国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

抗菌藥物神經(jīng)毒性的機(jī)制及危險(xiǎn)因素研究進(jìn)展

2023-08-25 05:21:41熊立廣李昕向德標(biāo)袁芳童煥
中國抗生素雜志 2023年4期
關(guān)鍵詞:抗菌藥物危險(xiǎn)因素防治措施

熊立廣?李昕?向德標(biāo)?袁芳?童煥

摘要:抗菌藥物作為治療及預(yù)防細(xì)菌感染的特效藥,在臨床上被廣泛使用,同時(shí)也存在一系列的副作用。其中,神經(jīng)毒性是抗菌藥物臨床使用過程中最常見的一種嚴(yán)重且易混淆的毒副作用。本文就抗菌藥物神經(jīng)毒性的臨床癥狀、作用機(jī)制、危險(xiǎn)因素以及防治措施進(jìn)行總結(jié),為抗菌藥物臨床合理用藥及有效防治抗菌藥物的神經(jīng)毒性提供科學(xué)依據(jù)。

關(guān)鍵詞:抗菌藥物;神經(jīng)毒性;機(jī)制;危險(xiǎn)因素;防治措施

中圖分類號(hào):R978.1文獻(xiàn)標(biāo)志碼:A

Research progress on the mechanism and risk factors of antibiotics neurotoxicity

Xiong Li-guang1,2, Li Xin2,3, Xiang De-biao2,3, Yuan Fang2,3, and Tong Huan2,3

(1 Hunan University of Chinese Medicine, Changsha 410015; 2 The Third Hospital of Changsha, Changsha 410015;

3 Antibiotic Clinical Application Research Institute of Changsha, Changsha 410015)

Abstract Antibacterial agents are widely used clinically for the treatment and prevention of bacterial infections while a range of adverse effects exist. Neurotoxicity is one of the most common, serious, and confusing side effects in the clinical use of antibiotics. In this article, the clinical symptoms, mechanism of action, risk factors, and preventive measures of neurotoxicity of antibiotics are summarized to provide a scientific basis for the rational application of antibacterial drugs in clinical practice and the effective prevention and treatment of the neurotoxicity of antibiotics.

Key words Antibacterial agents; Neurotoxicity; Mechanism; Risk factors; Prevention

隨著全球微生物感染疾病的肆虐及傳播,抗菌藥物的使用日益廣泛,其毒性也逐漸受到人們的重視。抗菌藥物的毒性主要表現(xiàn)為腎毒性、神經(jīng)毒性、肝毒性等。其中神經(jīng)毒性呈濃度依賴性,且隨著藥物劑量的調(diào)整其神經(jīng)毒性是可逆的,停藥后可恢復(fù)。但往往在治療中會(huì)與不同的神經(jīng)病征或患者本身罹患疾病混淆,同時(shí)存在著老齡、腎功能不全以及既往病史等危險(xiǎn)因素,導(dǎo)致抗菌藥物難以合理使用,造成進(jìn)一步神經(jīng)損害[1]??咕幬锷窠?jīng)毒性產(chǎn)生機(jī)制比較廣泛,主要與GABA(γ-氨基丁酸)、NMDA(N-methyl-D-aspartic acid, N-甲基-D-天冬氨酸)受體、乙酰膽堿等神經(jīng)遞質(zhì)的損傷相關(guān),同時(shí)也與氧化應(yīng)激以及線粒體功能障礙關(guān)系密切。目前針對抗菌藥物神經(jīng)毒性的防治措施除停藥外,也采用藥物進(jìn)行預(yù)防或控制神經(jīng)毒性癥狀的發(fā)生,如增強(qiáng)GABAA活性的苯二氮卓類藥物,具有神經(jīng)保護(hù)作用的谷胱甘肽、神經(jīng)節(jié)苷脂、雷帕霉素和紅景天苷等,同時(shí)越來越多的藥物臨床使用建議采用TDM(治療藥物血藥濃度監(jiān)測)來制定個(gè)體化給藥方案,以此優(yōu)化抗菌藥物的合理應(yīng)用。

1 抗菌藥物神經(jīng)毒性的臨床表現(xiàn)

臨床上評估神經(jīng)毒性主要通過相關(guān)生化指標(biāo)、腦電圖表現(xiàn)、心理和行為測試和神經(jīng)學(xué)檢查等途徑??咕幬锱R床癥狀表現(xiàn)多樣,且不同抗菌藥物的神經(jīng)毒性臨床表現(xiàn)有所不同,分為中樞神經(jīng)毒性以及周圍神經(jīng)毒性。中樞神經(jīng)毒性主要表現(xiàn)為以精神狀態(tài)改變、記憶喪失、激動(dòng)、認(rèn)知能力喪失、失眠和幻覺為特征的腦病[2]、耳毒性、視覺和聽覺幻覺、癲癇發(fā)作、非驚厥性癲癇持續(xù)狀態(tài)(nonconvulsive epileptic, NCSE)和昏迷[3];周圍神經(jīng)毒性主要表現(xiàn)為口腔面部運(yùn)動(dòng)障礙、肌陣攣與肌無力[4-5],詳見表1。

2 抗菌藥物神經(jīng)毒性發(fā)生機(jī)制

抗菌藥物產(chǎn)生神經(jīng)毒性的機(jī)制主要有以下幾種:①與γ-氨基丁酸(GABA)結(jié)合減少,或直接拮抗GABAA受體阻斷GABA結(jié)合位點(diǎn),導(dǎo)致抑制性神經(jīng)遞質(zhì)濃度降低和皮質(zhì)傳入興奮,從而導(dǎo)致神經(jīng)傳遞過度興奮誘發(fā)神經(jīng)毒性[21,35];②激活NMDA受體,造成神經(jīng)興奮、ROS生成增加和Ca2+胞內(nèi)濃度升高,誘導(dǎo)細(xì)胞凋亡[36-38];③軸突變性[39-40];④抑制乙酰膽堿突觸前釋放,阻滯或減弱乙酰膽堿與受體的結(jié)合[41-42];⑤鈣離子消耗引起的去極化[43];⑥氧化應(yīng)激以及線粒體功能障礙[25]。

2.1 氨基糖苷類

氨基糖苷類藥物誘發(fā)神經(jīng)毒性以耳毒性最為常見,同時(shí)也有研究報(bào)道氨基糖苷類的周圍神經(jīng)系統(tǒng)損傷、腦病以及神經(jīng)肌肉阻滯等相關(guān)神經(jīng)毒性。

(1)耳毒性? ? 氨基糖苷類藥物造成的耳毒性包括耳蝸損傷和前庭器官損傷,耳毒性整體發(fā)生率范圍在2%~25%[44-45]。氨基糖苷類產(chǎn)生耳毒性的機(jī)制為氨基糖苷類藥物進(jìn)入內(nèi)耳后透過賴斯納氏膜、血管紋以及基底膜等結(jié)構(gòu)進(jìn)入耳蝸,主要在靜纖毛的機(jī)械力電轉(zhuǎn)導(dǎo)作用下(次要途徑為內(nèi)吞作用和基底外側(cè)TRPA1通道)進(jìn)入毛細(xì)胞[46-50],并與毛細(xì)胞中tRNA結(jié)合,導(dǎo)致線粒體的RNA翻譯受損以及蛋白質(zhì)合成抑制,減少ATP的產(chǎn)生[51-52],從而促進(jìn)活性氧的生成,破壞線粒體的完整性,促進(jìn)細(xì)胞色素C的釋放,激活細(xì)胞凋亡級聯(lián)反應(yīng)[36,53]。同時(shí)研究表明氨基糖苷類藥物能夠激活耳蝸內(nèi)NMDA受體,而過度激活NMDA受體會(huì)增加一氧化氮(NO)的形成,從而促進(jìn)活性氧的產(chǎn)生,同時(shí)可能增加Ca2+通過NMDA受體進(jìn)入細(xì)胞,誘導(dǎo)急性腫脹破壞突觸后結(jié)構(gòu),隨后導(dǎo)致鈣離子級聯(lián)反應(yīng),進(jìn)一步導(dǎo)致神經(jīng)元細(xì)胞凋亡和損傷[36,54]。

(2)神經(jīng)肌肉阻滯? ? 氨基糖苷類藥物的神經(jīng)肌肉阻滯機(jī)制多樣,如新霉素能阻滯Ca2+通道從而抑制突觸前乙酰膽堿的釋放;氨基糖苷類藥物如慶大霉素和新霉素還能通過阻滯Ca2+進(jìn)入膽堿能受體來抑制毛細(xì)胞中的膽堿能K+電流傳導(dǎo),誘導(dǎo)神經(jīng)肌肉阻滯[55-56]。也有研究表明氨基糖苷類藥物能促進(jìn)對乙酰膽堿受體(AChR,acetycholine report)的免疫應(yīng)答,提高血清中AChR抗體水平,阻斷ACh與受體的結(jié)合,加速肌肉神經(jīng)接點(diǎn)上AChR的丟失,破壞突觸前和突觸后膜結(jié)構(gòu)從而誘導(dǎo)神經(jīng)肌肉阻滯[57]。

2.2 β-內(nèi)酰胺類

(1)頭孢菌素類? 頭孢素類藥物中第一代頭孢菌素(頭孢唑林)、第二代頭孢菌素(頭孢呋辛)、第三代頭孢菌素(頭孢他啶)以及第四代頭孢菌素(頭孢吡肟)都有神經(jīng)毒性的相關(guān)報(bào)道。根據(jù)藥物警戒數(shù)據(jù)庫對1987—2017年的病例統(tǒng)計(jì)分析,各類頭孢菌素類藥物的神經(jīng)毒性發(fā)生率分別為:頭孢吡肟(33.1%)、頭孢曲松(29.7%)、頭孢他啶(19.6%)、頭孢噻肟(9%)和頭孢唑林(2.9%)[58]。頭孢菌素類藥物造成神經(jīng)毒性的主要機(jī)制有以下方面:①減少神經(jīng)末梢釋放γ-氨基丁酸(GABA),同時(shí)與GABA-A受體競爭性結(jié)合抑制GABA誘導(dǎo)的Cl-電流,導(dǎo)致神經(jīng)元過度興奮和突觸后膜去極化,降低癲癇發(fā)作閾值[59-61]。值得注意的是,青霉素與GABA受體的結(jié)合是非競爭性的,意味著頭孢菌素類更可能發(fā)生神經(jīng)毒性[62]。②頭孢他啶能誘導(dǎo)革蘭陰性菌細(xì)胞釋放內(nèi)毒素,如LPS,而LPS能夠造成小膠質(zhì)細(xì)胞的激活,釋放TNF-a和IL-1β,同時(shí)頭孢他啶本身也能提升促炎細(xì)胞促進(jìn)因子的轉(zhuǎn)錄,如TNF-α和IL-6等,這些細(xì)胞因子能夠誘導(dǎo)神經(jīng)元細(xì)胞的凋亡和損傷[63-64]。③在腎功能不全的患者中,頭孢吡肟隨著肌酐清除率的降低而排泄減少,而高血漿濃度的頭孢吡肟能夠介導(dǎo)血尿素增加、氨甲酰化、糖基化或其他化學(xué)蛋白修飾,導(dǎo)致血腦屏障通透性增加以及腦脊液毒性有機(jī)酸的積累[65]。④研究表明使用微透析技術(shù)將頭孢噻利注入海馬體后,實(shí)驗(yàn)大鼠的神經(jīng)元細(xì)胞外谷氨酸顯著升高,盡管該項(xiàng)研究結(jié)果表明頭孢噻利誘導(dǎo)神經(jīng)毒性的機(jī)制更傾向于GABA受體的阻滯,但多項(xiàng)研究也表明谷氨酸的過度釋放能引起神經(jīng)功能障礙和退化,提示谷氨酸介導(dǎo)的興奮作用可能作為潛在的機(jī)制誘導(dǎo)神經(jīng)毒性[66-68]。

(2)青霉素類 青霉素類藥物誘導(dǎo)神經(jīng)毒性的機(jī)制主要為:①研究表明青霉素在毫摩爾濃度下能阻滯GABA-A受體的電壓依賴性離子通道(voltage-dependent channel),減少GABA與受體的結(jié)合,從而降低抑制信號(hào)傳遞,使神經(jīng)元過度興奮發(fā)生

癲癇[62,69]。②高劑量青霉素能夠減少苯二氮卓受體,從而降低抑制和改變神經(jīng)元興奮性[70]。

(3)碳青霉烯類? 碳青霉烯類藥物神經(jīng)毒性常表現(xiàn)為癲癇發(fā)作,其中亞胺培南的癲癇發(fā)作率在3%~33%之間,而多利培南和厄他培南則小于1%[71]。該類藥物造成神經(jīng)毒性的機(jī)制主要有:①與GABA-A受體結(jié)合并抑制,碳青霉烯類藥物分子的側(cè)鏈堿性越強(qiáng),與GABA-A受體的親和力越高,其致癲癇潛能就越大,美羅培南的C2側(cè)鏈比亞胺培南和帕尼培南的堿性小得多,因此前者的神經(jīng)毒性小于后者[72];②與NMDA受體結(jié)合造成興奮性毒性[73];③與α-氨基-3-羥基-5-甲基異惡唑-4-丙酸受體的結(jié)合也被認(rèn)為與癲癇發(fā)作有關(guān)[74]。

2.3 氟喹諾酮類

研究表明左氧氟沙星和環(huán)丙沙星為氟喹諾酮類藥物中最常見引起神經(jīng)毒性的藥物[3-4,75-76]。氟喹諾酮類藥物的神經(jīng)系統(tǒng)滲透性與其致癲癇性并不完全相關(guān),有報(bào)道稱與環(huán)丙沙星相比,氧氟沙星的神經(jīng)系統(tǒng)滲透濃度較高,能達(dá)到血清中濃度的50%,但后者相比前者,其臨床神經(jīng)毒性的報(bào)道較少[77-78]。氟喹諾酮類藥物造成神經(jīng)毒性的機(jī)制主要有:①氟喹諾酮類藥物的母核上6位的氟原子具有疏水性,脂溶性較好,易滲透進(jìn)血腦屏障進(jìn)入腦組織,藥物濃度過高會(huì)增加細(xì)胞滲透壓,使神經(jīng)元細(xì)胞水腫導(dǎo)致藥物性高顱壓[79];②氟喹諾酮類藥物上的7-哌嗪環(huán)與GABA結(jié)構(gòu)相似,能與GABA-A受體結(jié)合阻滯GABA傳遞抑制性神經(jīng)電流,導(dǎo)致神經(jīng)興奮[79-80];③激活NMDA受體使神經(jīng)興奮[37]。

2.4 多黏菌素類

多黏菌素類藥物主要包括多黏菌素B和黏菌素(多黏菌素E)。早期研究報(bào)道多黏菌素在肌肉注射和靜脈注射給藥后神經(jīng)毒性的發(fā)生率分別約為7.3%和27%[81]。近些年可能由于對給藥劑量及聯(lián)合用藥的優(yōu)化,近期的研究統(tǒng)計(jì)表明多黏菌素的神經(jīng)毒性發(fā)生率在0~7%[82]。多黏菌素類藥物造成神經(jīng)毒性的機(jī)制主要有:①氧化應(yīng)激:黏菌素能顯著提升細(xì)胞內(nèi)活性氧(ROS)水平,降低谷胱甘肽(GSH)水平和抗氧化酶超氧化物歧化酶和過氧化氫酶(CAT)活性,導(dǎo)致脂質(zhì)、蛋白質(zhì)和DNA受損,并最終導(dǎo)致神經(jīng)元細(xì)胞死亡而表現(xiàn)為神經(jīng)毒性[25,83];②線粒體功能障礙:研究表明多黏菌素能夠誘導(dǎo)線粒體中Bax/Bcl-2蛋白比值上升,增加Ca2+誘導(dǎo)的線粒體通透性轉(zhuǎn)變降低膜電位和降低琥珀酸脫氫酶,使線粒體中超微結(jié)構(gòu)發(fā)生病理變化,如嵴破裂以及廣泛腫脹,從而促進(jìn)細(xì)胞色素C的釋放并激活Caspase蛋白相關(guān)的凋亡級聯(lián)

通路[40,83];③神經(jīng)肌肉阻滯:多黏菌素能非競爭性地與突觸前受體結(jié)合,阻斷乙酰膽堿釋放到突出間隙中,同時(shí)研究表明多黏菌素能提高機(jī)體內(nèi)乙酰膽堿酯酶水平,加速乙酰膽堿的降解,從而延長去極化,持續(xù)消耗Ca2+,導(dǎo)致神經(jīng)肌肉阻滯[84-85];④神經(jīng)興奮:研究表明靜脈注射黏菌素后能顯著提升小鼠大腦皮層中谷氨酸以及NMDA受體的表達(dá),促進(jìn)Na+和Ca2+內(nèi)流到神經(jīng)元導(dǎo)致興奮性毒性[38]。

2.5 甲硝唑

甲硝唑長期使用易導(dǎo)致神經(jīng)毒性,造成小腦病變,但停藥后3~7 d癥狀會(huì)得到緩解[86]。有研究表明甲硝唑造成神經(jīng)毒性的機(jī)制為甲硝唑誘導(dǎo)血管源性水腫繼發(fā)的軸突腫脹引起的;也有研究表明甲硝唑能導(dǎo)致脂質(zhì)過氧化物MDA(丙二醛)的累積,同時(shí)誘導(dǎo)體內(nèi)CAT、SOD水平下降,導(dǎo)致氧化應(yīng)激失衡,同時(shí)該研究還提及甲硝唑能夠降低機(jī)體內(nèi)硫胺素(維生素B1)水平,造成磷酸戊糖代謝障礙,影響磷脂類的合成,使周圍和中樞神經(jīng)組織出現(xiàn)脫髓鞘和軸索變性樣改變,導(dǎo)致神經(jīng)元細(xì)胞損傷[86-87]。

2.6 磺胺類藥物

研究表明,當(dāng)甲氧嘧啶的劑量從<12 mg/(kg·d)調(diào)高至>18 mg/(kg·d)時(shí),精神病的發(fā)生率由0升至23.5%[88]?;前奉愃幬镆鹕窠?jīng)毒性的機(jī)制可能是由于磺胺類藥物具有的神經(jīng)系統(tǒng)高滲透性,同時(shí)甲氧芐啶能抑制二氫葉酸還原酶(DHFR),磺胺甲惡唑?yàn)槎涞岷厦傅母偁幮砸种苿呓Y(jié)合能干擾四氫生物蝶呤的合成,從而減少多巴胺和血清素的合成,影響神經(jīng)系統(tǒng)的信號(hào)傳導(dǎo),導(dǎo)致神經(jīng)系統(tǒng)的毒副作用[89-90]。

2.7 大環(huán)內(nèi)酯類藥物

大環(huán)內(nèi)酯類藥物主要包括紅霉素及其衍生物(阿奇霉素和克拉霉素),該類藥物的神經(jīng)毒副作用主要為癲癇、譫妄、頭暈、神志不清以及耳毒性[33,91]。該藥物造成中樞神經(jīng)系統(tǒng)受損的機(jī)制尚不明確,但一篇研究報(bào)道了球藻暴露在羅紅霉素時(shí),能造成MDA累積以及SOD和CAT水平的降低,提示大環(huán)內(nèi)酯類藥物可能通過氧化應(yīng)激的方式對中樞神經(jīng)系統(tǒng)造成損傷[92]。而耳毒性在報(bào)道中認(rèn)為靜脈注射大劑量大環(huán)內(nèi)酯類藥物時(shí)產(chǎn)生,這可能是由血管紋水腫導(dǎo)致外毛細(xì)胞功能障礙引起的[93]。

2.8 惡唑烷酮類藥物

利奈唑胺作為惡唑烷酮類藥物的代表藥物,其神經(jīng)毒副作用主要體現(xiàn)為周圍神經(jīng)病變、視神經(jīng)病變、腦病、血清素綜合征;意識(shí)混亂、肌陣攣和譫妄[94]。該藥的毒副作用機(jī)制目前尚未定論,不過許多研究鑒于利奈唑胺的抗菌機(jī)制為通過與50S核糖體亞基結(jié)合來抑制細(xì)菌蛋白質(zhì),普遍支持其神經(jīng)毒性的機(jī)制為抑制線粒體蛋白合成,從而造成后續(xù)的骨髓抑制、神經(jīng)病變和乳酸中毒[95]。

3 抗菌藥物神經(jīng)毒性的危險(xiǎn)因素

3.1 年齡

年齡是抗菌藥物造成神經(jīng)毒性的主要危險(xiǎn)因素之一。老年患者是細(xì)菌感染(肺炎、流感和敗血癥)的高發(fā)人群,同時(shí)老年患者存在不同程度的肝腎功能減退, 機(jī)體肌肉含量下降,脂肪含量提高,其藥物動(dòng)力學(xué)(PK)特性發(fā)生變化,藥物代謝減緩以及藥物分布發(fā)生變化使藥物易于累積,造成血藥濃度增高。此外許多老年患者往往罹患各種較嚴(yán)重的基礎(chǔ)疾病,存在不同程度的腦萎縮或腦動(dòng)脈硬化、中樞神經(jīng)系統(tǒng)耐受性差、血漿蛋白含量降低等因素。上述原因?qū)е逻@一人群的神經(jīng)系統(tǒng)不良反應(yīng)風(fēng)險(xiǎn)增高[96-98]。

3.2 腎衰竭

在抗菌藥物的誘發(fā)的神經(jīng)毒性中,腎衰竭也是重要的危險(xiǎn)因素之一。腎衰竭能從藥代學(xué)以及藥效學(xué)兩個(gè)方面增加抗菌藥物神經(jīng)毒性的發(fā)生風(fēng)險(xiǎn)。

(1)藥代學(xué)方面:①腎衰竭中的尿毒癥毒素能降低胃腸道、肝以及腎中的細(xì)胞色素P含量,降低藥物代謝酶的活性,從而導(dǎo)致抗菌藥物代謝緩慢造成累積[99];②終末期腎病患者肝組織中P-糖蛋白(P-gp, P-glycoprotein)的藥物外排功能和有機(jī)陰離子多肽轉(zhuǎn)運(yùn)體(OATP, organic anion transporting polypeptide)介導(dǎo)的藥物攝取轉(zhuǎn)運(yùn)蛋白功能都有不同程度的缺陷,從而減少藥物的非腎性消除導(dǎo)致藥物累積[100-101];③腎衰竭導(dǎo)致的低白蛋白血癥(與腎臟疾病中蛋白尿和硫胺素缺乏相關(guān))減少抗菌藥物的蛋白結(jié)合,導(dǎo)致血液中抗菌藥物的游離濃度升高,增加中樞神經(jīng)系統(tǒng)毒性風(fēng)險(xiǎn)[102];④腎衰竭患者往往肌肉和皮下脂肪含量減少,這兩者都會(huì)改變親脂性抗菌藥物的藥代動(dòng)力學(xué)特征容積[103];總之,腎功能衰竭能降低抗菌藥物的代謝消除、蛋白結(jié)合以及分布,從而導(dǎo)致其神經(jīng)毒性風(fēng)險(xiǎn)增加。

(2)藥效學(xué)方面:腎衰竭導(dǎo)致的電解質(zhì)紊亂和神經(jīng)元膜上蛋白質(zhì)的化學(xué)修飾可能會(huì)降低癲癇發(fā)作的閾值,同時(shí)神經(jīng)遞質(zhì)受體或其信號(hào)通路的化學(xué)修飾可能影響廣泛的神經(jīng)元功能[103]。除此之外,研究表明腎衰竭小鼠中腦脊液中的蛋白質(zhì)濃度增加,同時(shí)尿毒癥會(huì)介導(dǎo)涉及rOat3和rOatp2受體的腦-血液運(yùn)輸受到抑制,導(dǎo)致內(nèi)源性代謝物和藥物在大腦中積累,這表明腎衰竭能造成血腦屏障的通透性改變或中樞神經(jīng)系統(tǒng)功能障礙[104-105]。

值得一提的是,碳青霉烯類藥物在腎衰竭誘導(dǎo)的神經(jīng)毒性機(jī)制存在一定的特殊性。一項(xiàng)研究表明,亞胺培南通過非腎消除產(chǎn)生的代謝物能夠?qū)е聞?dòng)物癲癇發(fā)作,且這種代謝物在腎衰竭病癥中具有較長的半衰期[106]。另外一項(xiàng)研究則將亞胺培南的神經(jīng)毒性歸因于其在腦脊液的緩慢消除,該研究認(rèn)為尿毒癥毒素能競爭性抑制腦脊液的主動(dòng)外排轉(zhuǎn)運(yùn)機(jī)制,因此在腎衰竭的情況下,毒性有機(jī)酸的積累或pH值的改變可能會(huì)導(dǎo)致亞胺培南(以及青霉素和頭孢菌素)從腦脊液向血液的主動(dòng)轉(zhuǎn)運(yùn)受阻,從而產(chǎn)生與腦組織藥物累積量相關(guān)的神經(jīng)毒性[66,107]。

3.3 既往神經(jīng)系統(tǒng)病史及其他病癥

已有多項(xiàng)研究表明既往神經(jīng)系統(tǒng)病史是抗菌藥物神經(jīng)毒性的重要危險(xiǎn)因素之一。神經(jīng)系統(tǒng)疾病如中風(fēng)、腦血脈硬化、帕金森癥等都有潛在的加重抗菌藥物神經(jīng)毒性作用;對于有癲癇史患者,使用抗菌藥物可能會(huì)降低癲癇發(fā)作閾值[108]。早期以及最近的研究表明,對于重癥肌無力患者,使用抗菌藥物會(huì)加重病癥[1,41,109]。一項(xiàng)評估以多黏菌素B為主治療革蘭陰性菌腦膜炎的有效性以及安全性的研究表明,有28%的患者在治療過程發(fā)生了神經(jīng)毒性,原因可能在于細(xì)菌性腦膜炎能夠增加血腦屏障的通透性,使抗菌藥物易于滲透進(jìn)入腦組織造成神經(jīng)毒性[110-111]。除此之外,還有一些特殊病癥也會(huì)誘發(fā)或加重抗菌藥物的神經(jīng)毒性,有研究表明原發(fā)性甲狀腺毒癥是環(huán)丙沙星致癲癇的潛在危險(xiǎn)因素[112];膿毒癥與囊性纖維化癥也被認(rèn)為具有潛在增加抗菌藥物神經(jīng)毒性的作用,原因可能為這些病癥誘導(dǎo)的部分或全身炎癥導(dǎo)致血腦屏障通透性增加,從而增加抗菌藥物血腦屏障滲透率[35,113-114]。

3.4 聯(lián)合用藥

在使用抗菌藥物治療的時(shí)候,往往因?yàn)榛颊卟l(fā)癥而聯(lián)合用藥,但不合理的聯(lián)合用藥可能會(huì)增加抗菌藥物發(fā)生神經(jīng)毒性的風(fēng)險(xiǎn)。其誘發(fā)的機(jī)制可能為影響藥物代謝或共同作用增加其神經(jīng)毒性。如氟喹諾酮類可抑制肝細(xì)胞色素(CYP450)酶活性,從而顯著降低茶堿肝清除率,使血中茶堿濃度明顯增高, 引起茶堿神經(jīng)中毒癥狀[115];氟喹諾酮類與非類固醇類消炎鎮(zhèn)痛藥聯(lián)合用藥時(shí)還能協(xié)同增強(qiáng)氟喹諾酮類的抑制GABA作用從而誘發(fā)神經(jīng)毒性[116-117]。同時(shí)還有研究表明多黏菌素與鎮(zhèn)靜劑、麻醉劑、皮質(zhì)類固醇和肌肉松弛劑等藥物共同給藥時(shí)能提高多黏菌素發(fā)生神經(jīng)毒性的風(fēng)險(xiǎn)[35]。

4 防治措施

4.1 嚴(yán)格把握適應(yīng)癥以及給藥方案

對腎功能不全或腎衰竭、既往神經(jīng)系統(tǒng)病史如癲癇、帕金森癥和精神病史等以及高齡患者應(yīng)謹(jǐn)慎用藥,同時(shí)應(yīng)當(dāng)根據(jù)患者的機(jī)體代謝情況制定合理的給藥方案, 調(diào)整給藥劑量和用藥時(shí)間[118],例如在一項(xiàng)研究對比慶大霉素一次性給藥與分3次給藥造成耳毒性的研究中,結(jié)果表明一次性給藥方案相比分3次給藥不僅在治愈率上更具優(yōu)勢(分別為87.5%和69.2%),在耳毒性風(fēng)險(xiǎn)方面也更為安全(一次性給藥方案0例,分3次給藥3例)[119];并且在出現(xiàn)神經(jīng)毒性時(shí)應(yīng)當(dāng)及時(shí)停藥,同時(shí)根據(jù)用藥種類應(yīng)避免藥物相互作用。

4.2 藥物控制神經(jīng)毒性癥狀

有研究表明,在應(yīng)對抗菌藥物尤其是碳青霉烯類藥物誘導(dǎo)的癲癇發(fā)作的治療中,苯二氮卓類被推薦為一線治療藥物,因其能通過增加氯離子通道開放的速率來增強(qiáng)GABAA的活性,從而導(dǎo)致神經(jīng)元超極化,有效地控制由GABA拮抗引起的癲癇[120]。另外還能選取一些具有神經(jīng)保護(hù)作用藥物如谷胱甘肽、神經(jīng)節(jié)苷脂、雷帕霉素和紅景天苷等緩解抗菌藥物誘導(dǎo)的神經(jīng)毒性[25,121]。

4.3 血藥濃度檢測(TDM)

對于治療指數(shù)窄,毒性作用強(qiáng),個(gè)體差異大的抗菌藥物,應(yīng)進(jìn)行血藥濃度檢測,同時(shí)觀測患者在治療過程是否有癲癇發(fā)作、意識(shí)混亂、腦病以及痙攣等不良反應(yīng),結(jié)合患者病癥、血藥濃度以及生化指標(biāo)制定更合理的給藥方案,為把控藥物的合理應(yīng)用、建立個(gè)體化治療提供科學(xué)依據(jù),如一項(xiàng)針對利奈唑胺個(gè)體精細(xì)化給藥的研究中,該文獻(xiàn)對TDM測定的利奈唑胺群體PK模型進(jìn)行蒙特卡洛模擬,結(jié)果表明使用標(biāo)準(zhǔn)的給藥方案利奈唑胺(600 mg, q12h),對于MIC高于4 mg/L的菌株難以有效殺滅,對于這些菌株需要更高的藥物暴露量才能達(dá)到理想的臨床效果,但劑量增加可能導(dǎo)致超過30%的患者有潛在的神經(jīng)毒副作用發(fā)生率,需考慮個(gè)體化給藥保證有效安全的藥物暴露[122]。

5 總結(jié)

神經(jīng)毒性是抗菌藥物的一種常見且嚴(yán)重的毒副作用,其危險(xiǎn)因素主要有腎衰竭、既往神經(jīng)系統(tǒng)史、膿毒血癥、囊性纖維化、老齡患者以及藥物聯(lián)用。因此在治療前應(yīng)充分了解患者既往病史及患者機(jī)體狀況,同時(shí)做好預(yù)防措施,如藥物濃度監(jiān)測、腦電圖監(jiān)測,結(jié)合患者生化指標(biāo)提供合理的給藥方案,從而有效將患者血藥濃度控制在安全窗口內(nèi)。神經(jīng)毒性發(fā)生機(jī)制主要為呈濃度依賴性抑制或激活GABA、NMDA以及乙酰膽堿等神經(jīng)遞質(zhì)的傳遞,同時(shí)也有藥物能夠通過氧化應(yīng)激誘導(dǎo)細(xì)胞凋亡導(dǎo)致神經(jīng)毒性。對此,使用苯二氮卓類藥物以及神經(jīng)保護(hù)劑在維持抗菌效果的同時(shí)減少抗菌藥物對神經(jīng)系統(tǒng)的損傷也具有一定的前景。值得注意的是研究表明在神經(jīng)系統(tǒng)感染、全身感染(膿毒癥)以及腎功能不全的患者中,血腦屏障受到炎癥因子的破壞導(dǎo)致滲透率增加,或者抑制腦-血轉(zhuǎn)運(yùn)體都能增加神經(jīng)毒性風(fēng)險(xiǎn)。因此進(jìn)一步研究完善抗菌藥物的腦內(nèi)轉(zhuǎn)運(yùn)機(jī)制以及保護(hù)血腦屏障損傷也不失為減少抗菌藥物神經(jīng)毒性不良反應(yīng)的一個(gè)突破點(diǎn)。

參 考 文 獻(xiàn)

Rezaei N J, Bazzazi A M, Alavi S A N. Neurotoxicity of the antibiotics: A comprehensive study[J]. Neurol India, 2018, 66(6): 1732-1740.

Gschwind M, Simonetta F, Vulliemoz S. Reversible encephalopathy with photoparoxysmal response during imipenem/cilastatin treatment[J]. J Neurol Sci, 2016, 360: 23-24.

Grill M F, Maganti R K. Neurotoxic effects associated with antibiotic use: Management considerations[J]. Br J Clin Pharmacol, 2011, 72(3): 381-393.

Morales D, Pacurariu A, Slattery J, et al. Association between peripheral neuropathy and exposure to oral fluoroquinolone or amoxicillin-clavulanate therapy[J]. JAMA Neurol, 2019, 76(7): 827-833.

Goolsby T A, Jakeman B, Gaynes R P. Clinical relevance of metronidazole and peripheral neuropathy: A systematic review of the literature[J]. Int J Antimicrob Agents, 2018, 51(3): 319-325.

Leis J A, Rutka J A, Gold W L, et al. Aminoglycoside-induced ototoxicity[J]. CMAJ, 2015, 187(1): E52.

Bischoff A, Meier C, Roth F. Gentamicin neurotoxicity (polyneuropathy-encephalopathy)[J]. Schweiz Med Wochenschr, 1977, 107(1): 3-8.

Tange R A, Dreschler W A, Prins J M, et al. Ototoxicity and nephrotoxicity of gentamicin vs netilmicin in patients with serious infections: A randomized clinical trial[J]. Clin Otolaryngol Allied Sci, 1995, 20(2): 118-123.

Tulkens P M. Pharmacokinetic and toxicological evaluation of a once-daily regimen versus conventional schedules of netilmicin and amikacin[J]. J Antimicrob Chemother, 1991, 27(Suppl C): 49-61.

Klis S, Stienstra Y, Phillips R O, et al. Long term streptomycin toxicity in the treatment of Buruli Ulcer: follow-up of participants in the BURULICO drug trial[J]. PLoS Negl Trop Dis, 2014, 8(3): e2739.

Lerner A M, Reyes M P, Cone L A, et al. Randomised, controlled trial of the comparative efficacy, auditory toxicity, and nephrotoxicity of tobramycin and netilmicin[J]. Lancet, 1983, 1(8334): 1123-1126.

Bhattacharyya S, Berkowitz A L. Cephalosporin neurotoxicity: An overlooked cause of toxic-metabolic encephalopathy[J]. J Neurol Sci, 2019, 398: 194-195.

Triplett J D, Lawn N D, Chan J, et al. Cephalosporin-related neurotoxicity: Metabolic encephalopathy or non-convulsive status epilepticus?[J]. J Clin Neurosci, 2019, 67: 163-166.

Lin C S, Cheng C J, Chou C H, et al. Piperacillin/tazobactam-induced seizure rapidly reversed by high flux hemodialysis in a patient on peritoneal dialysis[J]. Am J Med Sci, 2007, 333(3): 181-184.

Huang W T, Hsu Y J, Chu P L, et al. Neurotoxicity associated with standard doses of piperacillin in an elderly patient with renal failure[J]. Infection, 2009, 37(4): 374-376.

Boschung-Pasquier L, Atkinson A, Kastner L K, et al. Cefepime neurotoxicity: Thresholds and risk factors. A retrospective cohort study[J]. Clin Microbiol Infect, 2020, 26(3): 333-339.

Grill M F, Maganti R. Cephalosporin-induced neurotoxicity: clinical manifestations, potential pathogenic mechanisms, and the role of electroencephalographic monitoring[J]. Ann Pharmacother, 2008, 42(12): 1843-1850.

Chow K M, Szeto C C, Hui A C, et al. Retrospective review of neurotoxicity induced by cefepime and ceftazidime[J]. Pharmacotherapy, 2003, 23(3): 369-373.

Quinton M C, Bodeau S, Kontar L, et al. Neurotoxic concentration of piperacillin during continuous infusion in critically III patients[J]. Antimicrob Agents Chemother, 2017, 61(9): e00654-17.

Olthof E, Tostmann A, Peters W H, et al. Hydrazine-induced liver toxicity is enhanced by glutathione depletion but is not mediated by oxidative stress in HepG2 cells[J]. Int J Antimicrob Agents, 2009, 34(4): 385-386.

Xiao C, Han Y, Liu Y, et al. Relationship between fluoroquinolone structure and neurotoxicity revealed by zebrafish neurobehavior[J]. Chem Res Toxicol, 2018, 31(4): 238-250.

Bhalerao S, Talsky A, Hansen K, et al. Ciprofloxacin-induced manic episode[J]. Psychosomatics, 2006, 47(6): 539-540.

Traeger S M, Bonfiglio M F, Wilson J A, et al. Seizures associated with ofloxacin therapy[J]. Clin Infect Dis, 1995, 21(6): 1504-1506.

Nishikubo M, Kanamori M, Nishioka H. Levofloxacin-associated neurotoxicity in a patient with a high concentration of levofloxacin in the blood and cerebrospinal fluid[J]. Antibiotics (Basel), 2019, 8(2): 78.

Dai C, Xiao X, Li J, et al. Molecular mechanisms of neurotoxicity induced by polymyxins and chemoprevention[J]. ACS Chem Neurosci, 2019, 10(1): 120-131.

Zhou Y, Li Y, Xie X, et al. Higher incidence of neurotoxicity and skin hyperpigmentation in renal transplant patients treated with polymyxin B[J]. Br J Clin Pharmacol, 2022, 88(11): 4742-4750 .

Kelesidis T, Falagas M E. The safety of polymyxin antibiotics[J]. Expert Opin Drug Saf, 2015, 14(11): 1687-1701.

Quickfall D, Daneman N, Dmytriw A A, et al. Metronidazole-induced neurotoxicity[J]. CMAJ, 2021, 193(42): E1630.

Kim E, Na D G, Kim E Y, et al. MR imaging of metronidazole-induced encephalopathy: Lesion distribution and diffusion-weighted imaging findings[J]. AJNR Am J Neuroradiol, 2007, 28(9): 1652-1658.

Saidinejad M, Ewald M B, Shannon M W. Transient psychosis in an immune-competent patient after oral trimethoprim-sulfamethoxazole administration[J]. Pediatrics, 2005, 115(6): e739-741.

Gray D A, Foo D. Reversible myoclonus, asterixis, and tremor associated with high dose trimethoprim-sulfamethoxazole: A case report[J]. J Spinal Cord Med, 2016, 39(1): 115-117.

Ikeda A K, Prince A A, Chen J X, et al. Macrolide-associated sensorineural hearing loss: A systematic review[J]. Laryngoscope, 2018, 128(1): 228-236.

Bandettini di Poggio M, Anfosso S, Audenino D, et al. Clarithromycin-induced neurotoxicity in adults[J]. J Clin Neurosci, 2011, 18(3): 313-318.

Clark D B, Andrus M R, Byrd D C. Drug interactions between linezolid and selective serotonin reuptake inhibitors: case report involving sertraline and review of the literature[J]. Pharmacotherapy, 2006, 26(2): 269-276.

Wanleenuwat P, Suntharampillai N, Iwanowski P. Antibiotic-induced epileptic seizures: Mechanisms of action and clinical considerations[J]. Seizure, 2020, 81: 167-174.

Fu X, Wan P, Li P, et al. Mechanism and prevention of ototoxicity induced by aminoglycosides[J]. Front Cell Neurosci, 2021, 15: 692762.

Leung K. 4-Acetoxy-7-chloro-3-(3-(-4-[11C]methoxybenzyl)phenyl)-2(1H)-quinolone[M]. Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD), 2009.

Wang J, Yi M, Chen X, et al. Effects of colistin on amino acid neurotransmitters and blood-brain barrier in the mouse brain[J]. Neurotoxicol Teratol, 2016, 55: 32-37.

Nar Z, Edizer D T, Yiit Z, et al. Does calcium dobesilate have therapeutic effect on gentamicin-induced cochlear nerve ototoxicity? An experimental study[J]. Otol Neurotol, 2020, 41(10): e1185-e1192.

Dai C, Tang S, Biao X, et al. Colistin induced peripheral neurotoxicity involves mitochondrial dysfunction and oxidative stress in mice[J]. Mol Biol Rep, 2019, 46(2): 1963-1972.

Gummi R R, Kukulka N A, Deroche C B, et al. Factors associated with acute exacerbations of myasthenia gravis[J]. Muscle Nerve, 2019, 60(6): 693-699.

Sheikh S, Alvi U, Soliven B, et al. Drugs that induce or cause deterioration of myasthenia gravis: An update[J]. J Clin Med, 2021, 10(7): 1537.

Kuznetsov A V, Margreiter R, Amberger A, et al. Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death[J]. Biochim Biophys Acta, 2011, 1813(6): 1144-1152.

Rizzi M D, Hirose K. Aminoglycoside ototoxicity[J]. Curr Opin Otolaryngol Head Neck Surg, 2007, 15(5): 352-357.

Van Hecke R, Van Rompaey V, Wuyts F L, et al. Systemic aminoglycosides-induced vestibulotoxicity in humans[J]. Ear Hear, 2017, 38(6): 653-662.

Steyger P S, Peters S L, Rehling J, et al. Uptake of gentamicin by bullfrog saccular hair cells in vitro[J]. J Assoc Res Otolaryngol, 2003, 4(4): 565-578.

Marcotti W, van Netten S M, Kros C J. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels[J]. J Physiol, 2005, 567(Pt 2): 505-521.

Waguespack J R, Ricci A J. Aminoglycoside ototoxicity: Permeant drugs cause permanent hair cell loss[J]. J Physiol, 2005, 567(Pt2): 359-360.

Warchol M E. Cellular mechanisms of aminoglycoside ototoxicity[J]. Curr Opin Otolaryngol Head Neck Surg, 2010, 18(5): 454-458.

Steyger P S. Mechanisms of aminoglycoside- and cisplatin-induced ototoxicity[J]. Am J Audiol, 2021, 30(3S): 887-900.

Hobbie S N, Akshay S, Kalapala S K, et al. Genetic analysis of interactions with eukaryotic rRNA identify the mitoribosome as target in aminoglycoside ototoxicity[J]. Proc Natl Acad Sci U S A, 2008, 105(52): 20888-20893.

Guan M X. Mitochondrial 12S rRNA mutations associated with aminoglycoside ototoxicity[J]. Mitochondrion, 2011, 11(2): 237-245.

Kros C J, Steyger P S. Aminoglycoside- and cisplatin-induced ototoxicity: Mechanisms and otoprotective strategies[J]. Cold Spring Harb Perspect Med, 2019, 9(11): a033548.

Zareifopoulos N, Panayiotakopoulos G. Neuropsychiatric effects of antimicrobial agents[J]. Clin Drug Investig, 2017, 37(5): 423-437.

Shi L J, Liu L A, Cheng X H, et al. Decrease in acetylcholine-induced current by neomycin in PC12 cells[J]. Arch Biochem Biophys, 2002, 403(1): 35-40.

Krenn M, Grisold A, Wohlfarth P, et al. Pathomechanisms and clinical implications of myasthenic syndromes exacerbated and induced by medical treatments[J]. Front Mol Neurosci, 2020, 13: 156.

Liu C, Hu F. Investigation on the mechanism of exacerbation of myasthenia gravis by aminoglycoside antibiotics in mouse model[J]. J Huazhong Univ Sci Technolog Med Sci, 2005, 25(3): 294-296.

Lacroix C, Kheloufi F, Montastruc F, et al. Serious central nervous system side effects of cephalosporins: A national analysis of serious reports registered in the French Pharmacovigilance Database[J]. J Neurol Sci, 2019, 398: 196-201.

Tamune H, Hamamoto Y, Aso N, et al. Cefepime-induced encephalopathy: Neural mass modeling of triphasic wave-like generalized periodic discharges with a high negative component (Tri-HNC)[J]. Psychiatry Clin Neurosci, 2019, 73(1): 34-42.

Cock H R. Drug-induced status epilepticus[J]. Epilepsy Behav, 2015, 49: 76-82.

Sugimoto M, Uchida I, Mashimo T, et al. Evidence for the involvement of GABA(A) receptor blockade in convulsions induced by cephalosporins[J]. Neuropharmacology, 2003, 45(3): 304-314.

Sugimoto M, Fukami S, Kayakiri H, et al. The beta-lactam antibiotics, penicillin-G and cefoselis have different mechanisms and sites of action at GABA(A) receptors[J]. Br J Pharmacol, 2002, 135(2): 427-432.

Alkharfy K M, Kellum J A, Frye R F, et al. Effect of ceftazidime on systemic cytokine concentrations in rats[J]. Antimicrob Agents Chemother, 2000, 44(11): 3217-3219.

Block M L, Zecca L, Hong J S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms[J]. Nat Rev Neurosci, 2007, 8(1): 57-69.

Preston R A, Mamikonyan G, Mastim M, et al. Single-center investigation of the pharmacokinetics of WCK 4282 (Cefepime-Tazobactam Combination) in renal impairment[J]. Antimicrob Agents Chemother, 2019,63(10): e00873-19.

Ohtaki K, Matsubara K, Fujimaru S, et al. Cefoselis, a beta-lactam antibiotic, easily penetrates the blood-brain barrier and causes seizure independently by glutamate release[J]. J Neural Transm (Vienna), 2004, 111(12): 1523-1535.

Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration[J]. Pflugers Arch, 2010, 460(2): 525-542.

Mahmoud S, Gharagozloo M, Simard C, et al. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release[J]. Cells, 2019, 8(2): 184.

Rossokhin A V, Sharonova I N, Bukanova J V, et al. Block of GABA(A) receptor ion channel by penicillin: electrophysiological and modeling insights toward the mechanism[J]. Mol Cell Neurosci, 2014, 63: 72-82.

Shiraishi H, Ito M, Go T, et al. High doses of penicillin decreases [3H]flunitrazepam binding sites in rat neuron primary culture[J]. Brain Dev, 1993, 15(5): 356-361.

Ayd?n A, Bar?? Aykan M, Sa?lam K, et al. Seizure induced by ertapenem in an elderly patient with dementia[J]. Consult Pharm, 2017, 32(10): 561-562.

Sunagawa M, Matsumura H, Sumita Y, et al. Structural features resulting in convulsive activity of carbapenem compounds: effect of C-2 side chain[J]. J Antibiot (Tokyo), 1995, 48(5): 408-416.

Zivanovic D, Lovic O S, Susic V. Effects of manipulation of N-methyl-D-aspartate receptors on imipenem/cilastatin-induced seizures in rats[J]. Indian J Med Res, 2004, 119(2): 79-85.

Koppel B S, Hauser W A, Politis C, et al. Seizures in the critically ill: The role of imipenem[J]. Epilepsia, 2001, 42(12): 1590-1593.

Ali A K. Peripheral neuropathy and Guillain-Barré syndrome risks associated with exposure to systemic fluoroquinolones: A pharmacovigilance analysis[J]. Ann Epidemiol, 2014, 24(4): 279-285.

Bhattacharyya S, Darby R R, Raibagkar P, et al. Antibiotic-associated encephalopathy[J]. Neurology, 2016, 86(10): 963-971.

Schwartz M T, Calvert J F. Potential neurologic toxicity related to ciprofloxacin[J]. DICP, 1990, 24(2): 138-140.

Kaur K, Fayad R, Saxena A, et al. Fluoroquinolone-related neuropsychiatric and mitochondrial toxicity. A collaborative investigation by scientists and members of a social network[J]. J Community Support Oncol, 2016, 14(2): 54-65.

De Sarro A, De Sarro G. Adverse reactions to fluoroquinolones. An overview on mechanistic aspects[J]. Curr Med Chem, 2001, 8(4): 371-384.

高偉波, 朱繼紅. 氟喹諾酮類藥物中樞神經(jīng)系統(tǒng)不良反應(yīng)及其防治[J]. 疑難病雜志, 2008, 7(8): 507-509.

Koch-Weser J, Sidel V W, Federman E B, et al. Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy[J]. Ann Intern Med, 1970, 72(6): 857-868.

Molina J, Cordero E, Pachón J. New information about the polymyxin/colistin class of antibiotics[J]. Expert Opin Pharmacother, 2009, 10(17): 2811-2828.

Dai C, Tang S, Velkov T, et al. Colistin-induced apoptosis of neuroblastoma-2a cells involves the generation of reactive oxygen species, mitochondrial dysfunction, and autophagy[J]. Mol Neurobiol, 2016, 53(7): 4685-700.

Ajiboye T O. Colistin sulphate induced neurotoxicity: Studies on cholinergic, monoaminergic, purinergic and oxidative stress biomarkers[J]. Biomed Pharmacother, 2018, 103: 1701-1707.

Yachan N, Yanqi C, You W, et al. Case report: Respiratory paralysis associated with polymyxin B therapy[J]. Front? ?Pharmacol, 2022, 13: 963140.

Lefkowitz A, Shadowitz S. Reversible cerebellar neurotoxicity induced by metronidazole[J]. CMAJ, 2018, 190(32): E961.

Hassan M H, Awadalla E A, Ali R A, et al. Thiamine deficiency and oxidative stress induced by prolonged metronidazole therapy can explain its side effects of neurotoxicity and infertility in experimental animals: Effect of grapefruit co-therapy[J]. Hum Exp Toxicol, 2020, 39(6): 834-847.

Lee K Y, Huang C H, Tang H J, et al. Acute psychosis related to use of trimethoprim/sulfamethoxazole in the treatment of HIV-infected patients with Pneumocystis jirovecii pneumonia: A multicentre, retrospective study[J]. J Antimicrob Chemother, 2012, 67(11): 2749-2754.

Patey O, Lacheheb A, Dellion S, et al. A rare case of cotrimoxazole-induced eosinophilic aseptic meningitis in an HIV-infected patient[J]. Scand J Infect Dis, 1998, 30(5): 530-531.

Haruki H, Pedersen M G, Gorska K I, et al. Tetrahydrobiopterin biosynthesis as an off-target of sulfa drugs[J]. Science, 2013, 340(6135): 987-991.

Principi N, Esposito S. Comparative tolerability of erythromycin and newer macrolide antibacterials in paediatric patients[J]. Drug Saf, 1999, 20(1): 25-41.

Li J, Min Z, Li W, et al. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: Toxicity and removal mechanism[J]. Ecotoxicol Environ Saf, 2020, 191: 110156.

Yorgason J G, Luxford W, Kalinec F. In vitro and in vivo models of drug ototoxicity: Studying the mechanisms of a clinical problem[J]. Expert Opin Drug Metab Toxicol, 2011, 7(12): 1521-1534.

Narita M, Tsuji B T, Yu V L. Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome[J]. Pharmacotherapy, 2007, 27(8):1189-1197.

Flanagan S, McKee E E, Das D, et al. Nonclinical and pharmacokinetic assessments to evaluate the potential of tedizolid and linezolid to affect mitochondrial function[J]. Antimicrob Agents Chemother, 2015, 59(1): 178-185.

Cunha B A. Antibiotic side effects[J]. Med Clin North Am, 2001, 85(1): 149-185.

Kumar A, Roberts D, Wood K E, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock[J]. Crit Care Med, 2006, 34(6): 1589-1596.

Jafarinasabian P, Inglis J E, Reilly W, et al. Aging human body: Changes in bone, muscle and body fat with consequent changes in nutrient intake[J]. J Endocrinol, 2017, 234(1): R37-R51.

李輝, 芮建中. 慢性腎衰竭對非腎消除藥物體內(nèi)代謝與轉(zhuǎn)運(yùn)的影響[J]. 中國臨床藥理學(xué)雜志, 2017, 33(21): 2179-2181.

Dro?dzik M, Oswald S, Dro?dzik A. Impact of kidney dysfunction on hepatic and intestinal drug transporters[J]. Biomed Pharmacother, 2021, 143: 112125.

Torres A M, Dnyanmote A V, Granados J C, et al. Renal and non-renal response of ABC and SLC transporters in chronic kidney disease[J]. Expert Opin Drug Metab Toxicol, 2021, 17(5): 515-542.

Hamed S A. Neurologic conditions and disorders of uremic syndrome of chronic kidney disease: Presentations, causes, and treatment strategies[J]. Exp Rev Clin Pharmacol, 2019, 12(1): 61-90.

Mattappalil A, Mergenhagen K A. Neurotoxicity with antimicrobials in the elderly: A review[J]. Clin Ther, 2014, 36(11): 1489-1511.e4.

Freeman R B, Sheff M F, Maher J F, et al. The blood-cerebrospinal fluid barrier in uremia[J]. Ann Intern Med, 1962, 56: 233-240.

Deguchi T, Isozaki K, Yousuke K, et al. Involvement of organic anion transporters in the efflux of uremic toxins across the blood-brain barrier[J]. J Neurochem, 2006, 96(4): 1051-1059.

Kahan F M, Kropp H, Sundelof J G, et al. Thienamycin: Development of imipenen-cilastatin[J]. J Antimicrob Chemother, 1983, 12(Suppl D): 1-35.

Chow K M, Szeto C C, Hui A C, et al. Mechanisms of antibiotic neurotoxicity in renal failure[J]. Int J Antimicrob Agents, 2004, 23(3): 213-217.

Czapińska-Ciepiela E. The risk of epileptic seizures during antibiotic therapy[J]. Wiad Lek, 2017, 70(4): 820-826.

Hokkanen E. The aggravating effect of some antibiotics on the neuromuscular blockade in myasthenia gravis[J]. Acta Neurol Scand, 1964, 40(4): 346-352.

Falagas M E, Bliziotis I A, Tam V H. Intraventricular or intrathecal use of polymyxins in patients with Gram-negative meningitis: A systematic review of the available evidence[J]. Int J Antimicrob Agents, 2007, 29(1): 9-25.

Yau B, Hunt N H, Mitchell A J, et al. Blood-brain barrier pathology and CNS Outcomes in Streptococcus pneumoniae Meningitis[J]. Int J Mol Sci, 2018, 19(11): 3555.

Agbaht K, Bitik B, Piskinpasa S, et al. Ciprofloxacin-associated seizures in a patient with underlying thyrotoxicosis: case report and literature review[J]. Int J Clin Pharmacol Ther, 2009, 47(5): 303-310.

Rekis N, Ambrose M, Sakon C. Neurotoxicity in adult patients with cystic fibrosis using polymyxin B for acute pulmonary exacerbations[J]. Pediatr Pulmonol, 2020, 55(5): 1094-1096.

Jin L, Li J, Nation R L, et al. Impact of p-glycoprotein inhibition and lipopolysaccharide administration on blood-brain barrier transport of colistin in mice[J]. Antimicrob Agents Chemother, 2011, 55(2): 502-507.

周義文. 抗感染藥物對神經(jīng)系統(tǒng)的毒性作用[J]. 中國實(shí)用內(nèi)科雜志, 2001, 21(11): 692-694.

Giardina W J. Assessment of temafloxacin neurotoxicity in rodents[J]. Am J Med, 1991, 91(6A): 42S-44S.

Motomura M, Kataoka Y, Takeo G, et al. Hippocampus and frontal cortex are the potential mediatory sites for convulsions induced by new quinolones and non-steroidal anti-inflammatory drugs[J]. Int J Clin Pharmacol Ther Toxicol, 1991, 29(6): 223-227.

Hoff B M, Maker J H, Dager W E, et al. Antibiotic dosing for critically ill adult patients receiving intermittent hemodialysis, prolonged intermittent renal replacement therapy, and continuous renal replacement therapy: An update[J]. Ann Pharmacother, 2020, 54(1): 43-55.

Raz R, Adawi M, Romano S. Intravenous administration of gentamicin once daily versus thrice daily in adults[J]. Eur J Clin Microbiol Infect Dis, 1995, 14(2): 88-91.

Payne L E, Gagnon D J, Riker R R, et al. Cefepime-induced neurotoxicity: A systematic review[J]. Crit Care, 2017, 21(1): 276.

郭昌, 趙文韜, 胡豐良. 奧沙利鉑神經(jīng)毒性的機(jī)制及防治研究進(jìn)展[J]. 現(xiàn)代中西醫(yī)結(jié)合雜志, 2020, 29(9): 1022-1026.

Luque S, Hope W, Sorli L, et al. Dosage individualization of linezolid: precision dosing of linezolid to optimize efficacy and minimize toxicity[J]. Antimicrob Agents Chemother, 2021, 65(6): e02490-20.

猜你喜歡
抗菌藥物危險(xiǎn)因素防治措施
微量激素聯(lián)合抗菌藥物治療細(xì)菌性角膜炎的療效觀察
今日健康(2016年12期)2016-11-17 19:41:04
產(chǎn)科出生缺陷的危險(xiǎn)因素及護(hù)理對策
今日健康(2016年12期)2016-11-17 13:12:34
普通外科術(shù)后切口感染危險(xiǎn)因素的分析
今日健康(2016年12期)2016-11-17 12:29:29
抗菌藥物與抑制胃酸分泌藥物聯(lián)用治療消化性潰瘍54例觀察
今日健康(2016年12期)2016-11-17 12:14:46
圍絕經(jīng)期婦女骨質(zhì)疏松癥的預(yù)防與保健指導(dǎo)
科技資訊(2016年19期)2016-11-15 10:33:36
基于BI的個(gè)性化抗菌藥物用藥體系的設(shè)計(jì)
分析工民建施工中墻體裂縫的防治措施
煤礦井筒裝備防腐涂料的選擇和施工
對某雞場雞白痢發(fā)病情況的調(diào)查及防治效果的分析
姚安县| 伊宁县| 淄博市| 武汉市| 天镇县| 察隅县| 卢氏县| 收藏| 广汉市| 兴和县| 镇远县| 安图县| 东源县| 剑河县| 琼海市| 阿坝县| 澄江县| 灵石县| 肥乡县| 迭部县| 彝良县| 广西| 山丹县| 南岸区| 韶山市| 五常市| 亚东县| 洛阳市| 乌拉特中旗| 鹤岗市| 米林县| 新昌县| 谢通门县| 上栗县| 通海县| 葫芦岛市| 赫章县| 华亭县| 县级市| 天门市| 新乡县|