穆心愿,呂姍姍,盧良濤,劉天學(xué),李樹(shù)巖,薛昌穎,王宏偉,趙霞,夏來(lái)坤,唐保軍
授粉期高溫脅迫下雄穗大小對(duì)玉米干物質(zhì)積累及產(chǎn)量的影響
1河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,鄭州 450046;2河南省農(nóng)業(yè)科學(xué)院糧食作物研究所/河南省玉米綠色精準(zhǔn)生產(chǎn)國(guó)際聯(lián)合實(shí)驗(yàn)室,鄭州 450002;3中國(guó)氣象局/河南省農(nóng)業(yè)氣象保障與應(yīng)用技術(shù)重點(diǎn)實(shí)驗(yàn)室,鄭州 450003;4南陽(yáng)市宛城區(qū)信訪局,河南南陽(yáng) 473000
【目的】高溫是制約夏玉米高產(chǎn)穩(wěn)產(chǎn)的重要?dú)庀笠蜃又唬ㄟ^(guò)設(shè)置授粉期高溫脅迫和雄穗變小處理,探明高溫脅迫下雄穗大小對(duì)玉米產(chǎn)量形成的影響,為玉米抗逆栽培及耐高溫育種提供參考?!痉椒ā恳?個(gè)玉米品種浚單20(XD20)和農(nóng)華101(NH101)為試材,于2020—2021年玉米抽雄至散粉結(jié)束的10 d內(nèi)采用人工模擬增溫試驗(yàn),同時(shí),設(shè)置抽雄期雄穗變小處理(剪除60%雄穗分枝數(shù)),探究授粉期高溫脅迫下雄穗大小對(duì)玉米干物質(zhì)積累分配和產(chǎn)量形成的影響。【結(jié)果】2年結(jié)果表明,授粉期高溫脅迫對(duì)玉米雄穗長(zhǎng)度、分枝數(shù)、小穗數(shù)和雌雄開(kāi)花動(dòng)態(tài)影響較小,但導(dǎo)致玉米干物質(zhì)積累能力及向穗部分配比例下降,影響雌穗生長(zhǎng)發(fā)育,造成穗軸長(zhǎng)度和穗軸粗顯著降低,穗粒數(shù)顯著減少,花后物質(zhì)積累量及向籽粒分配比例下降,進(jìn)而產(chǎn)量顯著降低。高溫脅迫后,NH101穗長(zhǎng)的下降幅度小于XD20,但行粒數(shù)、穗粒數(shù)及花后物質(zhì)積累向籽粒分配比例的下降幅度高于XD20,導(dǎo)致NH101產(chǎn)量降幅超過(guò)XD20,XD20和NH101產(chǎn)量降幅分別為12.32%和25.00%,可見(jiàn)XD20比NH101更耐高溫。雄穗變小處理使XD20和NH101的雄穗分枝數(shù)和小穗數(shù)分別顯著降低58.57%、42.91%和57.30%、41.34%,但對(duì)雌雄開(kāi)花動(dòng)態(tài)無(wú)顯著影響。2個(gè)溫度條件下,雄穗變小處理均能促進(jìn)雌穗生長(zhǎng),增加穗粒數(shù),促進(jìn)花后物質(zhì)向籽粒積累,進(jìn)而提高產(chǎn)量,其中,高溫條件下的XD20增產(chǎn)幅度最大。在常溫條件下,與正常雄穗處理相比,雄穗變小處理下,XD20和NH101的產(chǎn)量分別平均增加2.76%和4.37%,而在高溫條件下,分別增加12.47%和5.75%?!窘Y(jié)論】授粉期高溫脅迫對(duì)雄穗生長(zhǎng)發(fā)育影響較小,但導(dǎo)致雌穗生長(zhǎng)發(fā)育受到不可逆損傷,穗粒數(shù)減少,制約了花后光合同化物向籽粒分配,產(chǎn)量顯著下降。高溫條件下,適當(dāng)減少雄穗分枝數(shù)可促進(jìn)雌穗生長(zhǎng)發(fā)育,增加穗粒數(shù),促進(jìn)花后物質(zhì)向籽粒積累,提高產(chǎn)量,且大雄穗型品種浚單20增產(chǎn)幅度高于小雄穗型品種農(nóng)華101。
玉米;授粉期高溫;雄穗大?。桓晌镔|(zhì)積累;籽粒產(chǎn)量
【研究意義】玉米是中國(guó)三大主糧之首,在保障國(guó)家糧食安全中具有重要地位。近年來(lái),全球氣候變暖導(dǎo)致的極端天氣愈加頻繁[1],對(duì)玉米生產(chǎn)帶來(lái)不利影響[2-3]。玉米花期包括抽雄期、吐絲期和散粉期,是玉米籽粒形成最關(guān)鍵的時(shí)期,亦是受高溫脅迫危害最大的生長(zhǎng)發(fā)育階段[4]。因此,研究玉米植株響應(yīng)花期高溫脅迫的形態(tài)機(jī)理,為玉米抗逆栽培及耐高溫育種提供實(shí)踐依據(jù)和理論指導(dǎo),對(duì)保障中國(guó)糧食安全具有重要的現(xiàn)實(shí)意義?!厩叭搜芯窟M(jìn)展】玉米雖是喜溫作物,但在一段時(shí)間內(nèi)氣溫超過(guò)臨界閾值(一般為連續(xù)3 d以上日最高氣溫≥35 ℃[5]),可能對(duì)植株生長(zhǎng)發(fā)育造成不可逆的損傷[6-7]。高溫脅迫對(duì)玉米生長(zhǎng)和產(chǎn)量的影響也因生育階段而異[4]。在營(yíng)養(yǎng)生長(zhǎng)階段,高溫脅迫會(huì)抑制植株生長(zhǎng)和生殖器官發(fā)育,造成玉米減產(chǎn)[8-9];花期高溫脅迫導(dǎo)致雌雄生殖器官發(fā)育不良,影響授粉結(jié)實(shí),穗粒數(shù)大幅減少致使嚴(yán)重減產(chǎn),且此階段高溫脅迫導(dǎo)致的玉米產(chǎn)量損失最大[10-11]。玉米是雌雄同株異花植物,其雌雄穗分化發(fā)育具有特殊規(guī)律,且易受環(huán)境影響[12]。研究表明,在孕穗階段與開(kāi)花散粉過(guò)程中,高溫脅迫對(duì)雌雄穗發(fā)育均有影響,且雄穗受影響的程度要大于雌穗[13]。這可能與在同樣高溫脅迫條件下雌穗部位因葉片遮蔭而溫度較雄穗部位低[14],以及雌穗能夠產(chǎn)生熱激蛋白而雄穗花粉不能[15]等有關(guān)。多數(shù)研究表明,花期前后高溫脅迫導(dǎo)致玉米雄穗分枝變小、數(shù)量減少,小花退化,總小花數(shù)和花粉量驟減,花粉活力降低[16-20];縮短雄穗散粉持續(xù)期,延緩雌穗花絲吐出,增加雌雄開(kāi)花間隔期,造成花期不遇[4, 21-22];花絲絨毛數(shù)量減少,花絲活力降低[20, 22-23];這些因素均會(huì)導(dǎo)致雌穗授粉受精困難,降低受精率,且受害程度隨溫度升高和持續(xù)時(shí)間延長(zhǎng)而加劇[16, 18]。同時(shí),高溫脅迫也影響到同化物積累與轉(zhuǎn)運(yùn),即使玉米完成受精,也可能會(huì)因?yàn)槲镔|(zhì)生產(chǎn)不足與轉(zhuǎn)運(yùn)不暢而導(dǎo)致雌穗生長(zhǎng)受限,敗育率增加[24-25]。玉米的高溫耐性存在顯著的基因型差異[26]。綜合前人研究結(jié)果表明,耐熱性強(qiáng)的玉米品種往往具有較高的雄穗分枝數(shù)、花粉量、花粉活力和較短的雌雄開(kāi)花間隔期[16-17, 21, 27-28]。從生產(chǎn)經(jīng)驗(yàn)上來(lái)說(shuō),普遍認(rèn)為雄穗分枝短、數(shù)量少且穎殼不飽滿的小雄穗型玉米品種,通?;ǚ哿枯^少、散粉周期短、抗高溫脅迫能力較弱,而雄穗分枝數(shù)較多、穎殼飽滿、花粉量多的大雄穗型品種更耐高溫[28]。但玉米雄穗長(zhǎng)在植株頂端,具有頂端優(yōu)勢(shì),而且發(fā)育比雌穗早,在營(yíng)養(yǎng)供應(yīng)上明顯比雌穗優(yōu)越,二者間存在著競(jìng)爭(zhēng)[29]。研究表明,雄穗分枝數(shù)與產(chǎn)量呈負(fù)相關(guān)[30]。在玉米群體中,雄穗的花粉供應(yīng)量遠(yuǎn)超過(guò)雌穗正常授粉的實(shí)際需求量[29, 31]。因此,選育適度較小雄穗的品種已成為玉米育種的趨勢(shì)?!颈狙芯壳腥朦c(diǎn)】高溫脅迫會(huì)造成玉米雄穗生長(zhǎng)發(fā)育異常,導(dǎo)致花粉量和花粉活力大幅下降,且供試材料中雄穗分枝多的大雄穗型品種往往比雄穗分枝少的小雄穗型品種更耐高溫,但雄穗大小是否與品種耐熱性之間有密切關(guān)系仍不清楚?!緮M解決的關(guān)鍵問(wèn)題】本研究通過(guò)設(shè)置玉米授粉期高溫脅迫和雄穗變小處理,研究高溫脅迫與雄穗大小對(duì)玉米品種的雌雄穗農(nóng)藝性狀、開(kāi)花動(dòng)態(tài)、花后物質(zhì)積累、產(chǎn)量及其構(gòu)成的互作效應(yīng),探究玉米品種雄穗大小與高溫耐性之間的關(guān)系,以期為未來(lái)氣候變暖背景下玉米抗逆栽培及耐高溫育種提供實(shí)踐依據(jù)與理論參考。
試驗(yàn)于2020—2021年在河南現(xiàn)代農(nóng)業(yè)研究開(kāi)發(fā)基地作物抗逆中心(河南原陽(yáng),35°01′N(xiāo),113°42′E,海拔63.4 m)進(jìn)行。該地區(qū)屬于暖溫帶大陸性季風(fēng)氣候,試驗(yàn)地土壤類(lèi)型為潮土,0—20 cm土層土壤有機(jī)質(zhì)含量8.95 g·kg-1、全氮含量1.23 g·kg-1、堿解氮含量68.46 mg·kg-1、速效磷含量71.11 mg·kg-1、速效鉀含量214.56 mg·kg-1。供試品種為農(nóng)華101(NH101)和浚單20(XD20),其中,農(nóng)華101的雄穗屬于長(zhǎng)軸少分枝類(lèi)型,浚單20的雄穗屬于短軸多分枝類(lèi)型。試驗(yàn)采用池栽方式進(jìn)行,試驗(yàn)池子規(guī)格為3.25 m(長(zhǎng))×2.40 m(寬)×2.00 m(深),每個(gè)池子作為1個(gè)小區(qū),種植密度67 500株/hm2,每小區(qū)種植4行,行距60 cm。肥料采用玉米專(zhuān)用復(fù)合肥(氮磷鉀養(yǎng)分含量比例為28﹕15﹕5),按750 kg·hm-2計(jì)算每小區(qū)施肥量,全部肥料播種時(shí)一次性作基肥施入。
試驗(yàn)設(shè)置品種、溫度處理和雄穗處理等3個(gè)因素,采用再裂區(qū)試驗(yàn)設(shè)計(jì),2個(gè)品種為主區(qū),2個(gè)溫度處理為副區(qū),2個(gè)雄穗處理為副副區(qū)。高溫處理(high temperature,HT)于玉米抽雄期開(kāi)始,至散粉結(jié)束恢復(fù)大田溫度,處理持續(xù)10 d,參照穆心愿等[21]方法采用方鋼和PO塑料膜(厚度0.1 mm,透光率95%以上)搭建的增溫棚進(jìn)行高溫處理;常溫處理(normal temperature,NT)的小區(qū)氣候條件始終與大田環(huán)境保持一致。每個(gè)溫度下設(shè)置2個(gè)雄穗處理,雄穗變小處理(removal tassel branch,RB)于抽雄期(80%以上植株雄穗抽出5—10 cm)選擇長(zhǎng)勢(shì)一致且具有代表性的植株進(jìn)行雄穗修剪,即從雄穗主軸上均勻剪除60%的雄穗分枝數(shù),并用碘伏給剪刀和雄穗傷口消毒,同時(shí)去除長(zhǎng)勢(shì)較弱和雄穗抽出過(guò)大的植株;正常雄穗處理(normal tassel branch,NB)是保持雄穗原樣,不進(jìn)行任何處理(圖1)。試驗(yàn)中為防止小區(qū)間傳粉,用100目紗網(wǎng)將每個(gè)小區(qū)四周?chē)饋?lái),高度2 m,上端高于雄穗0.5 m。每個(gè)品種下形成4個(gè)處理組合,即常溫處理+正常雄穗處理(NT+NB)、常溫處理+雄穗變小處理(NT+RB)、高溫處理+正常雄穗處理(HT+NB)、高溫處理+雄穗變小處理(HT+RB),每個(gè)處理重復(fù)3次,共24個(gè)小區(qū)。
于2020年6月6日播種,8月1日高溫處理開(kāi)始,8月10日高溫處理結(jié)束,9月28日收獲;于2021年6月11日播種,8月10日高溫處理開(kāi)始,8月19日高溫處理結(jié)束,9月28日收獲。在HT和NT處理的小區(qū)雄穗部位均放置有溫度自動(dòng)記錄儀,記錄間隔為20 min(圖2)。圖2顯示,HT與NT處理的夜間溫度無(wú)明顯差異,但日間溫度差異較大,且在12:00—14:00溫度最高時(shí)差異最大;2020年,HT處理一天中>35 ℃和>38℃的時(shí)數(shù)約為8和5 h,NT處理分別為6和0 h;2021年,HT處理一天中>35 ℃和>38 ℃的時(shí)數(shù)約為8和4 h,NT處理分別為1和0 h;在高溫處理期間,HT處理2020年的日平均氣溫、日最高氣溫和日最低氣溫分別較NT處理高0.1—2.8 ℃、0.1—4.9 ℃和0.2—0.7 ℃,2021年分別比NT處理高1.1—3.9 ℃、1.7—6.4 ℃和0.3—1.2 ℃。
圖1 正常雄穗(NB)和雄穗變小處理(RB)示意圖
圖2 常溫處理(NT)和高溫處理(HT)條件下日平均溫度和處理期間溫度的變化
1.2.1 玉米雄穗農(nóng)藝性狀測(cè)定 于抽雄后第4天,每處理選5株長(zhǎng)勢(shì)一致且具有代表性植株的雄穗,測(cè)量雄穗主軸和分枝的長(zhǎng)度,統(tǒng)計(jì)雄穗分枝數(shù)和雄穗小穗數(shù)。
1.2.2 玉米開(kāi)花動(dòng)態(tài)測(cè)定 在玉米12葉展期,每個(gè)處理標(biāo)定長(zhǎng)勢(shì)一致且具有代表性的植株10株,于抽雄期開(kāi)始,記錄抽雄、吐絲、散粉開(kāi)始和散粉結(jié)束時(shí)期。然后計(jì)算散粉開(kāi)始日期至吐絲日期的間隔天數(shù),即開(kāi)花吐絲間隔期;散粉開(kāi)始到散粉結(jié)束的持續(xù)天數(shù),即散粉持續(xù)期。
1.2.3 玉米雌穗農(nóng)藝性狀測(cè)定 于高溫處理結(jié)束當(dāng)天,每小區(qū)選取長(zhǎng)勢(shì)一致具有代表性的植株3株,摘取雌穗帶回實(shí)驗(yàn)室,測(cè)量雌穗長(zhǎng)度、苞葉層數(shù)、苞葉長(zhǎng)度、穗軸長(zhǎng)度和穗軸粗。
1.2.4 干物質(zhì)積累與分配 分別于高溫處理結(jié)束當(dāng)天和成熟期,每小區(qū)選長(zhǎng)勢(shì)一致具有代表性的植株3株,高溫處理結(jié)束當(dāng)天將植株分為莖葉和雌穗,成熟期將植株分為莖葉、穗軸和籽粒,置烘箱內(nèi)105 ℃殺青30 min,然后75 ℃烘干稱(chēng)重,并計(jì)算各器官干物質(zhì)量和分配比例。
1.2.5 產(chǎn)量及其構(gòu)成因素 于玉米成熟期,每小區(qū)收獲中間2行考種,測(cè)量穗長(zhǎng)、穗粗、穗行數(shù)、行粒數(shù)、穗粒數(shù)和百粒重,風(fēng)干后脫粒稱(chēng)重、測(cè)含水量,并計(jì)算小區(qū)產(chǎn)量。
采用Microsoft Excel 2019整理數(shù)據(jù)和制作表格,用SPSS 24.0軟件中的多因素方差分析(Multi-way ANOVA)評(píng)價(jià)各年度的品種、溫度、雄穗處理及交互作用對(duì)干物質(zhì)積累和產(chǎn)量性狀的影響,用Duncan’s test分別對(duì)2個(gè)供試品種的各測(cè)定指標(biāo)進(jìn)行處理間差異性檢驗(yàn),用Origin Pro 2022b軟件作圖。
通過(guò)對(duì)處理后玉米雄穗的農(nóng)藝性狀進(jìn)行統(tǒng)計(jì)分析(圖3),XD20的雄穗是短軸多分枝類(lèi)型,主軸長(zhǎng)度平均為20.50 cm,分枝數(shù)平均為23.67個(gè),而NH101屬于長(zhǎng)軸少分枝類(lèi)型,主軸長(zhǎng)度平均為27.67 cm,分枝數(shù)平均為7.50個(gè)。從2年數(shù)據(jù)分析,HT處理的4個(gè)雄穗農(nóng)藝性狀與NT處理無(wú)顯著差異;與NB處理相比,RB處理顯著降低了2個(gè)品種雄穗分枝數(shù)和小穗數(shù)。2020年,與NB處理相比,在RB處理下,XD20的雄穗分枝數(shù)和小穗數(shù)分別減少59.71%和48.29%,NH101分別減少57.81%和37.74%;2021年,與NB處理相比,在RB處理下,XD20的雄穗分枝數(shù)和小穗數(shù)分別減少57.43%和30.09%,NH101則分別減少56.82%和46.39%。
通過(guò)對(duì)處理后玉米開(kāi)花動(dòng)態(tài)進(jìn)行統(tǒng)計(jì)分析(圖4),2個(gè)品種的開(kāi)花動(dòng)態(tài)無(wú)顯著差異;HT處理的抽雄期、吐絲期、散粉期等與NT處理無(wú)顯著差異,但HT較NT處理縮短了2個(gè)品種的散粉持續(xù)期;2個(gè)品種在RB處理下的抽雄期、吐絲期、散粉期、散粉結(jié)束期、雌雄開(kāi)花間隔期和散粉持續(xù)期與NB處理無(wú)顯著差異??傊?020年XD20和NH101在HT處理下的散粉持續(xù)期較NT處理分別平均縮短了1.2和1.2 d,2021年分別平均縮短了0.3和0.3 d。
2020和2021年于高溫處理結(jié)束當(dāng)天,測(cè)定每個(gè)處理的雌穗長(zhǎng)度、苞葉層數(shù)、苞葉長(zhǎng)度、穗軸長(zhǎng)度和穗軸粗等雌穗農(nóng)藝性狀(圖5)。2個(gè)品種的雌穗長(zhǎng)度、苞葉層數(shù)和苞葉長(zhǎng)度均表現(xiàn)為HT與NT處理間差異不顯著,穗軸長(zhǎng)度和穗軸粗則表現(xiàn)為HT顯著低于NT處理。2020年和2021年,與NT處理相比,HT處理下,XD20的穗軸長(zhǎng)和穗軸粗分別降低8.96%、3.75%和9.91%、7.79%,NH101則分別降低4.70%、6.28%和4.10%、12.12%。從2年數(shù)據(jù)分析,2個(gè)溫度條件下,RB處理提高了2個(gè)品種的穗軸長(zhǎng)度和穗軸粗,但與NB處理差異不顯著;與NB處理相比,在RB處理下,XD20和NH101的穗軸長(zhǎng)和穗軸粗分別增加4.83%、2.82%和4.77%、2.05%。
2.4.1 高溫處理結(jié)束當(dāng)天干物質(zhì)積累與分配 由表1可知,HT處理導(dǎo)致XD20的莖葉、雌穗和單株干物質(zhì)量均顯著降低,而NH101的雌穗干物質(zhì)量顯著降低,莖葉干物質(zhì)量略有增加,單株干物質(zhì)量略有減少,但差異均不顯著。HT處理下,在2020和2021年,XD20的莖葉、雌穗和單株干物質(zhì)量分別下降6.45%、30.06%、12.47%和10.24%、29.85%、15.30%,NH101的莖葉干物質(zhì)量分別增加1.06%和1.09%,雌穗和單株干物質(zhì)量分別下降24.51%、5.53%和10.77%、1.89%。從2年數(shù)據(jù)綜合分析,2個(gè)溫度條件下,RB處理均能提高2個(gè)品種的莖葉、雌穗和單株干物質(zhì)量,但與NB處理差異不顯著;與NB處理相比,RB處理下,XD20的莖葉、雌穗和單株干物質(zhì)量增幅在NT條件下分別為0.79%、3.62%和1.51%,而HT條件下則為5.61%、6.07%和5.78%;NH101的莖葉、雌穗和單株干物質(zhì)量增幅在NT條件下分別為0.08%、0.88%和0.28%,而HT條件下則為1.35%、3.12%和1.74%。
平均值±標(biāo)準(zhǔn)誤差。同一品種不同小寫(xiě)字母表示不同處理在P<0.05水平差異顯著。下同
此外,HT處理后2個(gè)品種的干物質(zhì)向雌穗分配比例有所降低,2年結(jié)果一致。2020和2021年,XD20的HT處理的干物質(zhì)向雌穗分配比例分別降低20.09%和17.17%,NH101的HT處理的干物質(zhì)向雌穗分配比例分別降低20.10%和9.05%。從2年數(shù)據(jù)綜合分析,RB處理后2個(gè)品種的干物質(zhì)向雌穗分配比例略有增加;在NT條件下,經(jīng)RB處理后,XD20和NH101的干物質(zhì)向雌穗分配比例分別增加2.08%和0.59%,而HT條件下則分別增加0.33%和1.36%。
Ta:抽雄期;Si:吐絲期;Sh:散粉期;Es:散粉結(jié)束期;ASI:雌雄開(kāi)花間隔期;PSD:散粉持續(xù)期
2.4.2 成熟期干物質(zhì)積累與分配 由表2可知,HT處理導(dǎo)致2個(gè)品種成熟期穗軸、籽粒和單株干物質(zhì)量顯著降低,2年結(jié)果一致。2020和2021年,HT處理下,XD20的穗軸、籽粒和單株干物質(zhì)量分別下降13.47%、16.74%、10.13%和24.14%、20.67%、17.58%,NH101則分別下降4.52%、26.24%、12.87%和22.74%、24.19%、14.99%。從2年數(shù)據(jù)綜合分析,RB處理后籽粒干物質(zhì)量顯著提高,莖葉、穗軸和單株干物質(zhì)量也有所增加,但與NB處理差異不顯著。NT條件下,經(jīng)RB處理后,XD20和NH101的籽粒和單株干物質(zhì)量分別提高7.42%、6.62%和7.25%、6.32%,而HT條件下則分別增加19.49%、16.10%和5.58%、5.43%。
HT處理導(dǎo)致2個(gè)品種成熟期干物質(zhì)向籽粒分配比例降低,NH101的降幅高于XD20,2年結(jié)果一致。2020和2021年,在HT處理下,XD20和NH101的干物質(zhì)向籽粒分配比例分別降低7.60%、15.33%和3.76%、10.81%。從2年數(shù)據(jù)綜合分析,RB處理后2個(gè)品種成熟期干物質(zhì)向籽粒分配比例有所增加;在NT條件下,經(jīng)RB處理后,XD20和NH101的干物質(zhì)向籽粒分配比例分別增加0.79%和0.82%,而HT條件下則分別增加2.75%和0.11%。
通過(guò)對(duì)處理后玉米產(chǎn)量性狀的分析(表3),發(fā)現(xiàn)HT處理導(dǎo)致玉米產(chǎn)量顯著下降,NH101的降幅高于XD20,2年結(jié)果一致。2020年和2021年,HT處理下,XD20的產(chǎn)量分別降低11.84%和12.80%,NH101則分別降低27.00%和20.05%。從2年數(shù)據(jù)綜合分析,RB處理后玉米產(chǎn)量顯著提高;NT條件下,經(jīng)RB處理后,XD20和NH101的產(chǎn)量分別提高2.76%和4.37%,而HT條件下則分別提高12.47%和5.74%。
玉米產(chǎn)量構(gòu)成因素中,HT處理后玉米穗長(zhǎng)、穗粗、行粒數(shù)和穗粒數(shù)顯著降低,但2個(gè)品種的降幅存在差異,其中,XD20穗長(zhǎng)的降幅大于NH101,而穗粒數(shù)的降幅小于NH101。以穗粒數(shù)為例,在2020和2021年,與NT處理相比,HT處理下,XD20的穗粒數(shù)降幅分別為14.86%和15.71%,而NH101則分別為26.84%和21.19%。從2年數(shù)據(jù)綜合分析,RB處理顯著影響穗長(zhǎng)、行粒數(shù)和穗粒數(shù),均表現(xiàn)為RB>NB。以穗粒數(shù)為例,與NB處理相比,RB處理下,XD20和NH101在NT條件下的穗粒數(shù)增幅分別為2.67%和3.64%,而HT條件下則為6.36%和3.46%。
圖5 授粉期高溫和雄穗變小處理對(duì)玉米雌穗農(nóng)藝性狀的影響
表1 授粉期高溫脅迫和雄穗變小處理對(duì)高溫處理結(jié)束當(dāng)天干物質(zhì)積累與分配的影響
平均值±標(biāo)準(zhǔn)誤差。同一年份同一品種不同小寫(xiě)字母表示在0.05水平上差異顯著。*和**分別表示在0.05和0.01水平上差異顯著,NS表示差異不顯著。下同
Mean ± Standard error. Values within the same variety followed by different lowercase letters in the same year are significantly different at 0.05 level. * and ** indicate significant difference at 0.05 and 0.01 levels, respectively, NS indicates no significant difference. The same as below
表2 授粉期高溫脅迫和雄穗變小處理對(duì)成熟期干物質(zhì)積累與分配的影響
玉米是雌雄同株異花授粉作物,雌雄穗?yún)f(xié)調(diào)發(fā)育是保證雌穗正常受精結(jié)實(shí)及產(chǎn)量形成的關(guān)鍵因素。前人研究表明,第9片葉展開(kāi)期至吐絲期高溫脅迫會(huì)抑制玉米雌雄穗發(fā)育,導(dǎo)致雄穗分枝數(shù)減少,雌穗吐絲時(shí)間推遲,開(kāi)花吐絲間隔期(anthesis-silking interval,ASI)拉長(zhǎng)[22]。抽雄后高溫脅迫亦會(huì)造成玉米雄穗分枝數(shù)、主軸小花數(shù)和分枝小花密度大幅下降,散粉持續(xù)期縮短,散粉量減少[17]?;ㄆ谇昂蟪掷m(xù)高溫脅迫對(duì)雄穗分枝數(shù)和雌雄穗總小花數(shù)影響較小[21],但會(huì)使雄穗散粉提前,散粉持續(xù)期縮短,ASI拉長(zhǎng)[13, 21]。但也有學(xué)者研究表明,全生育期升溫1.5—5 ℃對(duì)玉米吐絲和開(kāi)花的持續(xù)時(shí)間或高峰日期沒(méi)有顯著影響,因此,對(duì)ASI亦無(wú)顯著影響[32]。本研究授粉期高溫脅迫對(duì)雄穗長(zhǎng)度、分枝數(shù)和小穗數(shù)以及開(kāi)花動(dòng)態(tài)(如抽雄期、吐絲期、散粉期)無(wú)顯著影響,但縮短了雄穗散粉持續(xù)期。這可能是因?yàn)榘喂?jié)期至抽雄期是雌雄穗?yún)f(xié)調(diào)分化發(fā)育的關(guān)鍵時(shí)期,此階段高溫脅迫對(duì)玉米雌雄穗生長(zhǎng)發(fā)育影響較大,而抽雄后是玉米雌雄穗爆發(fā)式生長(zhǎng)階段,此時(shí)的高溫脅迫可能對(duì)雄穗生長(zhǎng)及開(kāi)花動(dòng)態(tài)影響較小。與前人研究對(duì)比,試驗(yàn)的不同結(jié)果可能與高溫處理時(shí)期、程度、持續(xù)時(shí)間及試驗(yàn)品種不同有關(guān)[4, 28]。
表3 授粉期高溫脅迫和雄穗變小處理對(duì)玉米產(chǎn)量和產(chǎn)量構(gòu)成的影響
干物質(zhì)生產(chǎn)與分配是玉米獲得產(chǎn)量的重要物質(zhì)基礎(chǔ)。前人研究表明,高溫脅迫使玉米葉片凈光合速率降低,導(dǎo)致同化物供應(yīng)不足,且向莖葉等營(yíng)養(yǎng)器官中的分配比例增加,向穗(籽粒)中的轉(zhuǎn)運(yùn)積累減少[21-22]。本研究授粉期經(jīng)受高溫脅迫10 d后,玉米干物質(zhì)積累量降低,且向穗部分配比例減少,不能滿足穗發(fā)育所需光合同化物,進(jìn)而玉米穗分化受阻,穗軸長(zhǎng)度和穗軸粗下降,導(dǎo)致穗粒數(shù)減少,進(jìn)而籽粒庫(kù)容減小,以至于成熟期干物質(zhì)向籽粒的分配比例大幅下降,影響玉米產(chǎn)量。這與前人研究結(jié)果一致,即高溫脅迫限制雌穗發(fā)育,穗粒數(shù)減少,影響了花后光合物質(zhì)向籽粒的轉(zhuǎn)運(yùn)[4, 22]。玉米穗部性狀是構(gòu)成產(chǎn)量的重要因素,逆境脅迫影響產(chǎn)量構(gòu)成要素的不同要件,進(jìn)而影響產(chǎn)量。本研究表明,授粉期高溫脅迫后玉米穗長(zhǎng)、穗粗、行粒數(shù)、穗粒數(shù)和產(chǎn)量顯著降低,而穗行數(shù)和百粒重受影響較小,因行粒數(shù)減少導(dǎo)致的穗粒數(shù)下降是授粉期高溫脅迫造成產(chǎn)量大幅減少的重要原因之一。本研究與前人研究結(jié)果一致[4, 17, 24]。
玉米授粉期經(jīng)受高溫脅迫10 d后,雖然浚單20植株總干重和穗部干重的降幅高于農(nóng)華101,且穗軸長(zhǎng)度的下降幅度也超過(guò)農(nóng)華101,但穗軸粗的降幅小于農(nóng)華101;至成熟期,浚單20穗長(zhǎng)降幅較農(nóng)華101高,而行粒數(shù)、穗粒數(shù)和產(chǎn)量的降幅較農(nóng)華101低。前期研究結(jié)果也表明,在高溫脅迫條件下,浚單20會(huì)縮短果穗長(zhǎng)度,維持較高的授粉結(jié)實(shí)率,盡可能增加穗粒數(shù),而農(nóng)華101會(huì)盡量保持果穗長(zhǎng)度,但授粉結(jié)實(shí)率較低,極易出現(xiàn)禿尖、果穗花?,F(xiàn)象,穗粒數(shù)下降幅度較大[21]。2個(gè)供試品種雌穗發(fā)育對(duì)高溫脅迫的不同響應(yīng)機(jī)制可能是浚單20比農(nóng)華101更耐高溫的原因之一。
玉米是雌雄同株異花植物,作為其生殖器官,雌雄穗在發(fā)育上存在著競(jìng)爭(zhēng),雄穗具有頂端優(yōu)勢(shì),在營(yíng)養(yǎng)供應(yīng)上比雌穗優(yōu)越[33]。研究表明,雄穗分枝數(shù)與產(chǎn)量呈負(fù)相關(guān)[30],而去雄可減少雄穗對(duì)雌穗營(yíng)養(yǎng)物質(zhì)的競(jìng)爭(zhēng),促進(jìn)雌穗發(fā)育,提高玉米產(chǎn)量[34-36]。如在遮蔭脅迫下,去雄可促進(jìn)干物質(zhì)向雌穗分配,提高產(chǎn)量[37]。本研究條件下,雄穗變小處理對(duì)玉米雄穗主軸長(zhǎng)度和開(kāi)花動(dòng)態(tài)無(wú)顯著影響,只是使雄穗分枝數(shù)和小穗數(shù)分別減少57.94%和42.13%。這是因?yàn)楸狙芯恐皇蔷鶆虻丶舫艘徊糠中鬯敕种Γ瑢?duì)整棵植株傷害微小,并不足以改變植株開(kāi)花動(dòng)態(tài)。此外,雄穗變小處理后,授粉期間雄穗的能量消耗減小,干物質(zhì)向穗部分配比例增加,促進(jìn)了雌穗發(fā)育,穗長(zhǎng)、行粒數(shù)和穗粒數(shù)增加,進(jìn)而產(chǎn)量提高。
前人研究認(rèn)為,高溫脅迫會(huì)導(dǎo)致玉米雄穗分枝變小、數(shù)量減少,小花退化,總小花數(shù)和花粉量驟減,花粉活力降低,影響授粉結(jié)實(shí),造成結(jié)實(shí)率下降、產(chǎn)量降低[13, 17-18, 24]。與之不同,本研究在大幅降低雄穗分枝數(shù)和小穗數(shù)(減少雄穗分枝數(shù)近60%和雄穗小穗數(shù)40%左右)的條件下,大雄穗型品種浚單20和小雄穗型品種農(nóng)華101在授粉期高溫脅迫下的穗粒數(shù)和籽粒產(chǎn)量表現(xiàn)不降反升,說(shuō)明存在雄穗花粉冗余現(xiàn)象,大雄穗型品種浚單20比小雄穗型品種農(nóng)華101更明顯。這可能是因?yàn)榭?0雄穗較大,開(kāi)花授粉期間雄穗對(duì)光合同化物的消耗較大,同時(shí)高溫脅迫導(dǎo)致植株光合性能下降,光合同化物供應(yīng)不足,而去除部分雄穗分枝可減少雄穗能量消耗,改善雄穗對(duì)雌穗的營(yíng)養(yǎng)競(jìng)爭(zhēng),促進(jìn)雌穗發(fā)育,增加穗粒數(shù)和粒重,進(jìn)而提高玉米產(chǎn)量。相關(guān)研究也表明,在玉米群體中,雄穗的花粉供應(yīng)量遠(yuǎn)超過(guò)雌穗正常授粉的實(shí)際需求量,雌雄穗同步發(fā)育比花粉量對(duì)玉米結(jié)實(shí)率的影響要大,在雌穗花絲完全吐出的情況下,一天內(nèi)100粒/cm2的散粉量就能使90%以上的花絲完成授粉[29, 31]。由此可見(jiàn),在不影響正常授粉的情況下,適當(dāng)減少雄穗分枝數(shù)對(duì)于授粉期高溫脅迫下玉米產(chǎn)量下降具有一定程度的緩解效應(yīng)。
授粉期高溫脅迫對(duì)玉米雄穗長(zhǎng)度、分枝數(shù)、小穗數(shù)和雌雄開(kāi)花動(dòng)態(tài)影響較小,主要造成植株干物質(zhì)積累量降低且向穗部分配比例減少,影響雌穗生長(zhǎng)發(fā)育,導(dǎo)致穗粒數(shù)減少,使成熟期干物質(zhì)向籽粒的分配比例降低,產(chǎn)量顯著下降。高溫脅迫導(dǎo)致的穗粒數(shù)減少是產(chǎn)量降低的主要原因,高溫條件下農(nóng)華101的穗粒數(shù)和產(chǎn)量降幅均高于浚單20,可見(jiàn)農(nóng)華101對(duì)高溫脅迫的響應(yīng)更敏感。雄穗變小處理顯著降低玉米雄穗分枝數(shù)和小穗數(shù),減少了授粉期間雄穗對(duì)養(yǎng)分的消耗,增加了光合同化物積累及向穗部分配,促進(jìn)雌穗生長(zhǎng)發(fā)育,增加了穗粒數(shù),促進(jìn)花后物質(zhì)向籽粒積累,提高產(chǎn)量。高溫脅迫下,雄穗變小處理對(duì)大雄穗型品種浚單20的產(chǎn)量增幅高于小雄穗型品種農(nóng)華101。
[1] ABBASS K, QASIM M Z, SONG H M, MURSHED M, MAHMOOD H, YOUNIS I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 2022, 29(28): 42539-42559.
[2] 陳懷亮, 李樹(shù)巖. 氣候變暖背景下河南省夏玉米花期高溫災(zāi)害風(fēng)險(xiǎn)預(yù)估. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文), 2020, 28(3): 337-348.
CHEN H L, LI S Y. Prediction of high temperature disaster risks during summer maize flowering under future climate warming background in Henan Province. Chinese Journal of Eco-Agriculture, 2020, 28(3): 337-348. (in Chinese)
[3] 陸偉婷, 于歡, 曹勝男, 陳長(zhǎng)青. 近20年黃淮海地區(qū)氣候變暖對(duì)夏玉米生育進(jìn)程及產(chǎn)量的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(16): 3132-3145.
LU W T, YU H, CAO S N, CHEN C Q. Effects of climate warming on growth process and yield of summer maize in Huang-Huai-Hai plain in last 20 years. Scientia Agricultura Sinica, 2015, 48(16): 3132-3245. (in Chinese)
[4] LI T, ZHANG X P, LIU Q, LIU J, CHEN Y Q, SUI P. Yield penalty of maize (L.) under heat stress in different growth stages: A review. Journal of Integrative Agriculture, 2022, 21(9): 2465-2476.
[5] 和驊蕓, 胡琦, 潘學(xué)標(biāo), 馬雪晴, 胡莉婷, 王曉晨, 何奇瑾. 氣候變化背景下華北平原夏玉米花期高溫?zé)岷μ卣骷斑m宜播期分析. 中國(guó)農(nóng)業(yè)氣象, 2020, 41(1): 1-15.
HE H Y, HU Q, PAN X B, MA X Q, HU L T, WANG X C, HE Q J. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China plain under climate change. Chinese Journal of Agrometeorology, 2020, 41(1): 1-15. (in Chinese)
[6] WAHID A, GELANI S, ASHRAF M, FOOLAD M R. Heat tolerance in plants: An overview. Environmental and Experimental Botany, 2007, 61(3): 199-223.
[7] CAIRNS J E, SONDER K, ZAIDI P H, VERHULST N, MAHUKU G, BABU R, NAIR S K, DAS B, GOVAERTS B, VINAYAN M T, RASHID Z, NOOR J J, DEVI P, SAN VICENTE F, PRASANNA B M. Maize production in a changing climate. Advances in Agronomy, 2012, 114: 1-58.
[8] LIZASO J I, RUIZ-RAMOS M, RODRíGUEZ L, GABALDON- LEAL C, OLIVEIRA J A, LORITE I J, SáNCHEZ D, GARCíA E, RODRíGUEZ A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Research, 2018, 216: 129-140.
[9] CICCHINO M, RATTALINO EDREIRA J I, OTEGUI M E. Heat stress during late vegetative growth of maize: Effects on phenology and assessment of optimum temperature. Crop Science, 2010, 50(4): 1431-1437.
[10] LOHANI N, SINGH M B, BHALLA P L. High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 2020, 71(2): 555-568.
[11] ZINN K E, TUNC-OZDEMIR M, HARPER J F. Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 2010, 61(7): 1959-1968.
[12] 冀華, 李宏, 張樹(shù)偉. 玉米雌雄穗發(fā)育及其與產(chǎn)量的關(guān)系. 山西農(nóng)業(yè)科學(xué), 2011, 39(7): 754-755, 774.
JI H, LI H, ZHANG S W. Differentiation and growth of the male and female ears and the relationship with yield in maize. Journal of Shanxi Agricultural Sciences, 2011, 39(7): 754-755, 774. (in Chinese)
[13] WANG Y Y, TAO H B, TIAN B J, SHENG D C, XU C C, ZHOU H M, HUANG S B, WANG P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany, 2019, 158: 80-88.
[14] 蔡豐樂(lè), 馬昕, 王帥麗, 盧良濤, 邵瑞鑫, 李鴻萍, 趙亞麗, 穆心愿, 趙霞, 李樹(shù)巖, 劉天學(xué). 氮素對(duì)高溫脅迫下玉米籽粒發(fā)育的調(diào)控效應(yīng). 華北農(nóng)學(xué)報(bào), 2022, 37(3): 119-127.
CAI F L, MA X, WANG S L, LU L T, SHAO R X, LI H P, ZHAO Y L, MU X Y, ZHAO X, LI S Y, LIU T X. Effect regulating of nitrogen on grain development of maize under heat stress. Acta Agriculturae Boreali-Sinica, 2022, 37(3): 119-127. (in Chinese)
[15] DUPUIS I, DUMAS C. Influence of temperature stress onfertilization and heat shock protein synthesis in maize (L.) reproductive tissues. Plant Physiology, 1990, 94(2): 665-670.
[16] WANG Y Y, LIU X L, HOU X F, SHENG D C, DONG X, GAO Y B, WANG P, HUANG S B. Maximum lethal temperature for flowering and seed set in maize with contrasting male and female flower sensitivities. Journal of Agronomy and Crop Science, 2021, 207(4): 679-689.
[17] 閆振華, 劉東堯, 賈緒存, 楊琴, 陳藝博, 董朋飛, 王群. 花期高溫干旱對(duì)玉米雄穗發(fā)育、生理特性和產(chǎn)量影響. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(17): 3592-3608.
YAN Z H, LIU D Y, JIA X C, YANG Q, CHEN Y B, DONG P F, WANG Q. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608. (in Chinese)
[18] WANG Y Y, SHENG D C, ZHANG P, DONG X, YAN Y, HOU X F, WANG P, HUANG S B. High temperature sensitivity of kernel formation in different short periods around silking in maize. Environmental and Experimental Botany, 2021, 183: 104343.
[19] 侯昕芳, 王媛媛, 黃收兵, 董昕, 陶洪斌, 王璞. 花期前后高溫對(duì)玉米花粉發(fā)育及結(jié)實(shí)率的影響. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2020, 25(3): 10-16.
HOU X F, WANG Y Y, HUANG S B, DONG X, TAO H B, WANG P. Effects of high temperature during flowering on pollen development and seed setting rate of maize (L.). Journal of China Agricultural University, 2020, 25(3): 10-16. (in Chinese)
[20] 于康珂, 孫寧寧, 詹靜, 顧海靖, 劉剛, 顧海靖, 潘利文, 劉天學(xué). 高溫脅迫對(duì)不同熱敏型玉米品種雌雄穗生理特性的影響. 玉米科學(xué), 2017, 25(4): 84-91.
YU K K, SUN N N, ZHAN J, LIU G, GU H J, LIU G, PAN L W, LIU T X. Effect of high temperature stress on physiological characteristics of tassel and ear in different maize varieties. Journal of Maize Sciences, 2017, 25(4): 84-91. (in Chinese)
[21] 穆心愿, 馬智艷, 張?zhí)m薰, 付景, 劉天學(xué), 丁勇, 夏來(lái)坤, 張鳳啟, 張君, 齊建雙. 不同耐/感玉米品種的葉片光合熒光特性, 授粉結(jié)實(shí)和產(chǎn)量構(gòu)成因素對(duì)花期高溫的反應(yīng). 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文), 2022, 30(1): 57-71.
MU X Y, MA Z Y, ZHANG L X, FU J, LIU T X, DING Y, XIA L K, ZHANG F Q, ZHANG J, QI J S, ZHAO X, TANG B J. Responses of photosynthetic fluorescence characteristics, pollination, and yield components of maize cultivars to high temperature during flowering. Chinese Journal of Eco-Agriculture, 2022, 30(1): 57-71. (in Chinese)
[22] 高英波, 張慧, 單晶, 薛艷芳, 錢(qián)欣, 代紅翠, 劉開(kāi)昌, 李宗新. 吐絲前高溫脅迫對(duì)不同耐熱型夏玉米產(chǎn)量及穗發(fā)育特征的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(19): 3954-3963.
GAO Y B, ZHANG H, SHAN J, XUE Y F, QIAN X, DAI H C, LIU K C, LI Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Scientia Agricultura Sinica, 2020, 53(19): 3954-3963. (in Chinese)
[23] 徐美玲. 溫度對(duì)玉米花絲生活力的影響. 浙江農(nóng)業(yè)科學(xué), 2002, 1(3): 120-122.
XU M L. Impacts of temperature on vitality of pistils in maize. Journal of Zhejiang Agricultural Sciences, 2002, 1(3): 120-122. (in Chinese)
[24] LIU X W, WANG X L, WANG X Y, GAO J, LUO N, MENG Q F, WANG P. Dissecting the critical stage in the response of maize kernel set to individual and combined drought and heat stress around flowering. Environmental and Experimental Botany, 2020, 179: 104213.
[25] NIU S D, DU X, WEI D J, LIU S S, Tang Q, BIAN D H, ZHANG Y R, CUI Y H, GAO Z. Heat stress after pollination reduces kernel number in maize by insufficient assimilates. Frontiers in Genetics, 2021, 12: 728166.
[26] 高英波, 張慧, 王竹, 薄麗秀, 武智民, 薛艷芳, 錢(qián)欣, 代紅翠, 韓小偉, 李宗新. 夏玉米品種花期耐熱性鑒定與評(píng)價(jià). 山東農(nóng)業(yè)科學(xué), 2019, 51(6): 43-48.
GAO Y B, ZHANG H, WANG Z, BO L X, WU Z M, XUE Y F, QIAN X, DAI H C, HAN X W, LI Z X. Identification and evaluation of heat tolerance of summer maize varieties during flowering stage. Shandong Agricultural Sciences, 2019, 51(6): 43-48. (in Chinese)
[27] 趙霞, 穆心愿, 馬智艷, 劉天學(xué), 齊紅志, 丁勇, 張鳳啟, 張君, 趙發(fā)欣, 邢健偉, 吳東洪, 唐保軍. 不同玉米雜交種對(duì)花期高溫、干旱復(fù)合脅迫的響應(yīng). 河南農(nóng)業(yè)科學(xué), 2017, 46(8): 32-37.
ZHAO X, MU X Y, MA Z Y, LIU T X, QI H Z, DING Y, ZHANG F Q, ZHANG J, ZHAO F X, XING J W, WU D H, TANG B J. Response of different maize hybrids to high temperature and drought stresses at flowering stage. Journal of Henan Agricultural Sciences, 2017, 46(8): 32-37. (in Chinese)
[28] 任寒, 劉鵬, 董樹(shù)亭, 張吉旺, 趙斌. 高溫脅迫影響玉米生長(zhǎng)發(fā)育的生理機(jī)制研究進(jìn)展. 玉米科學(xué), 2019, 27(5): 109-115.
REN H, LIU P, DONG S T, ZHANG J W, ZHAO B. Research advancements of effect of high temperature stress on growth and development of maize. Journal of Maize Sciences, 2019, 27(5): 109-115. (in Chinese)
[29] 岳玉蘭, 朱敏, 于雷, 劉春光. 玉米雄穗對(duì)產(chǎn)量影響研究進(jìn)展. 玉米科學(xué), 2010, 18(4): 150-152.
YUE Y L, ZHU M, YU L, LIU C G. Research progress on the impact of maize tassel on yield. Journal of Maize Sciences, 2010, 18(4): 150-152. (in Chinese)
[30] GERALDI I, FILHO J B M, VENCOVSKY R. Estimates of genetic parameters for tosses characters in maize (L.) and breeding perspectives. Maydica, 1985, 30: 1-14.
[31] LIZASO J I, WESTGATE M E, BATCHELOR W D, FONSECA A. Predicting potential kernel set in maize from simple flowering characteristics. Crop Science, 2003, 43(3): 892-903.
[32] SHIM D, LEE K J, LEE B W. Response of phenology- and yield-related traits of maize to elevated temperature in a temperate region. The Crop Journal, 2017, 5(4): 305-316.
[33] 徐洪文, 宋鳳斌, 童淑媛. 玉米雌雄穗發(fā)生發(fā)展及生理特性研究進(jìn)展. 廣東農(nóng)業(yè)科學(xué), 2012, 39(3): 22-24.
XU H W, SONG F B, TONG S Y. Research progress on development and physiological characteristics of ear and tassel in maize. Guangdong Agricultural Sciences, 2012, 39(3): 22-24. (in Chinese)
[34] 楊德光, 陳庚, 吳寶欣, 金新月, 宋翔雨, 郝天樂(lè), 李威. 去雄攜帶頂葉對(duì)玉米光合特性、干物質(zhì)積累及產(chǎn)量的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2022, 31(1): 25-33.
YANG D G, CHEN G, WU B X, JIN X Y, SONG X Y, HAO T L, LI W. Effect of detasseling with top leaf on photosynthetic characteristics, dry matter accumulation and yield of maize. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(1): 25-33. (in Chinese)
[35] 王磊, 杜雄, 崔彥宏, 黨紅凱, 李科江, 賀振營(yíng), 于秀艷. 冗余器官去除對(duì)高產(chǎn)夏玉米產(chǎn)量形成的影響. 華北農(nóng)學(xué)報(bào), 2015, 30(4): 132-138.
WANG L, DU X, CUI Y H, DANG H K, LI K J, HE Z Y, YU X Y. Effects of removing redundant organs on yield formation of high-yielding summer maize. Acta Agriculturae Boreali-Sinica, 2015, 30(4): 132-138. (in Chinese)
[36] 宋世宗, 李繼平, 李文舉, 李芳, 蔣付偉, 劉愛(ài)青. 玉米授粉后去雄與去葉對(duì)穗部性狀及產(chǎn)量影響的研究. 湖南農(nóng)業(yè)科學(xué), 2011(9): 33-35.
SONG S Z, LI J P, LI W J, LI F, JIANG F W, LIU A Q. Impacts of emasculation and defoliation after maize pollination on tassel characteristics and yield. Hunan Agricultural Sciences, 2011(9): 33-35. (in Chinese)
[37] GAO Z, SUN L, REN J H, LIANG X G, SHEN S, LIN S, ZHAO X, CHEN X M, WU G, ZHOU S L. Detasseling increases kernel number in maize under shade stress. Agricultural and Forest Meteorology, 2020, 280: 107811.
Effects of tassel sizes on post-flowering dry matter accumulation and yield of different maize varieties under high temperature stress during pollination
MU XinYuan1,2, Lü ShanShan1, LU LiangTao1, LIU TianXue1, LI ShuYan3, XUE ChangYing3, WANG HongWei4, ZHAO Xia2, XIA LaiKun2, TANG BaoJun2
1College of Agronomy, Henan Agricultural University, Zhengzhou 450046;2Cereal Institute, Henan Academy of Agricultural Sciences/ Henan International Joint Laboratory on Maize Precision Production, Zhengzhou 450002;3China Meteorological Administration/Henan Key Laboratory of Agrometeorological Support and Applied Technique, Zhengzhou 450003;4Nanyang Wancheng District Letters and Calls Bureau, Nanyang 473000, Henan
【Objective】High temperature stress is one of the most critical meteorological disaster factors that restrict the high and stable yield of maize. This study explored the effect of tassel sizes on yield of different maize varieties under high temperature stress during pollination, so as to provide the theoretical basis and reference for stress-resistant cultivation and high temperature resistance breeding of maize. 【Method】This study was conducted by plot experiment in a greenhouse with two maize varietiesas the experimental materials, Xundan 20 (XD20) and Nonghua 101 (NH101), from 2020 to 2021.The effect of tassel sizes on dry matter accumulation, distribution and yield of maize under high temperature stress during pollination was investigated by setting the tassel branch removal treatment at tasseling stage.【Result】The results of two years showed that high temperature stress during pollination had little effect on tassel length, branch number, spikelet number and flowering dynamics of male and female. However, high temperature stress resulted in the decrease of dry matter accumulation capacity and distribution ratio to ear, which affected the growth and development of ear, resulting in the significant decrease of cob length and diameter, the significant decrease of grain number per ear, the decrease of proportion of matter accumulation to grain after anthesis, and the significant decrease of yield. Under high temperature stress, the decrease of ear length of NH101 was less than that of XD20, but the decrease of grain number per row, grain number per ear and the proportion of matter accumulation to grain after anthesis was higher than that of XD20, resulting in the decrease of yield of NH101 more than that of XD20, and the yield of XD20 and NH101 decreased by 12.32% and 25.00% respectively. XD20 is more resistant to heat than NH101. The tassel branch removaltreatment significantly reduced the number of tassel branch and spikelet of XD20 and NH101 by 58.57%, 42.91% and 57.30%, 41.34%, respectively, but had little effect on the flowering dynamics of male and female. Under the two temperature conditions, thetassel branch removal treatment promoted the growth of ear, increased the grain number per ear, increased the proportion of matter accumulation to grain after anthesis, and thus increased the yield. Among them, the yield increase of XD20 under high temperature conditions was the largest. Compared with normal tassel branch treatment, tassel branch removal treatment increased the yield of XD20 and NH101 by 2.76% and 4.37% under normal temperature conditions, while increased by 12.47% and 5.75% under high temperature conditions, respectively. 【Conclusion】High temperature stress during pollination has little effect on the growth and development of tassel, but it caused irreversible damage to the growth and development of ear, reduced the number of grains per ear, limited the distribution of photosynthate to grains after anthesis, and significantly reduced the yield. Under high temperature conditions, properly reducing the number of branches in tassel can promote the growth and development of ear, increase the number of grains per ear, promote the accumulation of matter to grains after anthesis, and increase the yield. In addition, the yield increase of the large tassel-type variety XD20 was higher than that of the small tassel-type variety NH101.
maize; high temperature during pollination; tassel size; dry matter mass; grain yield
10.3864/j.issn.0578-1752.2023.15.004
2022-12-02;
2023-03-02
中國(guó)氣象局·河南省農(nóng)業(yè)氣象保障與應(yīng)用技術(shù)重點(diǎn)開(kāi)放實(shí)驗(yàn)室項(xiàng)目(AMF202108)、河南省農(nóng)業(yè)科學(xué)院科技創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2023TD37)、河南省農(nóng)業(yè)科學(xué)院糧食作物研究所自主立項(xiàng)項(xiàng)目(LZZC202203)、河南省玉米產(chǎn)業(yè)技術(shù)體系建設(shè)專(zhuān)項(xiàng)(HARS-22-02-G2)
穆心愿,E-mail:muxinyuan@163.com。通信作者劉天學(xué),E-mail:tianxueliu2005@163.com。通信作者夏來(lái)坤,E-mail:xialaikun@126.com
(責(zé)任編輯 楊鑫浩,李莉)
中國(guó)農(nóng)業(yè)科學(xué)2023年15期