合物和糠醛含量,提出了一種神經(jīng)模糊邏輯模型,以估計油浸式變壓器的壽命[11],該方法能夠更全面地評估油紙絕緣系統(tǒng)的退化程度,但現(xiàn)場可采集的少量變壓器退化數(shù)據(jù)難以滿足這類方法對樣本量的需求,且上述方法均未考慮多個性能退化量間的相關(guān)性。
總結(jié)現(xiàn)有變壓器油紙絕緣剩余壽命預(yù)測研究存在的問題:①傳統(tǒng)的基于Wiener隨機過程的退化模型沒有考慮退化過程非線性的情況;②上述部分方法均是基于單性能退化量建立退化模型,缺乏對退化過程多特征量特性的考慮;③Weibull分布模型和基于機器學(xué)習(xí)的變壓器油紙絕緣剩余壽命預(yù)測方法缺乏對多性能退化量間相關(guān)性和退化過程隨機性的考慮,且對樣本數(shù)量均有較高的要求。
為解決以上問題,本文提出了一種基于二元非線性Wiener隨機過程的變壓器油紙絕緣剩余壽命預(yù)測方法。Copula函數(shù)是一種刻畫變量間相關(guān)性的工具,建模簡單、應(yīng)用靈活、使用范圍廣[12-13],因此,本文采用Copula函數(shù)來描述兩性能退化量間的相關(guān)性。本文所提方法具體步驟如下:首先,基于非線性Wiener隨機過程建立單性能退化量的油紙絕緣退化模型;然后,基于Copula函數(shù)建立兩性能相關(guān)的退化模型,由于似然函數(shù)過于復(fù)雜,未知參數(shù)較多,本文采用MCMC-Gibbs(Markov-Monte Carlo-Gibbs)抽樣算法估計模型未知參數(shù),并依據(jù)赤池信息量準則(Akaike Information Criterion, AIC)選擇合適的Copula函數(shù);最后,以糠醛含量和甲醇含量作為性能退化量,依托加速熱老化實驗數(shù)據(jù)進行實例驗證,并比較單性能、兩性能獨立、兩性能相關(guān)情形下的可靠度曲線及剩余壽命預(yù)測結(jié)果,以證明本文所提方法在可靠性評估及剩余壽命預(yù)測方面的優(yōu)勢及合理性。
根據(jù)上述內(nèi)容,假設(shè)隨機變量和具有相關(guān)性,令二維隨機變量(,)的聯(lián)合分布函數(shù)為,邊緣分布分別為和,由Sklar定理可知存在一個Copula函數(shù)(·),使得
其中
選擇不同的Copula函數(shù)進行建模會出現(xiàn)不同的結(jié)果,因此根據(jù)實際情況,選擇擬合效果好的Copula函數(shù)非常重要。赤池信息量準則(AIC)是衡量統(tǒng)計模型擬合優(yōu)良性的一種標準,該準則從模型復(fù)雜度和模型擬合優(yōu)度兩方面考慮,選擇出恰當(dāng)?shù)哪P停渑c似然函數(shù)和殘差二次方和有一定的聯(lián)系,AIC值越小說明所選擇的模型越合適[17]。AIC準則突破了以往僅考慮模型擬合情況的評價標準,且具有適用性好的優(yōu)點,因此本文依據(jù)AIC準則來選擇合適的Copula函數(shù)。AIC準則的數(shù)學(xué)表達式為
表1 常見的幾種二元Copula函數(shù)
聚合度(DP)是表征油紙絕緣系統(tǒng)退化程度的最直接的性能退化指標,當(dāng)DP下降到250時,認為絕緣性能失效[18],然而在工程實際中,DP無法實現(xiàn)在線檢測。研究表明,糠醛含量與DP存在著一定的數(shù)學(xué)關(guān)系[19-20],且糠醛含量能夠?qū)崿F(xiàn)在線檢測,因此被廣泛用于絕緣紙的可靠性評估。但在油紙絕緣退化早期,糠醛含量低,難以檢測,因此以糠醛為特征量的退化模型在評估早期退化時誤差較大。A. Schaut等總結(jié)了甲醇含量在油紙絕緣退化評估方面的適用性[21],甲醇含量與DP之間同樣存在著數(shù)學(xué)關(guān)系,且退化早期含量較高,因此可以更好地描述油紙絕緣早期退化。綜上所述,本文選擇甲醇與糠醛含量作為表征變壓器油紙絕緣退化程度的性能退化量,將DP達到250時的糠醛和甲醇含量作為各自的失效閾值。
設(shè)性能退化量的失效閾值為,則性能退化量對應(yīng)的設(shè)備失效時間(即壽命)可定義為
根據(jù)文獻[16],壽命的分布函數(shù)為
當(dāng)兩個性能退化量相互獨立時,可靠度函數(shù)可以表示為
當(dāng)兩個性能退化量之間相互關(guān)聯(lián)時,本文采用Copula函數(shù)來描述其相關(guān)關(guān)系。按照Sklar定理,存在唯一Copula函數(shù)使得式(11)成立。
式中,為Copula函數(shù)的參數(shù);兩個邊緣分布函數(shù)1和2的形式不要求相同。根據(jù)文獻[16,23]可得式(9)的可靠度函數(shù)為
假設(shè)對油紙絕緣退化過程觀測次,用X(t)表示第個性能退化量在t時刻的測量值,其中為1或2,=1, 2,…,。由式(5)可得,每一步性能退化量的增量都可表示為
對似然函數(shù)兩邊取對數(shù),可得
考慮到式(17)中有9個未知參數(shù),且似然函數(shù)形式復(fù)雜,極大似然估計法將不再適用,因此本文采用MCMC-Gibbs抽樣算法來估計模型未知參數(shù)。
當(dāng)足夠大時,可看作的近似值,由此可認為抽樣所得到的隨機樣本來自目標分布,此時,可利用樣本對未知參數(shù)進行估計。根據(jù)經(jīng)驗給定未知參數(shù)的先驗分布,具體流程如圖1所示。
圖2中給出一組110℃下絕緣紙加速老化試驗中觀測到的兩個性能退化量的退化數(shù)據(jù),數(shù)據(jù)來自于文獻[24],其中絕緣油為克拉瑪依25號變壓器油,絕緣紙型號為JZGDL-075。糠醛含量的實際退化軌跡接近指數(shù)函數(shù),因此令1為(1)=exp(1)-1;甲醇含量的退化軌跡接近冪函數(shù),因此令2為(2)=t2。
圖2 油紙絕緣性能退化量隨退化時間的變化
采用MCMC算法估計不同Copula函數(shù)時退化模型的參數(shù),并利用AIC準則選擇合適的Copula函數(shù),計算結(jié)果見表2。從表2中可以看出,針對該組數(shù)據(jù),F(xiàn)rank Copula函數(shù)對應(yīng)的AIC最小,因此選擇Frank Copula函數(shù)來描述兩個性能退化量之間的相關(guān)性。
表2 不同Copula函數(shù)的AIC計算結(jié)果
Tab.2 AIC values of the three Copula functions
根據(jù)所選擇的Frank Copula函數(shù)建立退化模型,分別對兩個性能退化量獨立和相關(guān)時采用MCMC算法估計模型未知參數(shù),抽取10 000個樣本,表3中給出了第684個樣本的兩性能退化量相關(guān)的參數(shù)估計結(jié)果,表中MC誤差即蒙特卡洛誤差,是用來診斷算法收斂性的重要指標,需遠小于估計量的標準差。部分參數(shù)的迭代過程如圖3所示。
表3 MCMC方法模型參數(shù)估計結(jié)果
Tab.3 Parameter estimation results of MCMC method model
圖3 部分參數(shù)的迭代過程
將上述方法得到的模型參數(shù)代入2.2節(jié)的可靠度函數(shù)中,可獲得油紙絕緣退化模型的單性能可靠度和綜合可靠度曲線分別如圖4和圖5所示。
由圖4可得,針對油紙絕緣退化早期,糠醛含量可靠度在400 h后仍為1,而甲醇含量可靠度約在300 h后開始下降,因此用甲醇含量來描述系統(tǒng)的早期退化更準確。這是由于退化早期,相對糠醛含量來說,甲醇含量更高,易于檢測,測量誤差較小。針對油紙絕緣退化后期,糠醛含量可靠度較甲醇含量可靠度更早接近0,退化后期糠醛含量變化明顯,因此,能夠更好地描述系統(tǒng)后期退化。針對整個壽命周期,兩個性能退化量獨立情形下的可靠度均高于相關(guān)時的可靠度,因此,忽略性能退化量之間的相關(guān)性可能會高估油紙絕緣系統(tǒng)的可靠性。
圖4 油紙絕緣退化模型單性能退化量可靠度
圖5 油紙絕緣退化模型綜合可靠度
由圖5可知,當(dāng)退化時間達到600 h,獨立情形下的綜合可靠度為0.296 7,而相關(guān)情形下的綜合可靠度為0.097 8,兩種情形下的可靠度相差達到0.198 9,由此可以看出,獨立和相關(guān)兩種情形下,油紙絕緣系統(tǒng)的性能可靠度有較大差異,基于性能指標相關(guān)性的可靠性建模更符合實際情況。
對比圖4與圖5,單性能可靠度與兩性能可靠度之間存在較大差異,油紙絕緣系統(tǒng)退化過程復(fù)雜,多個性能退化指標可以表征不同的退化特性,僅考慮單個性能退化量或忽略性能退化量之間的相關(guān)性的可靠性建模可能會高估系統(tǒng)可靠度,偏于危險。
根據(jù)文獻[25],兩性能退化量在t時刻的剩余壽命的概率密度函數(shù)可分別表示為
其中
用上述方法估計不同時刻的未知參數(shù),并代入剩余壽命的概率密度函數(shù)中,圖6給出在385 h、456 h、528 h和600 h四個不同時刻,分別基于糠醛、甲醇和兩性能相關(guān)的剩余壽命預(yù)測結(jié)果。
圖6 剩余壽命概率密度曲線
由圖6可以看出,隨著退化時間的延長,油紙絕緣系統(tǒng)的剩余壽命預(yù)測不確定性降低,對比同一時刻的三條曲線,兩性能相關(guān)性退化模型能夠綜合不同性能的剩余壽命預(yù)測結(jié)果的準確性和確定性,預(yù)測結(jié)果更加合理。因此,基于糠醛和甲醇兩性能的退化模型能夠為電力變壓器健康狀態(tài)評估提供更加可靠的參考依據(jù)。
針對變壓器油紙絕緣剩余壽命預(yù)測中退化過程非線性、單個性能退化量難以全面反映其退化過程、多性能退化量間具有相關(guān)性的問題,本文基于Copula函數(shù)和非線性Wiener模型,提出了同時采用糠醛含量和甲醇含量兩個性能退化量進行可靠性評估和剩余壽命預(yù)測的方法。采用加速老化實驗數(shù)據(jù)進行實例驗證,得到如下結(jié)論:
1)油紙絕緣系統(tǒng)糠醛含量與甲醇含量兩個性能退化量在退化過程中存在相關(guān)關(guān)系,不同的Copula函數(shù)會出現(xiàn)不同的結(jié)果,本文基于AIC準則,證明Frank Copula函數(shù)在描述變壓器油紙絕緣的糠醛含量與甲醇含量兩性能退化量相關(guān)關(guān)系時具有更好的擬合優(yōu)度。
2)本文分別比較了基于糠醛、甲醇、兩性能獨立、兩性能相關(guān)等不同情形下的變壓器油紙絕緣系統(tǒng)可靠度曲線,結(jié)果表明,單性能情形下的可靠度高于兩性能情形下的可靠度,性能獨立情形下的可靠度高于性能相關(guān)情形下的可靠度,考慮性能相關(guān)關(guān)系的二元變壓器油紙絕緣可靠性評估方法較單性能可靠性評估方法更保守。對比實驗數(shù)據(jù)可得,本文方法更符合實際測量結(jié)果,評估結(jié)果更加合理。
3)通過對比基于糠醛、甲醇及兩性能相關(guān)情形下四個不同監(jiān)測時刻的變壓器油紙絕緣剩余壽命預(yù)測結(jié)果,可以看出,本文所提方法兼顧了預(yù)測結(jié)果的可靠性與準確性,能夠為油浸式電力變壓器的健康狀態(tài)評估提供參考依據(jù)。
[1] 杜江, 孫銘陽. 基于變權(quán)灰云模型的變壓器狀態(tài)層次評估方法[J]. 電工技術(shù)學(xué)報, 2020, 35(20): 4306-4316. Du Jiang, Sun Mingyang. Hierarchical assessment method of transformer condition based on weight-varying grey cloud model[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4306-4316.
[2] 李典陽, 張育杰, 馮健, 等. 變壓器故障樣本多維診斷及結(jié)果可信度分析[J]. 電工技術(shù)學(xué)報, 2022, 37(3): 667-675. Li Dianyang, Zhang Yujie, Feng Jian, et al. Multi-dimensional diagnosis of transformer fault sample and credibility analysis[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 667-675.
[3] Liao Ruijin, Xiang Bin, Yang Lijun, et al. Study on the thermal aging characteristics and bond breaking process of oil-paper insulation in power transformer[C]//Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, Vancouver, BC, Canada, 2008: 291-296.
[4] Vasovic V, Lukic J, Mihajlovic D, et al. Aging of transformer insulation—experimental transformers and laboratory models with different moisture contents: part I—DP and furans aging profiles[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 1840-1846.
[5] Heywood R J, Stevens G C, Ferguson C, et al. Life assessment of cable paper using slow thermal ramp methods[J]. Thermochimica Acta, 1999, 332(2): 189-195.
[6] Ding H Z, Wang Z D. On the degradation evolution equations of cellulose[J]. Cellulose, 2008, 15(2): 205-224.
[7] Madhavan K S, Murthy T S R, Sethuraman R. Estimation of degree of polymerisation and residual age of transformers based on furfural levels in insulating oil through generalized regression neural networks[M]//Computational Intelligence, Theory and Applications. Berlin, Heidelberg: Springer, 2006: 751-756.
[8] 范賢浩, 劉捷豐, 張鐿議, 等. 融合頻域介電譜及支持向量機的變壓器油浸紙絕緣老化狀態(tài)評估[J]. 電工技術(shù)學(xué)報, 2021, 36(10): 2161-2168. Fan Xianhao, Liu Jiefeng, Zhang Yiyi, et al. Aging evaluation of transformer oil-immersed insulation combining frequency domain spectroscopy and support vector machine[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2161-2168.
[9] 張明澤, 劉驥, 陳昕, 等. 基于Wiener模型的變壓器油紙絕緣老化剩余壽命評估方法[J]. 電工技術(shù)學(xué)報, 2018, 33(21): 5098-5108. Zhang Mingze, Liu Ji, Chen Xin, et al. Residual life assessment method of transformer oil-paper insulation aging based on Wiener modle[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5098-5108.
[10] Madavan R, Balaraman S. Failure analysis of transformer liquid—solid insulation system under selective environmental conditions using Weibull statistics method[J]. Engineering Failure Analysis, 2016, 65: 26-38.
[11] Nezami M M, Wani S A, Khan S A, et al. Fuzzy approach for residual life assessment of paper insulation[C]//2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Rupnagar, India, 2018: 26-30.
[12] 周源, 呂衛(wèi)民, 王少蕾, 等. 基于Copula函數(shù)耦合性建模的二元加速退化數(shù)據(jù)統(tǒng)計分析方法[J]. 兵器裝備工程學(xué)報, 2018, 39(5): 160-165. Zhou Yuan, Lü Weimin, Wang Shaolei, et al. Statistical analysis method of bivariate degradation data based on dependency modeling via copula function[J]. Journal of Ordnance Equipment Engineering, 2018, 39(5): 160-165.
[13] 宋宇, 李涵. 基于核密度估計和Copula函數(shù)的風(fēng)、光出力場景生成[J]. 電氣技術(shù), 2022, 23(1): 56-63. Song Yu, Li Han. Typical scene generation of wind and photovoltaic power output based on kernel density estimation and Copula function[J]. Electrical Engineering, 2022, 23(1): 56-63.
[14] 李天梅, 司小勝, 劉翔, 等. 大數(shù)據(jù)下數(shù)模聯(lián)動的隨機退化設(shè)備剩余壽命預(yù)測技術(shù)[J]. 自動化學(xué)報, 2022, 48(9): 2119-2141. Li Tianmei, Si Xiaosheng, Liu Xiang, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data[J]. Acta Automatica Sinica, 2022, 48(9): 2119-2141.
[15] Ye Zhisheng, Xie Min. Stochastic modelling and analysis of degradation for highly reliable products[J]. Applied Stochastic Models in Business and Industry, 2015, 31(1): 16-32.
[16] 郝會兵. 基于貝葉斯更新與Copula理論的性能退化可靠性建模與評估方法研究[D]. 南京: 東南大學(xué), 2016.
[17] 文冰梅, 趙聯(lián)文, 黃磊. AIC準則與留一法交叉驗證漸近等價的證明[J]. 統(tǒng)計與決策, 2022, 38(6): 40-43. Wen Bingmei, Zhao Lianwen, Huang Lei. Proof of the asymptotic equivalence between AIC criterion and LOOCV[J]. Statistics & Decision, 2022, 38(6): 40-43.
[18] 國家能源局. 電力設(shè)備預(yù)防性試驗規(guī)程: DL/T 596—2021[S]. 北京: 中國電力出版社, 2021.
[19] 王健一, 劉雪麗, 孫建濤, 等. 油紙絕緣新型老化表征物研究進展與展望[J]. 中國電機工程學(xué)報, 2021, 41(21): 7517-7529. Wang Jianyi, Liu Xueli, Sun Jiantao, et al. Research progress and prospect of new aging characterization of oil-paper insulation[J]. Proceedings of the CSEE, 2021, 41(21): 7517-7529.
[20] 趙珩, 楊耀杰, 苗堃, 等. 油浸式電力變壓器絕緣紙老化特征量的研究進展[J]. 變壓器, 2020, 57(9): 38-43. Zhao Heng, Yang Yaojie, Miao Kun, et al. Research progress on aging indicator of insulating paper of OilImmersed power transformer[J]. Transformer, 2020, 57(9): 38-43.
[21] Schaut A, Autru S, Eeckhoudt S. Applicability of methanol as new marker for paper degradation in power transformers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(2): 533-540.
[22] Zhang Zhengxin, Si Xiaosheng, Hu Changhua, et al. Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods[J]. European Journal of Operational Research, 2018, 271(3): 775-796.
[23] 周義蛟, 郭基聯(lián), 萬巍, 等. 基于Wiener和Copula函數(shù)性能退化模型的減推力起飛可靠性收益評估研究[J]. 推進技術(shù), 2019, 40(3): 667-674. Zhou Yijiao, Guo Jilian, Wan Wei, et al. A study on reliability benefit assessment of reduced thrust takeoff based on performance degradation model of Wiener and Copula functions[J]. Journal of Propulsion Technology, 2019, 40(3): 667-674.
[24] 彭磊, 付強, 李麗, 等. 基于變壓器油中甲醇含量的絕緣紙聚合度檢測方法[J]. 變壓器, 2019, 56(3): 50-54. Peng Lei, Fu Qiang, Li Li, et al. Detection method for polymerization degree of insulation paper based on methanol content in transformer oil[J]. Transformer, 2019, 56(3): 50-54.
[25] Si Xiaosheng, Wang Wenbin, Hu Changhua, et al. Remaining useful life estimation based on a nonlinear diffusion degradation process[J]. IEEE Transactions on Reliability, 2012, 61(1): 50-67.
Residual Life Prediction Method of Transformer Oil-Paper Insulation Based on Binary Nonlinear Wiener Random Process
Zhao Hongshan Chang Jieying Qu Yuehan Sun Chengyan Guo Xiaomei
(School of Electrical and Electronic Engineering North China Electric Power University Baoding 071000 China)
Oil-immersed transformer is one of the core equipment of power system, and its safe and stable operation is of great significance to the reliable power supply of power grid. The purpose of performance reliability analysis and remaining life prediction of transformer is to predict its degradation trend and life end, so that maintenance measures can be taken in time before the end of transformer life to avoid power failure. The operating life of transformer mainly depends on its insulation performance, so the reliability analysis of insulation performance and the remaining life prediction are of great significance.
Most of the traditional transformer oil paper insulation degradation models were based on single performance degradation. In view of the problem that the traditional prediction method of residual life of oil-paper insulation of oil-immersed power transformer with single performance degradation is difficult to fully reflect the degradation behavior of oil-paper insulation and the lack of consideration of the correlation between multi-performance degradation, considering the randomness and nonlinearity of the degradation process fully in this paper, a method for residual life prediction of transformer oil-paper insulation based on binary nonlinear Wiener random process was proposed. Firstly, based on nonlinear Wiener stochastic process, the oil-paper insulation degradation model with single property degradation quantity was established to describe the randomness and nonlinearity of oil-paper insulation degradation process. Then, based on Copula function, a degradation model with two performance correlation was established to analyze the joint degradation behavior of transformer oil-paper insulation reflected by two performance degradation quantities more comprehensively. However, different Copula functions would produce different results. Based on AIC criterion, this paper proved that Frank Copula function had better goodness of fit when describing the correlation between furfural and methanol degradation of transformer oil-paper insulation. Finally, because the likelihood function was too complex and there were many unknown parameters, this paper used MCMC-Gibbs sampling algorithm to estimate the unknown parameters of the model and predict the remaining life of transformer oil-paper insulation.
In order to verify the effectiveness and rationality of the proposed method, the contents of furfural and methanol were taken as performance degradation quantities, and the experimental data of accelerated thermal aging were used for example verification. The reliability curves and the prediction results of remaining life were compared under three conditions of single performance, two independent performance and two correlated performance. The results show that the reliability of the single performance case is higher than that of the two-performance case, and the reliability of the performance independent case is higher than that of the performance-dependent case. The reliability assessment method of oil paper insulation for transformer based on binary method considering performance correlation is more conservative than that based on single performance reliability assessment method. By comparing the experimental data, it can be seen that the proposed method is more consistent with the actual measurement results and the evaluation results are more reasonable. By comparing the prediction results of transformer oil paper insulation remaining life at four different monitoring times based on furfural, methanol and two performance correlation cases, it can be seen that the proposed method takes into account the reliability and accuracy of the prediction results, and can provide a reference for the health status assessment of oil-immersed power transformers.
Power transformer, oil paper insulation, residual life, bivariate nonlinear Wiener, Copula connect function
10.19595/j.cnki.1000-6753.tces.220865
TM85
2022-05-17
2022-06-17
趙洪山 男,1965年生,博士,教授,博士生導(dǎo)師,研究方向為電力系統(tǒng)動態(tài)分析與控制、主動配電網(wǎng)以及故障預(yù)測等。E-mail:zhaohshcn@126.com
曲岳晗 男,1995年生,博士研究生,研究方向為配電設(shè)備智能運維。E-mail:quyuehan0617@163.com(通信作者)
(編輯 李冰)