宋敏華 張文琦 相倩 王鋼林 李巖
摘 要:作為電動(dòng)飛機(jī)的一項(xiàng)關(guān)鍵技術(shù),分布式螺旋槳推進(jìn)已成為綠色航空未來(lái)發(fā)展的重要研究方向。本文以結(jié)合多參考系(MRF)的RANS方法作為氣動(dòng)性能分析手段,采用Kriging代理模型對(duì)分布式螺旋槳的安裝位置對(duì)全機(jī)氣動(dòng)性能的影響進(jìn)行了建模研究,并對(duì)基準(zhǔn)構(gòu)型和優(yōu)選構(gòu)型的流動(dòng)進(jìn)行了對(duì)比分析。結(jié)果表明,螺旋槳往前方移動(dòng)后全機(jī)的升阻比增大;相對(duì)于原始構(gòu)型,優(yōu)選構(gòu)型的上表面低壓區(qū)面積明顯增大,吸力峰明顯增強(qiáng),下表面的壓強(qiáng)增大,低壓區(qū)域減少,分布式電推進(jìn)系統(tǒng)的效率得到有效提升。本文的研究能夠支撐以分布式螺旋槳為動(dòng)力的電動(dòng)飛機(jī)的總體設(shè)計(jì),為螺旋槳的安裝提供有效參考,從而進(jìn)一步提升電動(dòng)飛機(jī)的經(jīng)濟(jì)性。
關(guān)鍵詞:電動(dòng)飛機(jī); 分布式螺旋槳; Kriging模型; 氣動(dòng)建模
中圖分類號(hào):V211.3 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.19452/j.issn1007-5453.2023.06.003
減排是航空業(yè)發(fā)展的必然要求,以電動(dòng)飛機(jī)為代表的新一代航空科技在降低飛機(jī)的碳排放、提升飛機(jī)的氣動(dòng)效率方面相對(duì)于傳統(tǒng)燃油客機(jī)具有極大的優(yōu)勢(shì),可以顯著提升飛機(jī)的經(jīng)濟(jì)性、環(huán)保性和舒適性。當(dāng)前,美國(guó)、歐洲及國(guó)內(nèi)都在積極開(kāi)展電動(dòng)飛機(jī)的研究[1-2]。分布式電推進(jìn)系統(tǒng)(DEP)通過(guò)驅(qū)動(dòng)多個(gè)螺旋槳或風(fēng)扇為飛機(jī)提供推力[3],是眾多在研的電動(dòng)飛機(jī)所采用的推進(jìn)方式。DEP利用其滑流效應(yīng)能大幅提升飛機(jī)升力,降低機(jī)翼面積和結(jié)構(gòu)重量(質(zhì)量),滿足短距起降和長(zhǎng)航時(shí)飛行需求,提高飛行器性能。國(guó)內(nèi)發(fā)布的《電動(dòng)飛機(jī)發(fā)展白皮書(shū)》中也指出分布式電推進(jìn)技術(shù)是電動(dòng)飛機(jī)的一項(xiàng)關(guān)鍵技術(shù)[4]。
相比于傳統(tǒng)螺旋槳飛機(jī),以分布式電推進(jìn)系統(tǒng)為動(dòng)力的飛機(jī)機(jī)翼受螺旋槳滑流影響的區(qū)域更大,螺旋槳滑流的影響更加顯著[5]。美國(guó)國(guó)家航空航天局(NASA)在最近10余年來(lái)針對(duì)分布式螺旋槳開(kāi)展了大量相關(guān)技術(shù)研究。M. D. Patterson等[6-7]驗(yàn)證渦格法對(duì)螺旋槳數(shù)值模擬的有效性,并搭建分布式螺旋槳概念設(shè)計(jì)分析與優(yōu)化框架。K. R. Moore和N. K. Borer等[8-9]采用渦格法對(duì)分布式螺旋槳推進(jìn)系統(tǒng)進(jìn)行了總體概念設(shè)計(jì)與優(yōu)化研究。國(guó)內(nèi)王科雷等[10-12]研究了分布式螺旋槳滑流對(duì)太陽(yáng)能無(wú)人機(jī)的氣動(dòng)影響,并針對(duì)螺旋槳的載荷分布進(jìn)行了優(yōu)化分析。饒崇等[13]提出了一種分布式電推進(jìn)螺旋槳飛機(jī),并基于多參考系(MRF)方法,對(duì)低速特性進(jìn)行數(shù)值模擬,研究分布式螺旋槳滑流效應(yīng)對(duì)全機(jī)氣動(dòng)特性的影響規(guī)律。楊小川等提出了一種分布式螺旋槳電推進(jìn)運(yùn)輸機(jī)初步方案,并采用等效盤(pán)方法對(duì)分布式螺旋槳布置方案與機(jī)翼流動(dòng)特性進(jìn)行了探索[14],在此基礎(chǔ)上進(jìn)一步研究了在4種分布式螺旋槳旋轉(zhuǎn)組合下的機(jī)翼滑流效應(yīng)[15]。
當(dāng)前,大多數(shù)關(guān)于分布式螺旋槳的研究集中在滑流對(duì)機(jī)體部件的氣動(dòng)影響和作用機(jī)理上,針對(duì)分布式電推進(jìn)系統(tǒng)和機(jī)體的氣動(dòng)特性綜合設(shè)計(jì)還存在較大潛力。楊偉等[16]用等效盤(pán)結(jié)合重疊網(wǎng)格方法,并基于量子粒子群尋優(yōu)算法建立分布式螺旋槳布局優(yōu)化設(shè)計(jì)系統(tǒng),對(duì)5個(gè)前緣分布式螺旋槳組成的構(gòu)型進(jìn)行了分布式螺旋槳布局優(yōu)化設(shè)計(jì)。本文采用MRF方法對(duì)采用分布式螺旋槳的電動(dòng)飛機(jī)全機(jī)氣動(dòng)性能進(jìn)行數(shù)值模擬與分析,采用Kriging代理模型對(duì)電動(dòng)飛機(jī)的分布式螺旋槳的安裝位置進(jìn)行建模分析,并對(duì)基準(zhǔn)構(gòu)型和優(yōu)選構(gòu)型的氣動(dòng)性能進(jìn)行對(duì)比研究,為電動(dòng)飛機(jī)分布式螺旋槳安裝設(shè)計(jì)提供參考。
1 數(shù)值方法
1.1 控制方程及其離散
1.3 算例驗(yàn)證
采用某雙葉螺旋槳對(duì)本文的螺旋槳流動(dòng)數(shù)值模擬方法進(jìn)行驗(yàn)證,螺旋槳及短艙等部件的外形如圖1所示,該模型在美國(guó)Wichita州立大學(xué)的低速風(fēng)洞中進(jìn)行了試驗(yàn)[17]。槳葉直徑為0.3048m,75%展向位置的槳距角為20°。
計(jì)算網(wǎng)格分兩部分生成,即包括螺旋槳的圓柱形區(qū)域和剩余部分所在的靜止域。物面棱柱層第一層網(wǎng)格高度為4.0×10-6m,預(yù)估的y+≈1,棱柱網(wǎng)格最少10層,法向增長(zhǎng)率為1.2。在螺旋槳及其尾跡區(qū)域進(jìn)行適當(dāng)加密,以增強(qiáng)對(duì)滑流的捕捉。靜止域和螺旋槳表面網(wǎng)格如圖2所示,螺旋槳所在的區(qū)域網(wǎng)格單元數(shù)約為150萬(wàn)個(gè),全流場(chǎng)網(wǎng)格單元共約440萬(wàn)個(gè)。
螺旋槳轉(zhuǎn)速為6000r/min,來(lái)流沿軸向方向,速度根據(jù)前進(jìn)比確定。螺旋槳槳葉的性能計(jì)算結(jié)果與試驗(yàn)結(jié)果對(duì)比如圖3所示。在不同的前進(jìn)比下,MRF計(jì)算獲得的拉力系數(shù)、功率系數(shù)和螺旋槳效率結(jié)果與試驗(yàn)基本吻合,驗(yàn)證了本文所采用的數(shù)值方法的準(zhǔn)確性。
2 分布式螺旋槳位置對(duì)氣動(dòng)特性的影響
2.1 模型與網(wǎng)格
幾何模型如圖4所示,包括機(jī)身、機(jī)翼、垂尾、平尾和5個(gè)螺旋槳,螺旋槳旋轉(zhuǎn)矢量沿X方向。每個(gè)螺旋槳均包含三片槳葉。
采用混合網(wǎng)格對(duì)全機(jī)構(gòu)型進(jìn)行模擬。帶螺旋槳構(gòu)型的表面網(wǎng)格的網(wǎng)格細(xì)節(jié)如圖5所示。除螺旋槳區(qū)域外,無(wú)螺旋槳構(gòu)型的表面網(wǎng)格分布保持一致。為了提高對(duì)螺旋槳區(qū)域流動(dòng)的捕捉,對(duì)5個(gè)包圍螺旋槳的圓柱形網(wǎng)格區(qū)域及其尾跡區(qū)域進(jìn)行了加密,第一層網(wǎng)格高度為5.6×10-6m。帶動(dòng)力和不帶動(dòng)力構(gòu)型的網(wǎng)格量分別約為1.16×10個(gè)和2.02×10個(gè)。每個(gè)包含螺旋槳的圓柱區(qū)域網(wǎng)格內(nèi)的網(wǎng)格單元為2.26×10個(gè)。
2.2 氣動(dòng)建模與分析
來(lái)流速度U∞= 39m/s,H = 0,迎角α=6°,螺旋槳轉(zhuǎn)速為6000r/min。采用Kriging代理模型,對(duì)螺旋槳的安裝位置進(jìn)行建模。變量為螺旋槳在流向(X方向)和縱向(Z方向)相對(duì)于基準(zhǔn)構(gòu)型位置的變化量。相對(duì)于基準(zhǔn)構(gòu)型,螺旋槳在流向和縱向的變化范圍分別為Δx∈(-0.4,0.0)、Δz∈(-0.1, 0.2)。采用拉丁超立方方法進(jìn)行采樣,選取樣本點(diǎn)50個(gè)。建立的升力、阻力和力矩的代理模型如圖6所示。
可以看出,螺旋槳的安裝位置相對(duì)于基準(zhǔn)構(gòu)型向前上方移動(dòng)后,升力系數(shù)明顯增大,在向上方移動(dòng)時(shí),阻力系數(shù)增大,向前下方移動(dòng)時(shí),阻力系數(shù)減少。總體來(lái)看,螺旋槳往前方移動(dòng)后全機(jī)的升阻比增大。分布式螺旋槳的安裝位置和氣動(dòng)性能之間的相關(guān)系數(shù)見(jiàn)表1。升力系數(shù)與流向、縱向位置都存在較強(qiáng)的相關(guān)性,縱向位置對(duì)阻力系數(shù)有明顯的影響,流向位置與阻力系數(shù)的相關(guān)性較小。
電動(dòng)飛機(jī)分布式螺旋槳的主要功能是提供升力,因此其關(guān)鍵指標(biāo)是升力系數(shù)增量,選取性能較優(yōu)樣本點(diǎn)(樣本點(diǎn)19, Δx = -0.3966m,Δz = 0.1921m)與基準(zhǔn)構(gòu)型進(jìn)行對(duì)比,氣動(dòng)性能對(duì)比見(jiàn)表2。可以看出,優(yōu)選樣本點(diǎn)的升力系數(shù)和阻力系數(shù)都增加,但是升力系數(shù)的增量更大,超過(guò)34%,升阻比也提升了接近20%。
上、下表面的壓力分布對(duì)比如圖7所示,1/4弦長(zhǎng)處的壓力系數(shù)對(duì)比如圖8所示??梢钥闯?,樣本點(diǎn)19上表面的低壓區(qū)面積明顯增大,吸力峰明顯增強(qiáng)。在下表面,壓強(qiáng)增大,低壓區(qū)區(qū)域減小,從而在基準(zhǔn)構(gòu)型的基礎(chǔ)上升力明顯增大。
3 結(jié)論
本文針對(duì)電動(dòng)飛機(jī)的分布式螺旋槳,采用結(jié)合MRF的RANS方法進(jìn)行模擬,并采用Kriging代理模型對(duì)螺旋槳位置對(duì)氣動(dòng)性能的影響開(kāi)展建模分析。通過(guò)研究,可以得到以下結(jié)論:
(1)在基準(zhǔn)構(gòu)型的基礎(chǔ)上,分布式電推進(jìn)系統(tǒng)往前上方移動(dòng)后,升力系數(shù)明顯增大,在向上方移動(dòng)時(shí),阻力系數(shù)增大??傮w來(lái)看,螺旋槳往前方移動(dòng)后全機(jī)的升阻比增大,相對(duì)增大了接近20%。
(2)相對(duì)于原始構(gòu)型,分布式螺旋槳往前上方移動(dòng)后的優(yōu)選構(gòu)型上表面的低壓區(qū)面積明顯增大,吸力峰明顯增強(qiáng)。在下表面,壓強(qiáng)增大,低壓區(qū)區(qū)域減小,升力明顯增大,分布式電推進(jìn)系統(tǒng)的效率得到有效提升。
參考文獻(xiàn)
[1]楊鳳田,范振偉,項(xiàng)松,等. 中國(guó)電動(dòng)飛機(jī)技術(shù)創(chuàng)新與實(shí)踐[J].航空學(xué)報(bào),2021,42(3):624619. Yang Fengtian, Fan Zhenwei, Xiang Song, et al. Technical innova‐tion and practice of electrical aircraft in China[J]. Acta Aeronauti‐ca et Astronautica Sinica, 2021, 42(3):624619. (in Chinese)
[2]紀(jì)宇晗,孫俠生,俞笑,等. 雙碳戰(zhàn)略下的新能源航空發(fā)展展望[J]. 航空科學(xué)技術(shù),2022, 33(12):1-11. Ji Yuhan, Sun Xiasheng, Yu Xiao, et al.Development prospect of new energy aviation under carbon peaking and carbon neutrality goals[J]. Aeronautical Science & Technology, 2022, 33(12):1-11. (in Chinese)
[3]黃俊. 分布式電推進(jìn)飛機(jī)設(shè)計(jì)技術(shù)綜述[J]. 航空學(xué)報(bào),2021,42(3):624037. Huang Jun. Survey on design technology of distributed electrical propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):624037. (in Chinese)
[4]孫俠生,程文淵,穆作棟,等. 電動(dòng)飛機(jī)發(fā)展白皮書(shū)[J]. 航空科學(xué)技術(shù),2019,30(11):1-7. Sun Xiasheng, Cheng Wenyuan, Mu Zuodong, et al. White paper on the development of electric aircraft[J]. Aeronautical Science & Technology, 2019, 30(11):1-7. (in Chinese)
[5]Stoll A M, Bevirt J B, Moore M D, et al. Drag reduction through distributed electric propulsion[C].14th AIAA Aviation Technology, Integration, and Operations Conference, 2014.
[6]Patterson M D, German B. Wing aerodynamic analysis incorporating one-way interaction with distributed propellers[C]. 14th AIAA Aviation Technology, Integration, and Operations Conference, 2014.
[7]Patterson M D, Daskilewicz M J, Germanz B J. Conceptual design of electric aircraft with distributed propellers: Multidisciplinary analysis needs and aerodynamic modeling development[C]. 52nd Aerospace Sciences Meeting, 2014.
[8]Moore K R, Ning A. Distributed electric propulsion effects on existing aircraft through multidisciplinary optimization[C]. 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018.
[9]Borer N K, Moore M D. Integrated propeller-wing design exploration for distributed propulsion concepts [C].53rd AIAA Aerospace Sciences Meeting, 2015.
[10]王科雷,祝小平,周洲,等. 低雷諾數(shù)分布式螺旋槳滑流氣動(dòng)影響[J]. 航空學(xué)報(bào),2016,37(9):2669-2678. Wang Kelei, Zhu Xiaoping, Zhou Zhou, et al. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2669-2678. (in Chinese)
[11]王科雷,周洲,祝小平,等. 低雷諾數(shù)多螺旋槳/機(jī)翼耦合氣動(dòng)設(shè)計(jì)[J].航空學(xué)報(bào),2018,39(8):121918. Wang Kelei, Zhou Zhou, Zhu Xiaoping, et al.Multi-propeller/ wing coupled aerodynamic design at low Reynolds number[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(8):121918.(in Chinese)
[12]Wang Kelei, Zhou Zhou, Fan Zhongyun, et al. Aerodynamic design of tractor propeller for high-performance distributed electric propulsion aircraft[J]. Chinese Journal of Aeronautics, 2021, 34(10):20-35.
[13]饒崇,張鐵軍,魏闖,等. 一種分布式電動(dòng)飛機(jī)螺旋槳滑流影響機(jī)理[J]. 航空學(xué)報(bào),2021,42(S1):726387. Rao Chong, Zhang Tiejun, Wei Chuang, et al. Influence mechanism of propeller slipstream on wing of a distributed electric aircraft scheme [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1):726387. (in Chinese)
[14]楊小川,李偉,王運(yùn)濤,等. 一種分布式螺旋槳運(yùn)輸機(jī)方案及其滑流效應(yīng)研究[J]. 西北工業(yè)大學(xué)學(xué)報(bào),2019,37(2):361-368. Yang Xiaochuan, Li Wei, Wang Yuntao, et al. Research on aerodynamic shape design scheme of a distributed propeller transport aircraft and its slipstream effect[J]. Journal of Northwestern Polytechnical University, 2019, 37(2): 361-368.(in Chinese)
[15]楊小川,王運(yùn)濤,孟德虹,等.不同分布式螺旋槳轉(zhuǎn)向組合下的機(jī)翼滑流效應(yīng)研究[J].空氣動(dòng)力學(xué)學(xué)報(bào),2019,37(1):89-98. Yang Xiaochuan, Wang Yuntao, Meng Dehong, et al. Study on wing slipstream effects of distributed propellers with different rotating directions[J].Acta Aerodynamica Sinica, 2019, 37(1): 89-98. (in Chinese)
[16]楊偉,范召林,吳文華,等. 考慮滑流影響的分布式螺旋槳布局優(yōu)化設(shè)計(jì)[J]. 空氣動(dòng)力學(xué)學(xué)報(bào),2021,39(3):71-79. Yang Wei, Fan Zhaolin, Wu Wenhua, et al. Optimal design of distributed propeller layout considering slipstream effect[J]. Acta Aerodynamica Sinica, 2021, 39(3): 71-79. (in Chinese)
[17]Ghoddoussi A, Miller L S. A more comprehensive database for low Reynolds number propeller performance validations[C].34th AIAA Applied Aerodynamics Conference, 2016.
Modeling Research on the Influence of Distributed Propellers on Aerodynamic Performance of Electric Aircraft
Song Minhua, Zhang Wenqi, Xiang Qian, Wang Ganglin, Li Yan
Chinese Aeronautical Establishment, Beijing 100029, China
Abstract: As a key technology of electric aircraft, distributed propeller propulsion has become an important research direction of green aviation in the future. In this paper, RANS method combined with Multiple Reference Frames (MRF) is employed for the aerodynamic performance prediction and Kriging surrogate model is used to model and analyze the influence of distributed propeller’s installation position on the aerodynamic performance of electric aircraft. The flow of the baseline configuration and the optimal installation position layout is compared and analyzed. Results show that the lift-to-drag ratio of the full aircraft increases after the propellers move forward. Compared with the baseline configuration, the upper surface low pressure area of the preferred configuration is significantly increased and the suction peak is enhanced, while the pressure on the lower surface is increased and the low pressure area is reduced, so that the efficiency of the distributed electric propulsion system is effectively improved. The research in this paper can support the configuration design of electric aircraft powered by distributed propellers and provide useful reference for the propellers’ installation, so as to improve the economy of electric aircraft.
Key Words: electric aircraft; distributed propeller; Kriging model; aerodynamic modeling