李昂 陳鳳華 王紫君 石麗敏
[摘要]目的探討1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導(dǎo)的帕金森?。≒D)模型小鼠未定帶γ-氨基丁酸(GABA)能神經(jīng)元的放電變化。方法8周齡雄性C57BL/6小鼠14只,隨機(jī)分為對(duì)照組及MPTP組,每組7只。MPTP組采用連續(xù)5 d腹腔注射MPTP(30 mg·kg-1·d-1)的方法制備PD小鼠模型,對(duì)照組注射等量生理鹽水。利用免疫熒光技術(shù)觀察小鼠黑質(zhì)區(qū)酪氨酸羥化酶(TH)陽性神經(jīng)元的數(shù)目變化,曠場(chǎng)實(shí)驗(yàn)觀察小鼠運(yùn)動(dòng)行為變化,膜片鉗技術(shù)觀察未定帶區(qū)GABA能神經(jīng)元的放電變化。結(jié)果與對(duì)照組相比,MPTP組小鼠黑質(zhì)區(qū)TH陽性神經(jīng)元數(shù)目明顯減少(t=2.775,P<0.05);曠場(chǎng)檢測(cè)結(jié)果顯示,MPTP組小鼠在曠場(chǎng)中的運(yùn)動(dòng)距離較對(duì)照組明顯減少(t=17.870,P<0.001);MPTP組小鼠未定帶區(qū)GABA能神經(jīng)元放電頻率較對(duì)照組降低,差異具有統(tǒng)計(jì)學(xué)意義(t=5.895,P<0.001)。結(jié)論MPTP誘導(dǎo)的PD模型小鼠未定帶GABA能神經(jīng)元放電頻率顯著降低。
[關(guān)鍵詞]帕金森?。晃炊◣?;GABA能神經(jīng)元;電生理學(xué);小鼠
[中圖分類號(hào)]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2023)03-0345-04
doi:10.11712/jms.2096-5532.2023.59.096[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20230804.1521.004;2023-08-0418:31:34
CHANGE IN GABAERGIC NEURON FIRING IN THE ZONA INCERTA IN A MOUSE MODEL OF PARKINSONS DISEASE? LI Ang, CHEN Fenghua, WANG Zijun, SHI Limin (Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the firing change of gamma-aminobutyric acid (GABA)-ergic neurons in the zona incerta in a mouse model of Parkinsons disease induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). MethodsFourteen 8-week-old male C57BL/6 mice were randomly divided into control group and MPTP group, with seven mice in each group. A MPTP model was prepared by intraperitoneal injection of MPTP (30 mg·kg-1·d-1) for continuous five days in the MPTP group. The control group was injected with an equal amount of normal saline. The number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra was determined by the immunofluorescence technique. The locomotor activity of mice was observed by the open field test. The firing change of GABAergic neurons in the zona incerta was measure using the patch clamp technique. ResultsCompared with that of the control group, the number of TH-positive neurons in the substantia nigra of the MPTP group was significantly reduced (t=2.775,P<0.05). The MPTP group showed a significantly shorter distance of movement in the open field than the control group (t=17.870,P<0.001). The firing rate of GABAergic neurons in the zona incerta was significantly lower in the MPTP group than in the control group (t=5.895,P<0.001). ConclusionIn the MPTP-induced PD model in mice, the firing rate of GABAergic neurons in the zona incerta was significantly reduced.
[KEY WORDS]Parkinson disease; zona incerta; GABAergic neurons; electrophysiology; mice
帕金森病(PD)是一種常見的神經(jīng)退行性疾病,主要發(fā)生于老年人[1],其神經(jīng)病理學(xué)基礎(chǔ)是黑質(zhì)致密帶多巴胺能神經(jīng)元選擇性丟失,紋狀體軸突末梢多巴胺含量減少,基底神經(jīng)核直接和間接通路失平衡[2-3],從而引起一系列運(yùn)動(dòng)癥狀,包括靜止性震顫、運(yùn)動(dòng)遲緩、僵硬和姿勢(shì)不穩(wěn)等[4]。腦深部電刺激是臨床治療 PD 運(yùn)動(dòng)癥狀的高效治療手段,被認(rèn)為能干預(yù)被刺激核團(tuán)神經(jīng)元的放電活動(dòng),并影響相關(guān)神經(jīng)傳導(dǎo)通路的信息傳遞,從而調(diào)控腦區(qū)的功能[5]。丘腦底核和蒼白球內(nèi)側(cè)部是最經(jīng)典的刺激靶點(diǎn),最近的研究表明未定帶也可作為腦深部電刺激的靶點(diǎn),未定帶電刺激與丘腦底核電刺激相比效果相似甚至更優(yōu)[6-8],且無明顯副作用,病人術(shù)后吞咽、認(rèn)知和語言功能均未受影響[9]。腦深部電刺激改善PD病人運(yùn)動(dòng)癥狀的機(jī)制可能是影響了神經(jīng)元的放電活動(dòng)[10],但在PD狀態(tài)下未定帶神經(jīng)元的放電是否發(fā)生了變化目前尚不清楚。本實(shí)驗(yàn)選用神經(jīng)毒素1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)制備PD小鼠模型,利用腦片膜片鉗技術(shù)觀察其未定帶γ-氨基丁酸(GABA)能神經(jīng)元的放電變化,為了解未定帶在PD進(jìn)展和治療中的作用提供實(shí)驗(yàn)依據(jù)。
1材料與方法
1.1實(shí)驗(yàn)動(dòng)物及主要試劑
SPF級(jí)8周齡C57BL/6小鼠,由北京維通利華公司提供。小鼠飼養(yǎng)于25 ℃、12 h晝夜循環(huán)光照條件下,可自由飲水、攝食、活動(dòng)。動(dòng)物手術(shù)符合青島大學(xué)動(dòng)物倫理學(xué)要求。MPTP購自美國(guó)Sigma公司,酪氨酸羥化酶(TH)抗體購于美國(guó)Millipore公司。參考文獻(xiàn)方法配制人工腦脊液及冷凍切片液進(jìn)行腦片膜片鉗實(shí)驗(yàn)[11]。
1.2分組及給藥方法
將26只小鼠隨機(jī)分為對(duì)照組和MPTP組,每組13只,其中7只小鼠用于曠場(chǎng)實(shí)驗(yàn)和免疫熒光實(shí)驗(yàn),6只小鼠用于腦片膜片鉗實(shí)驗(yàn)。MPTP組小鼠連續(xù)5 d腹腔注射MPTP(30 mg·kg-1·d-1),對(duì)照組小鼠連續(xù)5 d腹腔注射等量生理鹽水。
1.3曠場(chǎng)實(shí)驗(yàn)
在給藥結(jié)束24 h后進(jìn)行曠場(chǎng)實(shí)驗(yàn),將小鼠放于曠場(chǎng)測(cè)試盒里,讓其自由活動(dòng),利用Ethvision XT7系統(tǒng)設(shè)定好曠場(chǎng)程序,將待測(cè)小鼠放在測(cè)試盒的中心位置,點(diǎn)擊開始,計(jì)時(shí)10 min記錄小鼠的運(yùn)動(dòng)情況。每次檢測(cè)結(jié)束后用體積分?jǐn)?shù)0.75的乙醇及擦手紙擦拭,徹底清理測(cè)試盒,散去味道后開始下一只小鼠的測(cè)試,避免陌生味道對(duì)小鼠行為產(chǎn)生干擾。
1.4腦標(biāo)本采集
曠場(chǎng)實(shí)驗(yàn)結(jié)束之后進(jìn)行腦標(biāo)本的采集。麻醉小鼠,固定其四肢,暴露心臟,將靜脈注射針頭小心插入左心室同時(shí)剪開右心耳。先用9 g/L 的NaCl對(duì)小鼠進(jìn)行灌注,再應(yīng)用40 g/L的多聚甲醛溶液(用0.1 mol/L的PBS配制,pH值7.2~7.4,現(xiàn)用現(xiàn)配,4 ℃避光保存)對(duì)小鼠進(jìn)行灌注。待小鼠肝臟由紅色變?yōu)辄S白色且四肢和尾部出現(xiàn)僵直時(shí),停止灌注操作。立刻取出小鼠大腦,在40 g/L多聚甲醛溶液中固定過夜,再用200 g/L蔗糖溶液(用0.1 mol/L的 PBS配制)脫水,大腦沉底后,轉(zhuǎn)入到300 g/L蔗糖溶液中脫水,大腦沉入底部提示脫水完成。
1.5腦組織切片及免疫熒光染色
用恒溫冷凍切片機(jī)(Leica,CM1950)進(jìn)行冷凍切片。切片之前將機(jī)器預(yù)冷至-20 ℃,將腦組織用包埋劑OCT(Sakura Finetek)包埋并固定在凍頭托上。將小鼠腦組織切成厚度為20 μm的腦片,黑質(zhì)區(qū)腦片切成完整的4套,將腦片置于含有0.01 mol/L PBS溶液的12孔板中放在4 ℃保存,進(jìn)行免疫熒光實(shí)驗(yàn)時(shí)取出完整的1套進(jìn)行染色。使用TH一抗(稀釋比為1∶1 000,rabbit)和PBST稀釋的熒光二抗(donkey anti-rabbit 555,稀釋比為1∶500),參照文獻(xiàn)方法進(jìn)行免疫熒光染色[12]。在Olympus光學(xué)顯微鏡下拍片,應(yīng)用OlyVIA軟件進(jìn)行計(jì)數(shù)。計(jì)數(shù)該套腦片在20倍物鏡下黑質(zhì)區(qū)TH陽性神經(jīng)元個(gè)數(shù),再乘以4即可得到黑質(zhì)區(qū)TH陽性神經(jīng)元的個(gè)數(shù)。統(tǒng)計(jì)黑質(zhì)區(qū)每個(gè)高倍視野(400倍)內(nèi)的陽性細(xì)胞數(shù)目并取平均值。
1.6離體未定帶腦片制備及電生理學(xué)記錄
記錄電極由水平拉制儀拉制而成,尖端直徑為1~2 μm。選取電阻為 4~9 MΩ的玻璃電極進(jìn)行實(shí)驗(yàn)。參考文獻(xiàn)的方法進(jìn)行離體未定帶腦片的制備及電生理學(xué)記錄[11]。
1.7統(tǒng)計(jì)學(xué)分析
應(yīng)用Graph Pad Prism 6軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。實(shí)驗(yàn)結(jié)果以±s表示,組間比較采用t檢驗(yàn)。P<0.05 表示差異具有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1PD模型小鼠黑質(zhì)TH陽性神經(jīng)元數(shù)目及運(yùn)動(dòng)行為的變化
免疫熒光染色結(jié)果顯示,與對(duì)照組相比,MPTP組小鼠黑質(zhì)區(qū)TH陽性神經(jīng)元數(shù)目減少,差異具有統(tǒng)計(jì)學(xué)意義(t=2.775,P<0.05),提示小鼠出現(xiàn)黑質(zhì)區(qū)多巴胺能神經(jīng)元損傷。曠場(chǎng)實(shí)驗(yàn)結(jié)果顯示,與對(duì)照組相比,MPTP組小鼠在曠場(chǎng)中的運(yùn)動(dòng)距離明顯減少(t=17.870,P<0.001),提示小鼠出現(xiàn)運(yùn)動(dòng)障礙,PD模型制備成功。見圖1及表1。
2.2PD模型小鼠未定帶GABA能神經(jīng)元的放電變化
在全細(xì)胞記錄形成之后,轉(zhuǎn)為電流鉗模式,給予神經(jīng)元-200 pA的超極化電流刺激,神經(jīng)元膜電位未出現(xiàn)顯著的內(nèi)向整流特征,且在Gap free模式下,神經(jīng)元表現(xiàn)出較快且規(guī)則的自發(fā)放電活動(dòng),判斷為GABA能神經(jīng)元[13]。本實(shí)驗(yàn)記錄到的未定帶神經(jīng)元放電頻率約為24.17 Hz,動(dòng)作電位時(shí)程較短,半寬高為(1.36±0.65)ms,符合GABA能神經(jīng)元的放電特征。本實(shí)驗(yàn)在每組6只小鼠中各記錄10個(gè)神經(jīng)元,對(duì)照組和MPTP組小鼠未定帶GABA能神經(jīng)元放電頻率分別為(24.17±8.60)和(6.73±2.18)Hz,MPTP組小鼠未定帶GABA能神經(jīng)元放電頻率較對(duì)照組顯著降低(t=5.895,P<0.001)。提示在PD狀態(tài)下,未定帶GABA能神經(jīng)元放電活動(dòng)發(fā)生了變化。見圖2。
3討論
未定帶是底丘腦的重要核團(tuán),被認(rèn)為是中腦網(wǎng)狀結(jié)構(gòu)的吻部延伸,主要含GABA能神經(jīng)元[14]。在嚙齒類動(dòng)物中,未定帶大致分為4個(gè)亞區(qū)(吻側(cè)區(qū)、背側(cè)區(qū)、腹側(cè)區(qū)和尾側(cè)區(qū)),各亞區(qū)與不同的大腦區(qū)域具有纖維聯(lián)系,如背側(cè)區(qū)和吻側(cè)區(qū)的GABA能神經(jīng)元投射到皮質(zhì)和丘腦,腹側(cè)區(qū)的GABA能神經(jīng)元投射到基底前腦和腦干,尾側(cè)區(qū)接收來自小腦的纖維投射。此外,未定帶內(nèi)部的GABA能神經(jīng)元之間也有互相聯(lián)系[7]。通過復(fù)雜的纖維投射,未定帶在機(jī)體多種功能的調(diào)控中均發(fā)揮重要作用,影響攝食、姿勢(shì)與運(yùn)動(dòng)、睡眠與覺醒、大腦皮質(zhì)發(fā)育、神經(jīng)病理痛等多種生理病理過程[14-17]。
未定帶與PD的研究近年來也受到較多關(guān)注。有臨床研究觀察到,在未定帶實(shí)施腦深部電刺激術(shù)可顯著改善PD病人的運(yùn)動(dòng)癥狀[18],這提示在PD疾病狀態(tài)下,未定帶神經(jīng)元出現(xiàn)異常的電活動(dòng)。已知大腦的許多功能都與神經(jīng)元的電活動(dòng)相關(guān),腦深部電刺激術(shù)被認(rèn)為能干預(yù)被刺激核團(tuán)神經(jīng)元的異常放電活動(dòng),并影響相關(guān)神經(jīng)傳導(dǎo)通路的信息傳遞,從而調(diào)控腦區(qū)的功能[5]。本實(shí)驗(yàn)首次在MPTP制備的PD模型小鼠中,利用腦片膜片鉗技術(shù)觀察比較未定帶GABA能神經(jīng)元的自發(fā)放電活動(dòng)變化。本研究首先通過免疫熒光染色觀察到黑質(zhì)TH陽性神經(jīng)元數(shù)目減少,證實(shí)多巴胺能神經(jīng)元受損,曠場(chǎng)行為學(xué)檢測(cè)進(jìn)一步證明PD模型建立成功,然后觀察到未定帶GABA能神經(jīng)元自發(fā)放電頻率在模型小鼠中顯著降低。以往研究也表明,在PD動(dòng)物模型中,多個(gè)與PD發(fā)病相關(guān)核團(tuán)神經(jīng)元的電活動(dòng)都出現(xiàn)了變化。例如,內(nèi)側(cè)蒼白球神經(jīng)元放電頻率較正常動(dòng)物增加20%~50%,其中爆發(fā)式的放電類型顯著增加[19];PD大鼠模型中黑質(zhì)網(wǎng)狀帶區(qū)GABA能神經(jīng)元自發(fā)放電頻率顯著增高,并且簇狀放電的神經(jīng)元增多[20]。但神經(jīng)元電活動(dòng)出現(xiàn)變化的具體機(jī)制還不明確,推測(cè)可能與離子通道的開放程度有關(guān)。探索PD狀態(tài)下神經(jīng)元電活動(dòng)的變化可為腦深部電刺激提供可選擇的刺激靶點(diǎn)。鑒于本團(tuán)隊(duì)前期研究已經(jīng)證實(shí)未定帶神經(jīng)元數(shù)目在PD小鼠模型中減少[21],我們推測(cè),在PD狀態(tài)下未定帶神經(jīng)元出現(xiàn)損傷,同時(shí)放電活動(dòng)降低。本實(shí)驗(yàn)為進(jìn)一步了解未定帶神經(jīng)元在PD中的病理改變提供了實(shí)驗(yàn)依據(jù)。
[參考文獻(xiàn)]
[1]BLOEM B R, OKUN M S, KLEIN C. Parkinsons disease[J]. Lancet, 2021,397(10291):2284-2303.
[2]TAO M Z, DOU K X, XIE Y J, et al. The associations of cerebrospinal fluid biomarkers with cognition, and rapid eye movement sleep behavior disorder in early Parkinsons disease[J]. Frontiers in Neuroscience, 2022,16:1049118.
[3]JELLINGER K A. The pathobiological basis of depression in Parkinson disease: challenges and outlooks[J]. Journal of Neural Transmission, 2022,129(12):1397-1418.
[4]PAJARES M, I ROJO A, MANDA G, et al. Inflammation in Parkinsons disease: mechanisms and therapeutic implications[J]. Cells, 2020,9(7):1687.
[5]YUAN G H, ZHENG Y J, WANG Y, et al. Multiscale entropy and small-world network analysis in rs-fMRI-new tools to evaluate early basal Ganglia dysfunction in diabetic peripheral neuropathy[J]. Frontiers in Endocrinology, 2022,13:974254.
[6]BAUMGARTNER A J, THOMPSON J A, KERN D S, et al. Novel targets in deep brain stimulation for movement disorders[J]. Neurosurgical Review, 2022,45(4):2593-2613.
[7]OSSOWSKA K. Zona incerta as a therapeutic target in Parkinsons disease[J]. Journal of Neurology, 2020,267(3):591-606.
[8]MARCO R D, BHARGAVA D, MACEROLLO A, et al. Could ZI have a role in DBS for Parkinsons disease? An observational study to optimize DBS target localization[J]. Journal of Clinical Neuroscience, 2020,77:89-93.
[9]PHILIPSON J, BLOMSTEDT P, FREDRICKS A, et al. Short- and long-term cognitive effects of deep brain stimulation in the caudal zona incerta versus best medical treatment in patients with Parkinsons disease[J]. Journal of Neurosurgery, 2020,134(2):357-365.
[10]AUBIGNAT M, LEFRANC M, TIR M, et al. Deep brain stimulation programming in Parkinsons disease: introduction of current issues and perspectives[J]. Revue Neurologique, 2020,176(10):770-779.
[11]CHANG X L, MA Z G, SHI L M, et al. Effects of ghrelin on the electrical activities of substantia nigra dopaminergic neurons treated with MPP[J]. Neurochemistry International, 2020,138:104780.
[12]IM K, MARENINOV S, DIAZ M P, et al. An introduction to performing immunofluorescence staining[J]. Methods in Molecular Biology, 2019,1897:299-311.
[13]TRAGESER J C, BURKE K A, MASRI R, et al. State-dependent gating of sensory inputs by zona incerta[J]. Journal of Neurophysiology, 2006,96(3):1456-1463.
[14]YANG Y, JIANG T, JIA X Y, et al. Whole-brain connectome of GABAergic neurons in the mouse zona incerta[J]. Neuroscience Bulletin, 2022,38(11):1315-1329.
[15]YE Q Y, ZHANG X B. Serotonin activates paraventricular thalamic neurons through direct depolarization and indirect di-sinhibition from zona incerta[J]. The Journal of Physiology, 2021,599(21):4883-4900.
[16]OH S G, HWANG Y G, LEE H S. LIM homeobox 6 (Lhx6)+ neurons in the ventral zona incerta project to the core portion of the lateral supramammillary nucleus in the rat[J]. Brain Research, 2020,1748:147125.
[17]HU T T, WANG R R, DU Y, et al. Activation of the intrinsic pain inhibitory circuit from the midcingulate Cg2 to zona incerta alleviates neuropathic pain[J]. The Journal of Neuroscience, 2019,39(46):9130-9144.
[18]STENMARK PERSSON R, NORDIN T, HARIZ G M, et al. Deep brain stimulation of caudal zona incerta for Parkinsons disease: one-year follow-up and electric field simulations[J]. Neuromodulation, 2022,25(6):935-944.
[19]HOOVER J E, STRICK P L. The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of Herpes simplex virus type 1[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 1999,19(4):1446-1463.
[20]BOLAM J P, HANLEY J J, BOOTH P A, et al. Synaptic organisation of the basal Ganglia[J]. Journal of Anatomy, 2000,196(Pt 4):527-542.
[21]曹中凱,陳鳳華,謝俊霞,等. 帕金森病模型小鼠PV和NOS陽性神經(jīng)元數(shù)目變化[J]. 青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2022,58(3):345-348.
(本文編輯馬偉平)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2023年3期