国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于芯片和填充測序數(shù)據(jù)的肉雞屠宰性狀基因組選擇準確性評估

2023-08-15 11:19:22尹暢朱墨陳艷茹童世鋒趙桂蘋劉楊
中國農(nóng)業(yè)科學 2023年15期
關(guān)鍵詞:屠宰肉雞準確性

尹暢,朱墨,陳艷茹,童世鋒,趙桂蘋,劉楊

基于芯片和填充測序數(shù)據(jù)的肉雞屠宰性狀基因組選擇準確性評估

1南京農(nóng)業(yè)大學動物科技學院,南京 210095;2中國農(nóng)業(yè)科學院北京畜牧獸醫(yī)研究所/畜禽營養(yǎng)與飼養(yǎng)全國重點實驗室,北京 100193

【背景】畜禽育種工作的核心是基因組估計育種值的準確性。不同水平的遺傳標記密度對估計育種值的影響較大,隨著基因分型技術(shù)的發(fā)展和高通量測序價格的下降,基于重測序數(shù)據(jù)的基因組選擇研究不斷涌現(xiàn)。理論上,標記密度更高可獲得更高準確性的估計育種值。因為影響目標性狀的數(shù)量性狀基因座(quantitative trait loci, QTL)至少與覆蓋全基因組范圍的高密度標記中的一個標記處于連鎖不平衡狀態(tài)。所以,較高密度的標記水平,理論上標記與QTL之間的緊密連鎖更好,從而保證了較高的預測準確性。但也有研究表明,填充測序數(shù)據(jù)與芯片數(shù)據(jù)相比,基因組預測的準確性提升并不明顯?!灸康摹坷肎BLUP方法,通過比較填充測序數(shù)據(jù)和芯片數(shù)據(jù)在肉雞屠宰性狀的基因組選擇準確性,為肉雞基因組選擇育種的基因分型策略提供理論依據(jù)?!痉椒ā恳罁?jù)芯片數(shù)據(jù)和填充測序(whole-genome sequence, WGS)數(shù)據(jù),利用GBLUP方法,針對白羽肉雞胸肌重、屠體重和腿肌重性狀進行基因組預測,對其在基因組預測的準確性進行比較。首先,使用“京芯一號”雞55 K SNP芯片對3 362只雞進行基因分型,并從第7世代的第9批次中隨機選取230只雞進行全基因組重測序,然后利用Beagle 5.1軟件將55 K SNP芯片數(shù)據(jù)填充至重測序數(shù)據(jù)水平。為避免染色體大小對填充準確性的影響,將選擇雞較大的3號染色體和較小的14號染色體來進行計算等位基因準確率(allele correct rate, CR)和基因型相關(guān)系數(shù)(correlation, Cor),并以此判斷填充準確性。利用填充測序數(shù)據(jù)對3個屠宰性狀的基因組育種值進行預測,并采用5-折交叉驗證的方法評價預測結(jié)果的準確性、秩相關(guān)和無偏性?!窘Y(jié)果】兩條染色體的平均等位基因準確率為0.924,平均基因型相關(guān)系數(shù)為0.885,填充準確率較高,可以用于后期基因組預測研究。SNP芯片數(shù)據(jù)基因組育種值的預測準確性在0.2194—0.2629之間,填充測序數(shù)據(jù)基因組育種值的預測準確性在0.2110—0.2695之間。與55 K SNP芯片的結(jié)果相比,填充測序數(shù)據(jù)的基因組育種值預測的準確性差異不顯著?!窘Y(jié)論】與SNP芯片的結(jié)果相比,利用填充后的基因組數(shù)據(jù)對白羽肉雞的3個屠宰性狀(胸肌重、屠體重和腿?。┑幕蚪M育種值預測準確性提升并不顯著,該結(jié)論為畜禽遺傳育種工作中的數(shù)據(jù)類型選擇提供參考。

白羽肉雞;屠宰性狀;基因組育種值預測;填充測序數(shù)據(jù);芯片數(shù)據(jù);評估

0 引言

【研究意義】屠宰性狀是肉雞重要的經(jīng)濟性狀,是肉雞育種的重要選育方向,但由于屠宰性狀無法活體測量,優(yōu)秀的個體會因屠宰而失去繁育優(yōu)秀后代的機會[1]?;蚪M選擇(genomic selection, GS)是一個強有力的工具,它可以不經(jīng)表型測定而直接獲得個體的育種值。由于基因分型技術(shù)的快速發(fā)展,基因組選擇在實際育種工作中的應用已經(jīng)日漸成熟[2]。高密度的SNPs可以提供更多信息,理論上增加標記密度可提高基因組選擇的準確性[3]。然而,對于大多數(shù)畜禽來說,使用測序數(shù)據(jù)進行基因分型的成本仍然很高。因此,對于基因組選擇應該采用何種水平的遺傳標記密度一直是研究的熱點[4]?!厩叭搜芯窟M展】MEUWISSEN等[5]在模擬數(shù)據(jù)研究中發(fā)現(xiàn),與30 K SNP芯片相比,使用測序數(shù)據(jù)的育種值預測準確性提高了40%。IHESHIULOR[6]等使用測序數(shù)據(jù)進行基因組選擇時,預測準確性提高了92%。為了獲得相對經(jīng)濟且較高密度的基因型數(shù)據(jù),可以使用基因型填充方法獲得測序水平數(shù)據(jù)后進行基因組選擇[7]。受到填充準確性的影響,使用填充后的全基因組水平數(shù)據(jù)不能總是提高基因組選擇的預測準確性[8]。與芯片數(shù)據(jù)相比,在奶牛和肉牛群體中填充測序數(shù)據(jù)的基因組育種值準確性也沒有顯著提高[9-11],但使用填充后的基因組水平數(shù)據(jù)提高了澳大利亞綿羊寄生蟲抗性的基因組選擇準確性[12]。【本研究切入點】由于基因技術(shù)的迅速發(fā)展且基因分型的成本越來越低,基于填充數(shù)據(jù)進行畜禽的基因組選擇已成為趨勢[13]。現(xiàn)今,已有關(guān)于高密度芯片數(shù)據(jù)和填充數(shù)據(jù)在肉雞基因組選擇的研究,但中密度芯片數(shù)據(jù)和填充數(shù)據(jù)在基因組選擇準確性的比較研究鮮有報道?!緮M解決的關(guān)鍵問題】本研究旨在利用55 K SNP芯片數(shù)據(jù)和填充測序數(shù)據(jù)對白羽肉雞的三個屠宰性狀的基因組育種值進行預測,并將預測的結(jié)果進行比較,探究在白羽肉雞屠宰性狀的基因組預測研究中不同標記密度水平的數(shù)據(jù)對于預測準確性的影響。

1 材料與方法

1.1 試驗動物

試驗動物來自廣東佛山高明新廣農(nóng)牧股份有限公司的白羽肉雞祖代父系(B系),并且已連續(xù)完成了7個世代的生長性能選育。研究使用的群體是第5—7世代(2018—2020年)的3 362只肉雞,共計11個批次,來源于227只公雞和1 305只母雞的后代。其中,2 502只雞在42日齡時進行了屠宰性能測定,記錄了胸肌重(breast muscle weight,BrW)、屠體重(carcass weight,CW)、腿肌重(thigh muscle weight,ThW),表型數(shù)據(jù)如表1所示。

表1 胸肌重、屠體重和腿肌重的描述性統(tǒng)計

1.2 表型數(shù)據(jù)預處理

對表型數(shù)據(jù)進行預處理,剔除表型的缺失值和異常值(平均值±3倍標準差)。本研究根據(jù)群體的實際情況,將世代、批次、性別作為固定因子,采用R語言中GLM模型對影響表型的固定因子進行校正,模型如下:

y=μ+Gen+Batch+Sex+e

式中,y為表型值,μ總體均值,Gen為世代效應,Batch為批次效應,Sex為性別效應,e為隨機殘差。

1.3 基因型數(shù)據(jù)的獲取與質(zhì)控

1.3.1 基因組DNA提取及分型 采用常規(guī)酚-氯仿抽提法提取血樣基因組DNA,使用NanoDrop2000核酸分析儀檢測DNA的濃度和質(zhì)量。質(zhì)檢合格后的DNA樣品送至北京康普森生物技術(shù)有限公司,使用“京芯一號”雞 55K SNP芯片進行基因分型[14]。

1.3.2 重測序數(shù)據(jù) 從第7世代的第9批次群體中隨機選擇230個個體進行重測序,利用BWA軟件將原始測序數(shù)據(jù)過濾后比對到雞參考基因組上。利用GATK 3.5軟件的Picard模塊去除PCR重復、局部插入缺失重排和堿基匹配得分重排。采用HaplotypeCaller模塊和GVCF形式進行個體SNP檢測。使用GATK的SelectVariants模塊選擇出高質(zhì)量SNP位點,并設定以下SNP過濾標準:Q>40&&FS<60.0&&ReadPosRankSum>-8.0&&MQRankSum>-12.5&&DP>2,丟棄含有3個及以上等位基因的位點, 最終獲得高質(zhì)量的SNP數(shù)據(jù)用于后續(xù)分析。

1.3.3 芯片數(shù)據(jù)的質(zhì)控 采用PLINK(V1.90)軟件對芯片的基因型數(shù)據(jù)進行質(zhì)量控制[15]。質(zhì)量控制的條件如下:(1)保留樣本檢出率大于90%的個體;(2)保留SNP檢出率大于90%的位點;(3)保留次要等位基因頻率大于5%的SNP位點。芯片經(jīng)過質(zhì)控后,保留3 314個樣本和42 104個SNP用于后續(xù)分析。

1.3.4 基因型填充 用Beagle 5.1軟件[16-17]將55 K SNP芯片數(shù)據(jù)填充至重測序水平。進行填充之前,使用conform-gt軟件對芯片數(shù)據(jù)與重測序數(shù)據(jù)進行比對,剔除芯片中特有的SNP。然后,采用Beagle 5.1軟件將55 K SNP芯片數(shù)據(jù)填充至重測序水平,設置有效群體含量為61 500,其他參數(shù)默認使用原始參數(shù)。填充完成后對基因型數(shù)據(jù)進行過濾,保留等位基因的2≥0.9和MAF≥0.05的位點,過濾后,保留8 652 215個常染色體SNP用于后續(xù)分析。

1.4 基因型填充的準確性評價

研究中,等位基因準確率(allele correct rate,CR)和基因型相關(guān)系數(shù)(correlation,Cor)被用來評估基因型填充的準確性。等位基因準確率是填充正確的等位基因在參與填充的等位基因中所占的比例?;蛐拖嚓P(guān)系數(shù)是推斷的基因型與原始基因型之間的相關(guān)系數(shù)(將兩種純合基因型和一種雜合基因型分別編碼0/1/2,計算填充前后的相關(guān)系數(shù))。考慮到染色體大小對基因型填充準確性的影響,本研究將選擇對較大的雞3號染色體和較小的14號染色體進行計算,重復5次。

1.5 基因組選擇的統(tǒng)計模型

y=Xb+Zg+e

式中,y是性狀的表型值向量;b是固定效應的向量;g是加性遺傳效應向量,服從正態(tài)分布:g~N(0,Gσ2 g);e是隨機殘差效應向量,服從正態(tài)分布:e~N(0,Iσ2 e);X和Z分別為對應的設計矩陣。其中,G矩陣[18]的構(gòu)建根據(jù)VanRaden提出的形式計算,公式為:

式中,Pi是某個位點的次要等位基因頻率;Z是x×y的標準化基因型矩陣,x是SNP數(shù),y是有基因型的個體數(shù)?;谔畛錅y序數(shù)據(jù)的G矩陣構(gòu)建使用GCTA軟件[19]。

1.6 基因組育種值準確性與無偏性的評價標準

本研究采用5-折交叉驗證(5-fold cross-validation)方法來評估基因組育種值預測的準確性。5-折交叉驗證的實施方法是,采用隨機抽樣的方法將樣本分成隨機的5等份,然后選擇其中1份作為驗證群體,其他4份作為參考群體,循環(huán)進行5次。本研究中,對每個性狀的交叉驗證進行20個重復。

為了評估基因組育種值預測的結(jié)果,本研究采用準確性、秩相關(guān)和無偏性作為評估預測準確性的指標。由于在實際群體中,真實育種值(true breeding value,TBV)無法直接得到,因此采用校正后的表型值(y*)來代替。校正后的表型值模型與GBLUP類似,其親緣關(guān)系矩陣由系譜構(gòu)建。

(1)準確性:驗證群體的預測育種值(GEBVtest)與校正后的表型值(y* test)之間的皮爾遜相關(guān)系數(shù),該值代表兩個連續(xù)變量之間的相關(guān)性。

式中,var(GEBVtest)和var(y* test)是GEBVtest和y* test的方差;cov(y* test, GEBVtest)是GEBVtest和y* test之間的協(xié)方差。

(2)秩相關(guān):驗證群體的預測育種值與校正后的表型值之間的斯皮爾曼相關(guān)系數(shù),該值代表兩列有等級屬性變量之間排名的相關(guān)性。

式中,di是兩列等級變量之間的等級差數(shù);n是總變量數(shù)。

(3)無偏性:校正后的表型值對驗證群體的預測育種值之間的回歸系數(shù),該值越接近1,表明預測育種值是對校正后表型值的無偏預測。

2 結(jié)果

2.1 表型數(shù)據(jù)的描述性統(tǒng)計量與遺傳參數(shù)估計

胸肌重、屠體重和腿肌重的遺傳相關(guān)和表型相關(guān)如表2所示,其中屠體重與腿肌重間遺傳相關(guān)與表型相關(guān)均最高。

表2 胸肌重、屠體重和腿肌重的遺傳相關(guān)(下三角)和表型相關(guān)(上三角)

2.2 基因型填充的準確性

用Beagle 5.1軟件將55 K SNP芯片數(shù)據(jù)填充至重測序水平。3號染色體和14號染色體等位基因準確率和基因型相關(guān)系數(shù)結(jié)果如表3所示,基因型填充的準確性結(jié)果如圖1所示。兩條染色體的平均等位基因準確率為0.924(0.917—0.932),平均基因型相關(guān)系數(shù)為0.885(0.856—0.902),填充準確率較高,可以用于后期進行基因組預測研究。

表3 3號和14號的基因型填充準確性

2.3 基因組選擇的準確性與無偏性

2.3.1 準確性 本研究利用GBLUP方法,采用5-折交叉驗證的策略評估白羽肉雞的3個屠宰性狀的基因組育種值預測的準確性,并和55 K SNP芯片數(shù)據(jù)的結(jié)果進行比較,結(jié)果見表4。結(jié)果顯示,SNP芯片數(shù)據(jù)計算的基因組育種值預測的準確性在0.2194—0.2629,填充測序數(shù)據(jù)計算的基因組育種值預測的準確性在0.2110—0.2695。對于胸肌重性狀,填充測序數(shù)據(jù)計算的基因組育種值預測的準確性略高于SNP芯片數(shù)據(jù)。總體來說,試驗中使用的兩種數(shù)據(jù)類型對基因組育種值預測的準確性結(jié)果大致相似(圖2)。

Chr3, 3號染色體; Chr14, 14號染色體

表4 3個白羽肉雞屠宰性狀的基因組育種值預測的準確性

2.3.2 秩相關(guān) 本研究利用GBLUP方法,采用5-折交叉驗證的策略評估白羽肉雞的3個屠宰性狀的基因組育種值預測的秩相關(guān),并和55 K SNP芯片數(shù)據(jù)的結(jié)果進行比較,結(jié)果見表5。結(jié)果顯示,芯片數(shù)據(jù)計算的基因組育種值預測的秩相關(guān)在0.2013—0.2489,填充測序數(shù)據(jù)計算的基因組育種值預測的秩相關(guān)在0.1920—0.2555?;蚪M育種值預測的秩相關(guān)中,胸肌重性狀填充測序數(shù)據(jù)結(jié)果略高于芯片數(shù)據(jù),屠體重和腿肌重性狀芯片數(shù)據(jù)結(jié)果略低于填充測序數(shù)據(jù),但兩種數(shù)據(jù)類型對3個性狀的基因組育種值預測秩相關(guān)結(jié)果大致相似(圖2)。

表5 3個白羽肉雞屠宰性狀的基因組育種值預測的秩相關(guān)

*<0.05,**<0.01,***<0.001

BrW,胸肌重;CW,屠體重;ThW,腿肌重

BrW, Breast muscle Weight; CW, Carcass Weight; ThW, Thigh muscle Weight

圖2 基于芯片和填充測序數(shù)據(jù)計算3個白羽肉雞屠宰性狀的基因組育種值預測的準確性和秩相關(guān)

Fig. 2 Accuracy and rank of genomic prediction among three white-feathered broiler carcass traits based on SNP array and imputed WGS level data

2.3.3 無偏性 本研究利用GBLUP方法,采用5-折交叉驗證策略評估白羽肉雞3個屠宰性狀的基因組育種值預測的無偏性,并和55 K SNP芯片數(shù)據(jù)的結(jié)果進行比較,結(jié)果見表6。結(jié)果顯示,SNP芯片數(shù)據(jù)計算的基因組育種值預測的無偏性在0.9340—0.9814,填充測序數(shù)據(jù)計算的基因組育種值預測的無偏性在0.9153—0.9553。填充測序數(shù)據(jù)計算的基因組育種值預測的無偏性與基于芯片數(shù)據(jù)計算的結(jié)果相似,基因組育種值預測的無偏性都接近1(圖3)。該結(jié)果表明無論是芯片數(shù)據(jù)還是填充測序數(shù)據(jù),GBLUP方法計算的基因組育種值都接近對于真實育種值的無偏預測。

表6 3個白羽肉雞屠宰性狀的基因組育種值預測的無偏性

圖3 基于芯片和填充測序數(shù)據(jù)計算3個白羽肉雞屠宰性狀的基因組育種值預測的無偏性

3 討論

3.1 填充測序數(shù)據(jù)對基因組育種值預測的影響

本研究應用填充測序數(shù)據(jù)結(jié)合GBLUP方法,對白羽肉雞3個屠宰性狀(胸肌重、屠體重、腿肌重)的基因組育種值進行預測,并將預測結(jié)果與基于55 K SNP芯片的結(jié)果進行比較。結(jié)果表明,除了在胸肌重的基因組育種值的預測中,填充測序數(shù)據(jù)的預測準確性高于芯片數(shù)據(jù)的結(jié)果,其余兩個性狀中,基于填充測序數(shù)據(jù)的預測準確性均低于基于芯片數(shù)據(jù)的結(jié)果。秩相關(guān)系數(shù)中也表現(xiàn)出相同的趨勢。大量真實數(shù)據(jù)研究表明,基因組預測的準確性并不會隨著標記密度的增加而顯著提高[8,20]。在植物育種方面,ELBASYONI等[21]研究了冬小麥群體的4個性狀,結(jié)果表明高通量測序數(shù)據(jù)只達到了與芯片數(shù)據(jù)相當?shù)臏蚀_性。在家禽育種方面,HEIDARITABAR等[8]比較了商業(yè)白蛋雞品系中全基因組測序數(shù)據(jù)和60 K SNP芯片數(shù)據(jù)對產(chǎn)蛋量的基因組選擇準確性的差異,結(jié)果表明,測序數(shù)據(jù)對基因組預測的準確性僅提高了不到1%。NI等[20]在一個商業(yè)棕色蛋雞品系中使用全基因組測序數(shù)據(jù)和336 K SNP芯片數(shù)據(jù)對3個產(chǎn)蛋性狀的基因組育種值進行預測,結(jié)果發(fā)現(xiàn),使用測序數(shù)據(jù)進行基因組預測并無顯著優(yōu)勢。王家迎[22]通過計算肉雞采食類、胴體類和生長類共23種性狀,通過對比,高密度芯片數(shù)據(jù)和填充數(shù)據(jù)的估計育種值準確性沒有顯著差異。

3.2 填充測序數(shù)據(jù)的GEBV準確性提高不顯著的可能原因

本研究發(fā)現(xiàn)填充測序數(shù)據(jù)的基因組育種值預測準確性,相較于55 K SNP芯片數(shù)據(jù)的結(jié)果沒有顯著提高,甚至在一些性狀中還有所降低。分析其可能原因如下:(1)本研究使用的基因組預測方法是GBLUP,由于GBLUP方法無法充分發(fā)揮測序水平數(shù)據(jù)的優(yōu)勢,當SNP密度達到一定閾值后,再增加密度,獲得的基因組親緣關(guān)系矩陣并沒有明顯變化[23]。(2)畜禽的經(jīng)濟性狀大部分是遺傳背景復雜、受多基因控制的數(shù)量性狀。雖然測序數(shù)據(jù)增加了與目標性狀相關(guān)標記的數(shù)量,但也引入了大量與目標性狀無關(guān)的標記,干擾了對育種值的準確預測。(3)填充數(shù)據(jù)中包含大量同其他位點有較強連鎖不平衡的稀有位點,而在交叉驗證中這些稀有位點很難在參考群和驗證群里挑選出來,使得估計育種值準確性沒有顯著提高[24]。此外,已有研究表明,低次要等位基因頻率的SNP可能在復雜性狀中起重要作用[25]。然而,對于稀有SNP位點的準確填充也是一項挑戰(zhàn)。大量研究表明,低次要等位基因頻率的SNP的填充準確性較低[26-30]。本研究基于填充數(shù)據(jù)和中密度芯片數(shù)據(jù)進行基因組選擇準確性的研究對不同基因組數(shù)據(jù)類型進行基因組選擇具有一定的參考價值,對填充數(shù)據(jù)在實際畜禽育種工作中的應用具有一定指導意義。

4 結(jié)論

本研究將GBLUP方法應用于填充測序數(shù)據(jù)的白羽肉雞3個屠宰性狀的基因組預測,并將預測結(jié)果與55K SNP芯片數(shù)據(jù)結(jié)果進行比較。結(jié)果顯示,填充測序數(shù)據(jù)計算的基因組育種值預測的秩相關(guān)與芯片數(shù)據(jù)計算的結(jié)果相似,對于胸肌重性狀,填充測序數(shù)據(jù)計算的基因組育種值預測的秩相關(guān)高于基于芯片數(shù)據(jù)的結(jié)果;芯片數(shù)據(jù)計算的基因組育種值預測的準確性在0.2194—0.2629,填充測序數(shù)據(jù)計算的基因組育種值預測的準確性在0.2110—0.2695。與55 K SNP芯片的結(jié)果相比,填充測序數(shù)據(jù)的基因組育種值預測的準確性沒有顯著提高。

[1] 朱墨, 鄭麥青, 崔煥先, 趙桂蘋, 劉楊. 基于GBLUP和Bayes B方法對肉雞屠宰性狀基因組預測準確性的比較. 中國農(nóng)業(yè)科學, 2021, 54(23): 5125-5131.

ZHU M, ZHENG M Q, CUI H X, ZHAO G P, LIU Y. Comparison of genomic prediction accuracy for meat type chicken carcass traits based on GBLUP and BayesB method. Scientia Agricultura Sinica, 2021, 54(23): 5125-5131. (in Chinese)

[2] LIU J, ZHOU J, LI J, BAO H. Identification of candidate genes associated with slaughter traits in F2chicken population using genome-wide association study. Animal Genetics, 2021, 52(4): 532-535.

[3] VANRADEN P M, O'CONNELL J R, WIGGANS G R, WEIGEL K A. Genomic evaluations with many more genotypes. Genetics, Selection, Evolution, 2011, 43(1): 10.

[4] BENEDICT M N, MUNDY M B, HENRY C S, CHIA N, PRICE N D. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models. PLoS Computational Biology, 2014, 10(10): e1003882.

[5] MEUWISSEN T, GODDARD M. Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics, 2010, 185(2): 623-631.

[6] IHESHIULOR O O M, WOOLLIAMS J A, YU X J, WELLMANN R, MEUWISSEN T H E. Within- and across-breed genomic prediction using whole-genome sequence and single nucleotide polymorphism panels. Genetics, Selection, Evolution, 2016, 48: 15.

[7] MISZTAL I, LOURENCO D, LEGARRA A. Current status of genomic evaluation. Journal of Animal Science, 2020, 98(4): skaa101.

[8] HEIDARITABAR M, CALUS M P L, MEGENS H J, VEREIJKEN A, GROENEN M A M, BASTIAANSEN J W M. Accuracy of genomic prediction using imputed whole-genome sequence data in white layers. Journal of Animal Breeding and Genetics, 2016, 133(3): 167-179.

[9] HAYES B J, DAETWYLER H D. 1000 bull genomes project to map simple and complex genetic traits in cattle: Applications and outcomes. Annual Review of Animal Biosciences, 2019, 7: 89-102.

[10] KHATKAR M S, MOSER G, HAYES B J, RAADSMA H W. Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics, 2012, 13: 538.

[11] BHUIYAN M S A, KIM Y K, KIM H J, LEE D H, LEE S H, YOON H B, LEE S H. Genome-wide association study and prediction of genomic breeding values for fatty-acid composition in Korean Hanwoo cattle using a high-density single-nucleotide polymorphism array. Journal of Animal Science, 2018, 96(10): 4063-4075.

[12] AL KALALDEH M, GIBSON J, DUIJVESTEIJN N, DAETWYLER H D, MACLEOD I, MOGHADDAR N, LEE S H, VAN DER WERF J H J. Using imputed whole-genome sequence data to improve the accuracy of genomic prediction for parasite resistance in Australian sheep. Genetics, Selection, Evolution, 2019, 51(1): 32.

[13] YE S P, YUAN X L, LIN X R, GAO N, LUO Y Y, CHEN Z M, LI J Q, ZHANG X Q, ZHANG Z. Imputation from SNP chip to sequence: A case study in a Chinese indigenous chicken population. Journal of Animal Science and Biotechnology, 2018, 9: 30.

[14] LIU R R, XING S Y, WANG J, ZHENG M Q, CUI H X, CROOIJMANS R P M A, LI Q H, ZHAO G P, WEN J. A new chicken 55K SNP genotyping array. BMC Genomics, 2019, 20(1): 410.

[15] PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A R, BENDER D, MALLER J, SKLAR P, DE BAKKER P I W, DALY M J, SHAM P C. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 2007, 81(3): 559-575.

[16] BROWNING B L, ZHOU Y, BROWNING S R. A one-penny imputed genome from next-generation reference panels. The American Journal of Human Genetics, 2018, 103(3): 338-348.

[17] STAHL K, GOLA D, K?NIG I R. Assessment of imputation quality: Comparison of phasing and imputation algorithms in real data. Frontiers in Genetics, 2021, 12: 724037.

[18] VANRADEN P M. Efficient methods to compute genomic predictions. Journal of Dairy Science, 2008, 91(11): 4414-4423.

[19] YANG J, LEE S H, GODDARD M E, VISSCHER P M. GCTA: A tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 2011, 88(1): 76-82.

[20] NI G Y, CAVERO D, FANGMANN A, ERBE M, SIMIANER H. Whole-genome sequence-based genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture. Genetics, Selection, Evolution, 2017, 49(1): 8.

[21] ELBASYONI I S, LORENZ A J, GUTTIERI M, FRELS K, BAENZIGER P S, POLAND J, AKHUNOV E. A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat. Plant Science, 2018, 270: 123-130.

[22] 王家迎. 基于填充序列數(shù)據(jù)的基因組選擇研究[D]. 廣州: 華南農(nóng)業(yè)大學, 2018.

WANG J Y. The study of genome selection by using imputed whole sequence data[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese)

[23] SU G, BR?NDUM R F, MA P, GULDBRANDTSEN B, AAMAND G P, LUND M S. Comparison of genomic predictions using medium- density (~54, 000) and high-density (~777, 000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations. Journal of Dairy Science, 2012, 95(8): 4657-4665.

[24] PéREZ-ENCISO M, RINCóN J C, LEGARRA A. Sequence-. chip-assisted genomic selection: Accurate biological information is advised. Genetics, Selection, Evolution, 2015, 47(1): 43.

[25] MANOLIO T A, COLLINS F S, COX N J, GOLDSTEIN D B, HINDORFF L A, HUNTER D J, MCCARTHY M I, RAMOS E M, CARDON L R, CHAKRAVARTI A, et al. Finding the missing heritability of complex diseases. Nature, 2009, 461(7265): 747-753.

[26] HAYES B J, BOWMAN P J, DAETWYLER H D, KIJAS J W, VAN DER WERF J H J. Accuracy of genotype imputation in sheep breeds. Animal Genetics, 2012, 43(1): 72-80.

[27] HICKEY J M, CROSSA J, BABU R, DE LOS CAMPOS G. Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. Crop Science, 2012, 52(2): 654-663.

[28] LIN P, HARTZ S M, ZHANG Z H, SACCONE S F, WANG J, TISCHFIELD J A, EDENBERG H J, KRAMER J R, M GOATE A, BIERUT L J, RICE J P. A new statistic to evaluate imputation reliability. PLoS ONE, 2010, 5(3): e9697.

[29] MA P, BR?NDUM R F, ZHANG Q, LUND M S, SU G. Comparison of different methods for imputing genome-wide marker genotypes in Swedish and Finnish Red Cattle. Journal of Dairy Science, 2013, 96(7): 4666-4677.

[30] NI G Y, STROM T M, PAUSCH H, REIMER C, PREISINGER R, SIMIANER H, ERBE M. Comparison among three variant callers and assessment of the accuracy of imputation from SNP array data to whole-genome sequence level in chicken. BMC Genomics, 2015, 16: 824.

Assessment of Genomic Selection Accuracy for Slaughter Traits in Broilers Based on Microarray and Imputed Sequencing Data

1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095;2Institute of Animal Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193

【Background】In the breeding work of livestock and poultry, the core of which is the accuracy of genomic estimated breeding values. Different levels of genetic marker densities have a great impact on estimated breeding values, and with the development of genotyping technology and the decrease of high-throughput sequencing prices, genomic selection studies based on sequencing data have emerged. Theoretically, higher marker density can obtain higher prediction accuracy. This is because Quantitative Trait Loci (QTL) affecting the target trait are in linkage disequilibrium with at least one of the high-density markers covering the entire genome. A higher density of marker levels theoretically ensures tight linkage between markers and QTL, thus ensuring higher prediction accuracy. However, compared with microarray data, it has also been shown that the accuracy of genomic prediction for imputed sequencing data is not significantly improved. 【Objective】Using the GBLUP method, we compared the genomic selection accuracy of imputed sequencing data and microarray data for slaughter traits in broiler chickens to provide a theoretical basis for genotyping strategies for broiler genomic selection breeding. 【Method】 In this study, we used SNP array data and imputed whole-genome sequence level (WGS) data to perform genomic prediction for the traits of breast muscle weight, carcass weight and thigh muscle weight in white feather broilers using the GBLUP method, and then we conducted a comparative study on their accuracy in genomic prediction. First, 3 362 chickens were genotyped using the Jingxin No. 1 chicken 55 K SNP chip, and 230 chickens were randomly selected from the ninth batch of generation 7 for whole-genome resequencing, and then the 55 K SNP chip data were imputed to the resequencing data level using Beagle 5.1 software. Considering the effect of chromosome size on the filling accuracy, the larger chromosome 3 and the smaller chromosome 14 were used to calculate the allele correct rate (CR) and genotype correlation coefficient (Cor), and the imputed WGS accuracy was determined by this study. The genomic breeding values of three slaughter traits were predicted using the imputed WGS data, and the accuracy, rank correlation and unbiasedness of the prediction results were evaluated using a 5-fold cross-validation method. 【Result】The results showed that the average allelic accuracy of the two chromosomes was 0.924 and the average genotype correlation was 0.885, and the imputed WGS accuracy was high enough to be used for genomic prediction studies at a later stage. The accuracy of the predicted genomic breeding values calculated from microarray data ranged from 0.2194 to 0.2629, and the accuracy of the predicted genomic breeding values calculated from imputed sequencing data ranged from 0.2110 to 0.2695. The results show that the difference in the accuracy of the prediction of genomic breeding values from the imputed sequencing data was not significant compared with the 55 K SNP chip results. 【Conclusion】Compared with the results of 55 K SNP microarray, the improvement in the accuracy of genomic breeding value prediction for three slaughter traits (breast muscle weight, carcass weight and leg muscle) in white feather broiler using imputed genomic level data was not significant, which provides a reference for the selection of data types in livestock genetic breeding work.

white feather broiler; slaughter traits; genomic breeding value prediction; imputed sequencing data; microarray data; assessment

10.3864/j.issn.0578-1752.2023.15.016

2022-05-18;

2022-11-15

江蘇省種業(yè)振興揭榜掛帥項目(JBGS〔2021〕026)、安徽省良種聯(lián)合攻關(guān)項目(340000211260001000431)、中國農(nóng)業(yè)科學院基本科研業(yè)務費(Y2020PT02)

尹暢,E-mail:2021105019@stu.njau.edu.cn。通信作者劉楊,E-mail:yangliu@njau.edu.cn

(責任編輯 林鑒非)

猜你喜歡
屠宰肉雞準確性
2020年巴西生豬屠宰量創(chuàng)歷史紀錄
淺談如何提高建筑安裝工程預算的準確性
肉雞腹水咋防治
A special artist—Pigcasso特殊的藝術(shù)家
生豬屠宰價格信息
肉雞常見腹瀉病的診斷和治療
美劇翻譯中的“神翻譯”:準確性和趣味性的平衡
論股票價格準確性的社會效益
蛋雞和肉雞
蛋雞和肉雞
黄平县| 衡阳市| 同心县| 香格里拉县| 尚志市| 越西县| 邻水| 惠安县| 长寿区| 海城市| 沁源县| 得荣县| 云和县| 岐山县| 应用必备| 股票| 公安县| 隆化县| 台北县| 都安| 卢龙县| 密云县| 华阴市| 海南省| 荥经县| 新安县| 贵溪市| 龙井市| 乌鲁木齐县| 玉龙| 修水县| 航空| 洛宁县| 南木林县| 南乐县| 江川县| 四平市| 乐平市| 余江县| 竹山县| 三门县|