楊佳 寇東山 余斌 吳佩林 楊理
摘 要:
針對(duì)無(wú)線可充電傳感器網(wǎng)絡(luò)(WRSN)中的節(jié)點(diǎn)死亡率過(guò)高問(wèn)題,為了降低節(jié)點(diǎn)死亡率,以按需充電架構(gòu)為基礎(chǔ),提出了一種動(dòng)態(tài)不均勻分簇的單移動(dòng)充電設(shè)備(MC)多節(jié)點(diǎn)在線充電策略SMMCS(single MC multi-node charging strategy)。策略首先將無(wú)線可充電傳感器網(wǎng)絡(luò)進(jìn)行動(dòng)態(tài)不均勻分簇,以此劃分移動(dòng)充電設(shè)備的服務(wù)分區(qū);然后在此模型基礎(chǔ)上以最小網(wǎng)絡(luò)節(jié)點(diǎn)死亡率為目標(biāo),進(jìn)行路徑規(guī)劃時(shí)綜合考慮節(jié)點(diǎn)剩余能量、距離以及能耗等因素。仿真實(shí)驗(yàn)結(jié)果表明,與SAMER、VTMT以及FCFS策略相比,該策略減少了節(jié)點(diǎn)等待時(shí)間,縮短了MC總充電代價(jià),減小了節(jié)點(diǎn)死亡率?;诜抡鏃l件,網(wǎng)絡(luò)節(jié)點(diǎn)死亡率為4.31%。
關(guān)鍵詞:無(wú)線可充電傳感器網(wǎng)絡(luò);多節(jié)點(diǎn)充電;節(jié)點(diǎn)死亡率;路徑規(guī)劃
中圖分類號(hào):TP393?? 文獻(xiàn)標(biāo)志碼:A??? 文章編號(hào):1001-3695(2023)09-026-2736-07
doi:10.19734/j.issn.1001-3695.2022.11.0797
Research on multi-node on-demand charging strategy based on WRSN
Yang Jia, Kou Dongshan, Yu Bin, Wu Peilin, Yang Li
(College of Electrical & Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China)
Abstract:
Aiming at the problem of high node mortality in wireless rechargeable sensor networks (WRSN), in order to reduce the node mortality, based on the on-demand charging architecture, this paper proposed a dynamic uneven clustering single mobile charging device (MC) multi-node online charging strategy (SMMCS).Firstly, the strategy dynamically unevenly clustered the wireless rechargeable sensor network to divide the service partition of the mobile charging device. Then, based on this model, the minimum mortality rate of network nodes was the goal, and the remaining energy, distance, and energy consumption of nodes were comprehensively considered in the path planning. The simulation results show that compared with SAMER strategy, VTMT strategy and FCFS strategy, this strategy reduces the waiting time of nodes, shortens the total charging cost of MC, and reduces the node mortality. Based on simulation conditions, the network node mortality is 4.31%.
Key words:wireless rechargeable sensor network; multi-node charging; nodal mortality; path planning
0 引言
無(wú)線傳感器網(wǎng)絡(luò)(WSN)是由很多具有監(jiān)測(cè)、感知、和采集網(wǎng)絡(luò)中節(jié)點(diǎn)所處的環(huán)境信息的傳感器節(jié)點(diǎn)構(gòu)成的網(wǎng)絡(luò)[1],可以進(jìn)行采集、處理并發(fā)送信息,現(xiàn)在已經(jīng)應(yīng)用于諸多領(lǐng)域,如軍事監(jiān)視[2]、災(zāi)害預(yù)警[3]、醫(yī)療監(jiān)測(cè)[4]以及智能市場(chǎng)[5]等。但傳感器節(jié)點(diǎn)的能量十分有限,導(dǎo)致網(wǎng)絡(luò)不能持續(xù)運(yùn)行,一度成為WSN研究的瓶頸[6]。隨著無(wú)線充電技術(shù)的出現(xiàn),對(duì)WSN的能量需求方面有了很大的幫助,進(jìn)而出現(xiàn)并推動(dòng)了無(wú)線可充電傳感器網(wǎng)絡(luò)(WRSN)[7]的快速發(fā)展。為傳感器節(jié)點(diǎn)提供能量的研究集中于無(wú)線電能傳輸(wireless power transfer,WPT)[8],相比于能量收集和節(jié)點(diǎn)節(jié)能,WPT解決節(jié)點(diǎn)能量問(wèn)題的性能更加可靠。
在現(xiàn)有研究中,周期性充電和按需充電是無(wú)線充電規(guī)劃中常用兩種方式[9]。
在周期性充電的研究中,文獻(xiàn)[10]提出模糊邏輯充電調(diào)度方法(fuzzy logic-based charging schedule determination,F(xiàn)LCSD)來(lái)設(shè)置MC充電時(shí)間表,多個(gè)MC從起始點(diǎn)BS開(kāi)始周期性地遍歷待充電節(jié)點(diǎn)進(jìn)行充電,由于設(shè)置固定閾值充電,未考慮到節(jié)點(diǎn)能耗的不同,導(dǎo)致充電效率較低,使能量充電效率很難達(dá)到最優(yōu)。文獻(xiàn)[11]針對(duì)問(wèn)題的NP-hard問(wèn)題,提出了一種混合粒子群優(yōu)化遺傳算法(hybrid particle swarm optimization genetic algorithm,HPSOGA),周期性地規(guī)劃單MC對(duì)節(jié)點(diǎn)充電,但由于充電請(qǐng)求和能量消耗的不確定性,單MC充電代價(jià)過(guò)大,對(duì)大規(guī)模WRSN可能是不切實(shí)際的,很難實(shí)現(xiàn)的。文獻(xiàn)[12]采用周期性規(guī)劃策略,將路徑規(guī)劃視為T(mén)SP(traveling salesman problem)問(wèn)題,運(yùn)用哈密頓回路(Hamiltonian cycle,HC)算法規(guī)劃多MC充電路徑,雖然提高了MC充電效率,但忽略了節(jié)點(diǎn)的動(dòng)態(tài)性,網(wǎng)絡(luò)中能量并未達(dá)到平衡。
按需充電彌補(bǔ)了周期性充電的不足并進(jìn)行了改進(jìn),文獻(xiàn)[13]中采用單MC收集請(qǐng)求充電信號(hào),MC根據(jù)NJNP(nearest-job-next with preemption)充電策略優(yōu)先對(duì)近距離的節(jié)點(diǎn)進(jìn)行充電,同時(shí)考慮到了節(jié)點(diǎn)最大存活時(shí)間和MC服務(wù)的節(jié)點(diǎn)數(shù),使得網(wǎng)絡(luò)中的節(jié)點(diǎn)及時(shí)充電的幾率得到提高,但忽略了MC攜帶的能量,增大了遠(yuǎn)距離節(jié)點(diǎn)充電等待時(shí)間。文獻(xiàn)[14]提出了基于時(shí)空協(xié)同的路徑規(guī)劃算法, 策略基于時(shí)間因素和空間因素對(duì)待充電節(jié)點(diǎn)進(jìn)行充電優(yōu)先級(jí)排序,從而規(guī)劃MC的充電路徑。該策略能有效提高M(jìn)C的能量利用率,但其未能有效解決網(wǎng)絡(luò)能量空洞率高的問(wèn)題。文獻(xiàn)[15]結(jié)合非支配排序遺傳算法(non-dominated sorting genetic algorithm,NSGA-Ⅱ)和多屬性決策(multi-attribute decision making,MADM)方法,采用多個(gè)MC進(jìn)行協(xié)同充電,根據(jù)最近優(yōu)先策略對(duì)節(jié)點(diǎn)進(jìn)行充電,并未體現(xiàn)充電響應(yīng)的公平性。
以往研究中很多近似認(rèn)為傳感器節(jié)點(diǎn)結(jié)構(gòu)相同以及能耗一樣,忽視了WRSN中節(jié)點(diǎn)的異構(gòu)和動(dòng)態(tài)能耗率[16~18],并不符合工程上的實(shí)際情況,因此不能保證節(jié)點(diǎn)充電調(diào)度的可行性[19~24]。未處理充電請(qǐng)求造成的時(shí)間和能量約束等不平衡的綜合影響,導(dǎo)致充電調(diào)度不能達(dá)到最優(yōu),降低了MC充電性能致使節(jié)點(diǎn)死亡率增大。針對(duì)WRSN中存在的能量問(wèn)題,本文以降低節(jié)點(diǎn)死亡率為目標(biāo)提出SMMCS策略,其創(chuàng)新點(diǎn)有:a)對(duì)傳感器網(wǎng)絡(luò)進(jìn)行動(dòng)態(tài)不均勻分簇,同時(shí)對(duì)多個(gè)節(jié)點(diǎn)進(jìn)行充電,縮短MC移動(dòng)開(kāi)銷(xiāo)以及節(jié)點(diǎn)等待時(shí)間;b)考慮節(jié)點(diǎn)能耗率不同和位置,確定MC充電位置,保證網(wǎng)絡(luò)能量平衡;c)設(shè)置雙重閾值,綜合考慮距離、能量和能耗率等多重因素,確保優(yōu)先級(jí)更高的節(jié)點(diǎn)及時(shí)充電,保證充電響應(yīng)的公平性。
1 網(wǎng)絡(luò)模型
如圖1所示,網(wǎng)絡(luò)中的傳感器節(jié)點(diǎn)隨機(jī)布撒在L×L矩形網(wǎng)絡(luò)中,網(wǎng)絡(luò)中布置一個(gè)移動(dòng)充電器MC和n個(gè)傳感器節(jié)點(diǎn)Np(p=1,2,3,…,n),采用磁耦合諧振充電方式對(duì)網(wǎng)絡(luò)中的傳感器節(jié)點(diǎn)充電,充電設(shè)備MC和節(jié)點(diǎn)Np中都攜帶中繼器,MC的初始能量為Emc,節(jié)點(diǎn)初始能量為ENp。整個(gè)網(wǎng)絡(luò)的結(jié)構(gòu)包括攜帶中繼器的移動(dòng)充電器MC、傳感器節(jié)點(diǎn)Np和基站(base station,BS)。
網(wǎng)絡(luò)中傳感器節(jié)點(diǎn)時(shí)刻監(jiān)控著自身的剩余能量,每個(gè)節(jié)點(diǎn)達(dá)到充電請(qǐng)求的門(mén)限值時(shí),都會(huì)將自身的信息傳遞給簇頭節(jié)點(diǎn),并由簇頭節(jié)點(diǎn)匯總需要充電的節(jié)點(diǎn)信息,簇頭發(fā)送的信息數(shù)據(jù)包含〈POSi,μstay,Pi,Ti,Ersi〉,其中POSi是節(jié)點(diǎn)的位置信息,μstay是簇內(nèi)充電停留點(diǎn)位置信息,Pi為網(wǎng)絡(luò)中節(jié)點(diǎn)i的能量消耗率,Ti為節(jié)點(diǎn)i發(fā)出請(qǐng)求充電信息的時(shí)間戳,Ersi〈i=1,2,…,n〉是該節(jié)點(diǎn)i發(fā)送信息時(shí)的剩余能量。MC在開(kāi)始任務(wù)之前,簇內(nèi)節(jié)點(diǎn)剩余能量變化較大時(shí),簇頭再次更新數(shù)據(jù)信息〈Pi,Ti,Ersi〉發(fā)送給BS,MC根據(jù)收到請(qǐng)求充電的信息開(kāi)始對(duì)網(wǎng)絡(luò)進(jìn)行充電。
6 仿真與分析
6.1 參數(shù)設(shè)置
本文基于MATLAB-2019a進(jìn)行仿真分析,在網(wǎng)絡(luò)中建立一個(gè)邊長(zhǎng)為400 m的方形區(qū)域,網(wǎng)絡(luò)中隨機(jī)放置基站和25~200個(gè)不等的傳感器節(jié)點(diǎn),MC初始位置為基站,傳感器節(jié)點(diǎn)與MC都攜帶諧振中繼器,傳輸電能時(shí)調(diào)整相同的諧振頻率可進(jìn)行多節(jié)點(diǎn)同時(shí)充電,數(shù)據(jù)信息的產(chǎn)生遵循平均時(shí)間間隔為60 s的泊松分布,網(wǎng)絡(luò)帶寬為10 kbps。仿真持續(xù)時(shí)間為72 000 s,仿真參數(shù)如表1所示。
通過(guò)與VTMT[28]、SAMER[29]以及FCFS[30]策略進(jìn)行性能對(duì)比可知,本文充電策略能夠降低節(jié)點(diǎn)空洞率,提高能量使用率,平衡網(wǎng)絡(luò)能量。VTMT策略是一種可以對(duì)死亡節(jié)點(diǎn)進(jìn)行充電的策略研究,可以通過(guò)節(jié)點(diǎn)死亡率的比較來(lái)判定策略性能的好壞,SAMER策略是經(jīng)典的在線充電策略,F(xiàn)CFS策略充電性能比較低,用來(lái)比較SMMCS策略的性能。對(duì)策略進(jìn)行性能比較的指標(biāo)有:
a)節(jié)點(diǎn)死亡率。因能量不足導(dǎo)致死亡的節(jié)點(diǎn)數(shù)占全部節(jié)點(diǎn)數(shù)的比值,死亡節(jié)點(diǎn)率的大小是評(píng)定充電策略的重要指標(biāo)。其值越小,說(shuō)明策略越好。
b)充電等待時(shí)間。指明節(jié)點(diǎn)發(fā)出充電請(qǐng)求信息到MC為其充電所等待時(shí)間。
c)充電代價(jià)。MC進(jìn)行一輪充電任務(wù)時(shí)所行駛的距離之和。
本文主要研究三個(gè)不同的因素對(duì)四個(gè)策略的指標(biāo)的影響,其影響因素為節(jié)點(diǎn)數(shù)量、MC移動(dòng)速度和MC充電速率。
6.2 仿真比較
本節(jié)對(duì)四種算法進(jìn)行充電任務(wù)比較如圖4所示。圖4(a)中FCFS策略遵循先來(lái)先服務(wù)的原則,沒(méi)有考慮到緊急節(jié)點(diǎn)的等待充電時(shí)間,導(dǎo)致網(wǎng)絡(luò)內(nèi)節(jié)點(diǎn)死亡率與另外三個(gè)策略相比尤為突出,由圖可知MC的充電代價(jià)很大,遠(yuǎn)遠(yuǎn)超過(guò)了VTMT、SAMER和SMMCS策略,同時(shí)也減低了MC的充電效率。圖4(b)和(c)中的VTMT和SAMER策略充電代價(jià)相近,性能比較得出在最優(yōu)的情況上VTMT的性能始終略高于SAMER策略。圖4(d)中即為本文采用的SMMCS策略,由于優(yōu)先考慮瀕臨死亡的節(jié)點(diǎn),同時(shí)考慮距離因素和能耗因素來(lái)確定節(jié)點(diǎn)的優(yōu)先級(jí),所以在死亡節(jié)點(diǎn)率的性能中表現(xiàn)最優(yōu),待充電節(jié)點(diǎn)的等待時(shí)間將會(huì)大大縮減,在性能比較中,SMMCS策略的充電代價(jià)也會(huì)低于其他三種策略。SMMCS策略減小了節(jié)點(diǎn)充電等待時(shí)間,提高了MC充電效率,降低能量的損耗,充分體現(xiàn)了該策略的充電公平性和高效性。
四種策略仿真結(jié)果對(duì)比如表2所示。結(jié)果顯示,SMMCS策略能縮短MC充電代價(jià),減少SN充電等待時(shí)間,減小SN死亡率。
6.3 節(jié)點(diǎn)數(shù)量對(duì)性能的影響
本組實(shí)驗(yàn)節(jié)點(diǎn)數(shù)量以25為間隔,將節(jié)點(diǎn)數(shù)量從25增加到200時(shí),分析節(jié)點(diǎn)的變化對(duì)策略各個(gè)性能的影響,策略變化如圖5所示。
如圖5(a)所示,節(jié)點(diǎn)數(shù)量較少時(shí),四種充電策略的節(jié)點(diǎn)死亡率都普遍不高,這是因?yàn)镸C能夠及時(shí)為網(wǎng)絡(luò)中待充電節(jié)點(diǎn)補(bǔ)充能量,當(dāng)節(jié)點(diǎn)數(shù)量變化到75時(shí),四個(gè)充電策略的節(jié)點(diǎn)死亡率都在不斷增加,尤其是FCFS策略尤為顯著,隨著網(wǎng)絡(luò)中節(jié)點(diǎn)數(shù)量的增多,F(xiàn)CFS的先來(lái)先服務(wù)策略使得待充電節(jié)點(diǎn)不能及時(shí)充電而出現(xiàn)能量空洞導(dǎo)致節(jié)點(diǎn)死亡的頻率增加,效果最為劇烈。同條件下,SAMER和VTMT策略在性能上相差不大,本文策略的節(jié)點(diǎn)死亡率始終低于另外三種策略,主要是因?yàn)楸疚牟呗栽O(shè)置了雙重閾值,優(yōu)先為緊急節(jié)點(diǎn)充電,實(shí)時(shí)得到節(jié)點(diǎn)數(shù)據(jù)信息,根據(jù)節(jié)點(diǎn)的實(shí)時(shí)動(dòng)態(tài)變化確定最優(yōu)的待充電節(jié)點(diǎn),使得節(jié)點(diǎn)的死亡率最低,表明SMMCS策略較好地兼顧了充電的公平性。
如圖5(b)所示,隨著節(jié)點(diǎn)的增多,VTMT、SAMER和SMMCS策略平均充電等待時(shí)間的變化規(guī)律幾乎類似,相對(duì)來(lái)講,SMMCS策略的平均待充電等待時(shí)間略低于VTMT和SAMER,這是因?yàn)楸疚牟呗圆粌H能夠?yàn)榫o急節(jié)點(diǎn)優(yōu)先充電,同時(shí)還能對(duì)簇內(nèi)發(fā)送待充電信息的節(jié)點(diǎn)同時(shí)充電,能夠最快為下一個(gè)節(jié)點(diǎn)充電。節(jié)點(diǎn)數(shù)量達(dá)到75時(shí),F(xiàn)CFS策略中對(duì)節(jié)點(diǎn)的充電選擇增多,于是MC在網(wǎng)絡(luò)中的移動(dòng)總路程增加,導(dǎo)致節(jié)點(diǎn)的等待充電時(shí)間變長(zhǎng)。
如圖5(c)所示,四種策略的充電代價(jià)都是先增后減,在節(jié)點(diǎn)增長(zhǎng)到75之前,節(jié)點(diǎn)數(shù)量比較少,分布比較稀疏,MC移動(dòng)距離不斷增加,但隨著節(jié)點(diǎn)數(shù)量不斷增加,節(jié)點(diǎn)分布較為密集,MC的充電代價(jià)相應(yīng)降低,當(dāng)節(jié)點(diǎn)數(shù)量高于75時(shí),本文策略基于充電響應(yīng)的公平性,考慮了節(jié)點(diǎn)的能耗動(dòng)態(tài)變化,相較其他三種策略,本文策略充電代價(jià)最低。
6.4 MC移動(dòng)速度對(duì)性能的影響
本組實(shí)驗(yàn)通過(guò)改變MC的移動(dòng)速度觀測(cè)每個(gè)策略的性能優(yōu)劣,設(shè)定MC移動(dòng)速度從1~8 m/s呈梯度增長(zhǎng),其性能結(jié)果如圖6所示。
如圖6(a)所示,隨著MC移動(dòng)速度的增加,四種策略的節(jié)點(diǎn)死亡率都隨之降低,F(xiàn)CFS策略死亡節(jié)點(diǎn)率依舊高于VTMT、SAMER和SMMCS策略,這是因?yàn)镕CFS策略在網(wǎng)絡(luò)中選擇下一充電節(jié)點(diǎn)的公平性較低,導(dǎo)致移動(dòng)距離增加,節(jié)點(diǎn)等待時(shí)間變長(zhǎng),所以節(jié)點(diǎn)死亡率偏高。由于SMMCS策略能合理設(shè)置閾值,實(shí)時(shí)接收到節(jié)點(diǎn)的剩余能量,通過(guò)能耗率確定下一充電節(jié)點(diǎn),節(jié)點(diǎn)死亡率始終小于其他三種策略,顯示了本文策略的優(yōu)越性。
如圖6(b)所示,MC移動(dòng)速度增加后,F(xiàn)CFS的節(jié)點(diǎn)充電等待時(shí)間先增后減,移動(dòng)速度增加時(shí)FCFS中節(jié)點(diǎn)等待時(shí)間變長(zhǎng),這是因?yàn)镸C的服務(wù)節(jié)點(diǎn)數(shù)增加了,在網(wǎng)絡(luò)中往返運(yùn)動(dòng)的幾率大大提高,所以距離稍遠(yuǎn)的節(jié)點(diǎn)等待時(shí)間會(huì)相對(duì)變大。另外,VTMT、SAMER和SMMCS策略隨著MC移動(dòng)速度的增加,網(wǎng)絡(luò)中節(jié)點(diǎn)的充電等待時(shí)間也在不斷減小。
如圖6(c)所示,MC移動(dòng)速度增加后,其對(duì)節(jié)點(diǎn)充電能力也在不斷提高,對(duì)網(wǎng)絡(luò)中服務(wù)的節(jié)點(diǎn)數(shù)也在不斷遞增,所以MC總的移動(dòng)距離也會(huì)逐漸變大。由于FCFS策略的充電本質(zhì)是先來(lái)先服務(wù),對(duì)于遠(yuǎn)距離的節(jié)點(diǎn)并不能按時(shí)充上電,來(lái)回往復(fù)的充電使得充電代價(jià)增大。VTMT和SAMER策略隨著MC速度的增加,都是選擇最近的節(jié)點(diǎn)進(jìn)行充電,所以充電代價(jià)的變化也極為相似。隨著移動(dòng)速度的提高,本文策略的充電代價(jià)雖在不斷上升,但都低于其他三種策略,總體性能最優(yōu)。
6.5 MC充電速率對(duì)性能的影響
本組實(shí)驗(yàn)通過(guò)改變MC對(duì)節(jié)點(diǎn)的充電速率變化觀測(cè)四種策略的性能好壞,設(shè)定充電速率變化范圍是75~250 mJ/s,其性能變化結(jié)果如圖7所示。
如圖7(a)所示,隨著MC對(duì)節(jié)點(diǎn)的充電速率不斷增大,四種策略中MC服務(wù)的節(jié)點(diǎn)數(shù)量也相應(yīng)增加,節(jié)點(diǎn)能及時(shí)得到充電的幾率也在不斷增大,所有四種策略的節(jié)點(diǎn)死亡率都隨著充電速率的增大而減小,F(xiàn)CFS的節(jié)點(diǎn)死亡率相比于VTMT、SAMER和SMMCS策略,F(xiàn)CFS只根據(jù)待充電節(jié)點(diǎn)發(fā)送信息的時(shí)間順序進(jìn)行充電,所以性能最差。VTMT和SAMER策略的死亡節(jié)點(diǎn)率變化幅度小。本文策略是在減小節(jié)點(diǎn)死亡率的前提下,使得MC充電的效率最高,盡管服務(wù)節(jié)點(diǎn)數(shù)在增加,也不會(huì)增大死亡節(jié)點(diǎn)率。
如圖7(b)所示,MC的充電速率變大之后,四種策略的充電等待時(shí)間都有所減小,但是FCFS的等待時(shí)間最長(zhǎng),其他三種策略的等待時(shí)間都相對(duì)較低,本文策略對(duì)多個(gè)節(jié)點(diǎn)進(jìn)行充電,相應(yīng)地減少了節(jié)點(diǎn)等待充電的時(shí)長(zhǎng),其充電效率最好。VTMT策略中主要選擇等待時(shí)間最長(zhǎng)的節(jié)點(diǎn)作為下一個(gè)充電節(jié)點(diǎn),其公平性相對(duì)較差,因此充電等待時(shí)間高于SAMER和SMMCS策略。
如圖7(c)所示,隨著充電速率的加快,MC在網(wǎng)絡(luò)中服務(wù)的節(jié)點(diǎn)數(shù)會(huì)不斷增加,F(xiàn)CFS策略在網(wǎng)絡(luò)中往返移動(dòng),導(dǎo)致其充電代價(jià)高于其他三種策略,VTMT策略旨在減小節(jié)點(diǎn)死亡率,并沒(méi)有考慮到充電代價(jià)和充電效率,在死亡節(jié)點(diǎn)率小的情況下,VTMT的充電代價(jià)高于SAMER和SMMCS策略。由于SMMCS策略選擇更優(yōu)的充電對(duì)象,考慮了節(jié)點(diǎn)死亡率和能耗的變化,本文策略的充電代價(jià)最低,整體性能高于其他幾種策略。
7 結(jié)束語(yǔ)
針對(duì)傳感器網(wǎng)絡(luò)研究了充電規(guī)劃問(wèn)題,本文提出了一對(duì)多在線充電策略。該策略為了減小節(jié)點(diǎn)死亡率,采用了不均勻動(dòng)態(tài)分區(qū),MC可同時(shí)多節(jié)點(diǎn)充電,簇頭節(jié)點(diǎn)匯聚簇內(nèi)節(jié)點(diǎn)數(shù)據(jù)信息,單跳傳輸至基站,極大地緩解了網(wǎng)絡(luò)中的能量分布,MC選擇充電效率最高的節(jié)點(diǎn)進(jìn)行充電。仿真實(shí)驗(yàn)結(jié)果表明,SMMCS策略的公平性和高效性使得網(wǎng)絡(luò)中的節(jié)點(diǎn)存活時(shí)間更長(zhǎng),MC的充電效率更高,能夠有效地延長(zhǎng)網(wǎng)絡(luò)運(yùn)行時(shí)長(zhǎng)。在未來(lái)研究中將本文策略與其他優(yōu)秀方法相結(jié)合,基于節(jié)點(diǎn)的能耗異構(gòu)率,對(duì)閾值的精確判定進(jìn)行研究。
參考文獻(xiàn):
[1]Wang Kun,Zeng Gang,Wang Lei,et al. MPSA: a real-time collaborative scheduling algorithm for wireless rechargeable sensor networks [J]. International Journal of Communication Systems,2021,34(18):4995.
[2]Singh S,Manju,Malik A,et al. A threshold-based energy efficient military surveillance system using heterogeneous wireless sensor networks [J]. Soft Computing,2023,27: 1163-1176.
[3]Yoo C,Kim S,Baek S,et al. Application for disaster prediction of re-servoir dam wireless sensor network system based on field trial construction [J]. Journal of the Korean Geo-Environmental Society,2019,20(1): 19-25.
[4]Attaoui A E,Salma L,Abdelilah J,et al. Wireless medical sensor network for blood pressure monitoring based on machine learning for real-time data classification [J]. Journal of Ambient Intelligence and Humanized Computing,2021,12:8777-8792.
[5]Mosaif A,Rakrak S. A new system for real-time video surveillance in smart cities based on wireless visual sensor networks and fog computing [J]. Journal of Communications,2021,16(5):175-184.
[6]戴海鵬,陳貴海,徐力杰,等. 一種高效有向無(wú)線充電器的布置算法 [J]. 軟件學(xué)報(bào),2015,26(7): 1711-1729. (Dai Haipeng,Chen Guihai,Xu Lijie,et al. A layout algorithm for high-efficiency directed wireless charger [J]. Journal of Software,2015,26(7): 1711-1729.)
[7]Sheikhi M,Kashi S S,Samaee Z. Energy provisioning in wireless rechargeable sensor networks with limited knowledge [J]. Wireless Networks,2019,25(6): 3531-3544.
[8]Sabale K,Mini S. Transmission power control for anchor-assisted localization in wireless sensor networks [J]. IEEE Sensors Journal,2021,21(8): 10102-10111.
[9]胡誠(chéng),汪蕓,王輝. 無(wú)線可充電傳感器網(wǎng)絡(luò)中充電規(guī)劃研究進(jìn)展 [J]. 軟件學(xué)報(bào),2016,27(1): 72-95. (Hu Cheng,Wang Yun,Wang Hui. Research progress of charging planning in wireless rechargeable sensor networks [J]. Journal of Software,2016,27(1): 72-95.)
[10]Tomar A,Muduli L,Jana P K. A fuzzy logic-based on-demand charging algorithm for wireless rechargeable sensor networks with multiple chargers [J]. IEEE Trans on Mobile Computing,2021,20(9): 2715-2727.
[11]Lyu Zengwei,Wei Zhenchun,Pan Jie,et al. Periodic charging planning for a mobile WCE in wireless rechargeable sensor networks based on hybrid PSO and GA algorithm [J]. Applied Soft Computing Journal,2018,75: 388-403.
[12]Hu Cheng,Wang Yun.Minimizing the number of mobile chargers to keep large-scale WRSNs working perpetually[J].International Journal of Distributed Sensor Networks,2015,2015(6):537-568.
[13]He Liang,Kong Linghe,Gu Yu,et al. Evaluating the on-demand mobile charging in wireless sensor networks [J]. IEEE Trans on Mobile Computing,2015,14(9): 1861-1875.
[14]Lin Chi,Wang Zhiyuan,Han Ding,et al. TADP: enabling temporal and distantial priority scheduling for on-demand charging architecture in wireless rechargeable sensor networks [J]. Journal of Systems Architecture,2016,70: 26-38.
[15]Priyadarshani S,Tomar A,Jana P K. An efficient partial charging scheme using multiple mobile chargers in wireless rechargeable sensor networks [J]. Ad hoc Networks,2021,113: 102407.
[16]Zhao Chuanxin,Zhang Hengjing,Chen Fulong,et al. Spatiotemporal charging scheduling in wireless rechargeable sensor networks [J]. Computer Communications,2020,152: 155-170.
[17]Khelladi L,Djenouri D,Rossi M,et al. Efficient on-demand multi-node charging techniques for wireless sensor networks [J]. Compu-ter Communications,2017,101: 44-56.
[18]Lin Chi,Han Ding,Deng Jing,et al. P2S: a primary and passer-byscheduling algorithm for on-demand charging architecture in wireless rechargeable sensor networks [J]. IEEE Trans on Vehicular Technology,2017,66(9): 8047-8058.
[19]Tomar A,Jana P K. A multi-attribute decision making approach for on-demand charging scheduling in wireless rechargeable sensor networks [J]. Computing,2021,103: 1677-1701.
[20]Zhu Jinqi,F(xiàn)eng Yong,Liu Ming,et al. Adaptive online mobile charging for node failure avoidance in wireless rechargeable sensor networks [J]. Computer Communications,2018,126: 28-37.
[21]Mo Lei,Kritikakou A,He Shibo. Energy-aware multiple mobile char-gers coordination for wireless rechargeable sensor networks [J]. IEEE Internet of Things Journal,2019,6(5): 8202-8214.
[22]Kaswan A,Tomar A,Jana P K. An efficient scheduling scheme for mobile charger in on-demand wireless rechargeable sensor networks [J]. Journal of Network and Computer Applications,2018,114: 123-134.
[23]Yang Xuan,Han Guangjie,Liu Li,et al. IGRC: an improved grid-based joint routing and charging algorithm for wireless rechargeable sensor networks [J]. Future Generation Computer Systems,2019,92: 837-845.
[24]Chen Feiyu,Zhao Zhiwei,Ge Yongmin,et al. Speed control of mobile chargers serving wireless rechargeable networks [J]. Future Gene-ration Computer Systems,2018,80: 242-249.
[25]Tomar A,Muduli L,Jana P K. An efficient scheduling scheme for on-demand mobile charging in wireless rechargeable sensor networks [J]. Pervasive and Mobile Computing,2019,59: 101074.
[26]Lin Chi,Zhou Jingzhe,Guo Chunyang,et al. TSCA: a temporal-spatial real-time charging scheduling algorithm for on-demand architecture in wireless rechargeable sensor networks [J]. IEEE Trans on Mobile Computing,2018,17(1): 211-224.
[27]Kim Y W,Boo S,Kim G,et al. Wireless power transfer efficiency formula applicable in near and far fields [J]. Journal of Electromagnetic Engineering and Science,2019,19(4): 239-244.
[28]Wu Jiaxian,Li Shuangjuan,Huang Qiong. Reducing sensor failure and ensuring scheduling fairness for online charging in heterogeneous rechargeable sensor networks [C]//Proc of IEEE Symposium on Computers and Communications.Piscataway,NJ:IEEE Press,2020: 1-6.
[29]Feng Yong,Liu Nianbo,Wang Feng,et al. Starvation avoidance mobile energy replenishment for wireless rechargeable sensor networks [C]//Proc of IEEE International Conference on Communications. Piscataway,NJ: IEEE Press,2016: 1-6.
[30]He Liang,Zhuang Yanyan,Pan Jianping,et al. Evaluating on-demand data collection with mobile elements in wireless sensor networks[C]//Proc of the 72nd IEEE Vehicular Technology Conference.Piscataway,NJ: IEEE Press,2010:1-5.
收稿日期:2022-11-21;修回日期:2023-01-28? 基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(52177129);重慶市教委科學(xué)技術(shù)研究重點(diǎn)項(xiàng)目(KJZD-K201901102);重慶市技術(shù)創(chuàng)新與應(yīng)用發(fā)展專項(xiàng)面上項(xiàng)目(cstc2020jscx-msxmX0210);重慶理工大學(xué)研究生創(chuàng)新項(xiàng)目(gzlcx20233111)
作者簡(jiǎn)介:楊佳(1973-),女,副教授,碩導(dǎo),博士,主要研究方向?yàn)闊o(wú)線傳感器網(wǎng)絡(luò);寇東山(1997-),男,碩士研究生,主要研究方向?yàn)闊o(wú)線可充電傳感器網(wǎng)絡(luò)(koudongshan.chn@qq.com);余斌(1997-),男,碩士研究生,主要研究方向?yàn)閭鞲衅骶W(wǎng)絡(luò)路由優(yōu)化算法;吳佩林(1999-),男,碩士研究生,主要研究方向?yàn)闄C(jī)器人智能控制;楊理(1999-),女,碩士研究生,主要研究方向?yàn)闊o(wú)人抓鋼機(jī)的智能控制
.