李 詩,張俊輝,胡鈞銘**,周鳳玨,李婷婷,徐美花,馬潔萍,陸展彩
等氮替代施入生物炭對南方免耕早稻田溫室氣體排放的影響*
李 詩1,2,張俊輝1,胡鈞銘1**,周鳳玨2,李婷婷1,徐美花1,2,馬潔萍1,2,陸展彩1,2
(1.廣西農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所/廣西耕地保育重點實驗室,南寧 530007;2.廣西大學(xué)農(nóng)學(xué)院,南寧 530004)
生物炭是新型外源有機(jī)底物,其穩(wěn)定性好,吸附性強(qiáng),富含碳營養(yǎng)物,常作為固碳減排的重要有機(jī)資源。中國南方早秈稻產(chǎn)量高,雨熱同期且種植制度獨特,2021?2022 年試驗在典型秈稻區(qū)南寧開展,共設(shè)置3種處理分別為,對照處理(CK):不施肥;無機(jī)氮投入(T1,化肥)處理:化肥施用量為常規(guī)施肥水平,復(fù)合肥800kg·hm?2,尿素260.87kg·hm?2,鉀肥193.55kg·hm?2;無機(jī)氮配施有機(jī)氮(T2,生物炭+化肥)處理:生物炭4000kg·hm?2,復(fù)合肥738.67kg·hm?2,尿素146.09kg·hm?2,鉀肥34.19kg·hm?2。本研究在水稻插秧5d后,采用分離式靜態(tài)箱?氣相色譜法,定期監(jiān)測水稻生育期內(nèi)稻田土壤溫室氣體排放,解析其溫室氣體累計排放量、排放當(dāng)量及水稻產(chǎn)量性狀,探討等氮替代施入生物炭對南方早稻田溫室氣體排放、水稻產(chǎn)量的影響,為優(yōu)化集約化早秈稻低碳種植和減肥增效提供依據(jù)。結(jié)果表明:(1)生物炭能降低稻田土壤CH4、CO2排放,通過減緩CH4排放而減小綜合排放當(dāng)量。化肥配施生物炭可減緩單施化肥引起的溫室氣體碳源增排效應(yīng),其減緩CO2排放的延后效應(yīng)較明顯,生物炭處理(T2)中,與化肥處理(T1)相比,2021年CH4最大排放通量降低41.38%,累計排放量降低31.25%,2022年最大排放通量降低50.50%,累計排放量顯著降低50%,2a的綜合排放當(dāng)量顯著低于T1處理;2021年CO2最大排放通量、累計排放量分別比T1處理減小57.38%和 37.68%,2022年比T1處理分別相應(yīng)減小16.06%和35.52%。(2)生物炭可抑制N2O排放,顯著降低累計排放量,減小氮源排放當(dāng)量。與T1處理對比,T2處理2021年N2O最大排放通量減小5.43%,而累計排放量顯著降低33.53%;2022最大排放通量減小73.75%,累計排放量顯著降低54.33%。(3)生物炭利于集約化早秈稻種植結(jié)構(gòu)優(yōu)化,提升早秈稻生產(chǎn)力。生物炭投入稻田2a后,增產(chǎn)效果明顯,T2處理的理論產(chǎn)量為T1處理的1.02~1.33倍,實際產(chǎn)量則是T1處理的1.06~1.32倍。化肥配施生物炭減少了早秈稻田溫室氣體排放,增加了水稻產(chǎn)量,可作為南方集約化早秈稻低碳生產(chǎn)優(yōu)化模式。
溫室氣體;生物炭;低碳優(yōu)化;集約化稻田;早秈稻
應(yīng)對氣候變化已擺在國家治理更加突出的位置。聯(lián)合國政府間氣候變化專門委員會(IPCC)第六次評估報告(AR6)顯示,與工業(yè)化前相比,全球范圍內(nèi)地表溫度增幅為1.09℃[1]。氣候環(huán)境復(fù)雜多變,資源和環(huán)境承受較大壓力,秦大河等[2]呼吁在氣候變化與環(huán)境保護(hù)方面采取新措施和手段進(jìn)行減排行動。中國提出“二氧化碳(CO2)排放力爭于2030年前達(dá)到峰值,努力爭取 2060 年前實現(xiàn)碳中和”的戰(zhàn)略目標(biāo)[3]。農(nóng)業(yè)生產(chǎn)中二氧化碳(CO2)、甲烷(CH4)與氧化亞氮(N2O)是影響溫室效應(yīng)的重要因素[4]。以化肥投入的現(xiàn)代集約化稻田生產(chǎn)為保障國家糧食安全提供了重要保障[5],但化肥長期過量投入嚴(yán)重超過土壤的自身承載力,不僅影響水稻生長與產(chǎn)量和品質(zhì)提升[6],而且由此造成的土壤酸化板結(jié)、水體污染、溫室氣體排放等環(huán)境問題不容忽視[7?9]。隨著國家雙碳目標(biāo)和化肥減量的持續(xù)推進(jìn),集約化稻作實現(xiàn)可持續(xù)低碳綠色生產(chǎn)有待突破。
農(nóng)業(yè)溫室氣體減排蘊(yùn)藏著巨大潛力[10?11]。1980?2020 年中國農(nóng)業(yè)系統(tǒng)溫室氣體排放量呈波動增長趨勢,增長了近46%[12?13]。CH4在農(nóng)業(yè)生態(tài)系統(tǒng)溫室氣體排放中貢獻(xiàn)最大,占總排放量的47.33%[14],其中農(nóng)業(yè)生產(chǎn)資料投入產(chǎn)生和消費的溫室氣體排放是潛在溫室氣體排放總量的73.9%~89.5%[15]。2013?2020年中國種植業(yè)碳排放總量累計達(dá)到19.72 億t[16]。生物炭是由農(nóng)業(yè)廢棄物在高溫缺氧條件下熱裂解成難分解的富碳物質(zhì)[17],在培肥土壤和作物增產(chǎn)、提高土壤固碳能力、抗病性等方面具有良好效果[18]。研究表明,生物炭能降低反硝化酶活性,顯著降低土壤N2O的年累計排放量,能提高土壤含碳量和陽離子交換容量,培肥地力[19],甚至單施生物炭處理的N2O累計排放量均為負(fù)值[20]。也有研究表明,生物炭的老化可加速硝化作用生成N2O,同時減緩N2O的還原,在一定程度影響土壤排放N2O[21]。Wang等[22]研究表明,生物炭促進(jìn)土壤形成大團(tuán)聚體,加強(qiáng)對有機(jī)質(zhì)的吸附保護(hù)作用,抑制有機(jī)碳礦化,增加儲碳量,減緩碳排放。周際海等[23]報道生物質(zhì)炭在一定程度上抑制土壤CO2排放,顯著減小溫室氣體增溫潛勢,屈忠義等[24]認(rèn)為生物炭也會減少或抑制 CH4排放。生物炭可對水稻植株生長發(fā)育有促進(jìn)作用[25],可提高作物產(chǎn)量[26],于衷浦等[27]研究表明,化肥減量 20%與生物炭基肥配施能減小溫室氣體累計排放量、綜合增溫潛勢和氣體排放強(qiáng)度,短期內(nèi)可增加作物產(chǎn)量。
生物炭對農(nóng)田溫室氣體排放的影響存在較多可能性。若全球農(nóng)田均施用生物炭,一年至多可使N2O少排放96萬t N2O-N,約等同于全球目前農(nóng)田N2O排放的1/3[28]。生物炭的施用可直接增加土壤有機(jī)碳(SOC)含量,且在持續(xù)多年施用下對農(nóng)作物穩(wěn)產(chǎn)提質(zhì)[29]。中國南方熱帶和亞熱帶區(qū)域是水稻主產(chǎn)區(qū),在固碳減排中占有重要地位。研究表明長期植稻過程中,水稻土的有機(jī)質(zhì)處于持續(xù)增加狀態(tài),增幅可達(dá)60%,年平均固碳速率為0.28t·hm?2,具有明顯的固碳效應(yīng)[30]。南方早秈稻產(chǎn)量高,雨熱同期,種植制度獨特,優(yōu)化集約化早秈稻種植模式與減肥增效具有重要意義。生物炭是新型外源有機(jī)底物,具有穩(wěn)定性持久、吸附性強(qiáng)等顯著特征,可為稻田補(bǔ)充豐富的營養(yǎng)物并降低溫室氣體排放,生物炭與南方早秈稻種植制度相匹配的低碳生產(chǎn)模式研究亟待加強(qiáng)。本研究采用分離式靜態(tài)箱?氣相色譜法,連續(xù)2a定位監(jiān)測水稻生育期內(nèi)稻田土壤溫室氣體排放及稻作產(chǎn)量性狀,研究生物炭配施化肥對溫室氣體排放規(guī)律及產(chǎn)量特征,系統(tǒng)評估生物炭投入下稻田溫室效應(yīng)及水稻生產(chǎn)力,以期為優(yōu)化南方集約化早秈稻綠色低碳可持續(xù)生產(chǎn)提供參考。
試驗在廣西南寧開展,屬亞熱帶季風(fēng)性氣候,氣溫均值為22.9℃,年降水量約1274.2mm[31]。試驗在廣西農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所科研基地(108.249664°E,22.841066°N)進(jìn)行,水稻品種為常規(guī)早秈稻“桂野豐”。供試土壤為紅壤水稻黏土,土壤pH值6.6,全氮、磷和鉀總量分別為 1.80g·kg?1、0.918g·kg?1和7.43g·kg?1,速效磷和鉀分別為37.9mg·kg?1和97.8mg·kg?1,堿解氮131mg·kg?1,有機(jī)質(zhì)24.5g·kg?1。
試驗選用的生物炭由玉米秸稈在高溫缺氧條件下熱裂解而成,其氮、磷和鉀含量分別為1.55% 、0.23%和2.7% ,有機(jī)碳75%?;视心蛩兀?6% N)、磷肥(15% P2O5)、鉀肥(62.7%K2O)和復(fù)合肥(N、P2O5、K2O各含15%)。
試驗于2021年和2022年實施,采用南方早稻田免耕的方式。試驗設(shè)置3個處理,不施肥(CK,對照)、施化肥(T1)和施加生物炭+化肥(T2),每個處理三次重復(fù)。小區(qū)面積74m2,采用壟作栽培模式,壟寬0.60m,溝寬0.40m,壟深0.30m,水稻株行距為0.12m×0.24m,每穴三苗,每壟三列水稻。常規(guī)氮磷鉀肥用量參考標(biāo)準(zhǔn)為240kg·hm?2N、120kg·hm?2P2O5、240kg·hm?2K2O,等氮條件下,T1處理(100%化肥)即投入800kg·hm?2復(fù)合肥,260.87kg·hm?2尿素,193.55kg·hm?2鉀肥;T2處理(生物炭+化肥)則需4000kg·hm?2生物炭,738.67kg·hm?2復(fù)合肥,146.09kg·hm?2尿素,34.19kg·hm?2鉀肥。各處理實際施肥用量見表1,底肥與返青肥各按施肥總量的一半先后施入稻田,具體施肥時間見表2,其他方面按常規(guī)大田高產(chǎn)栽培方法進(jìn)行田間管理和水分管理。
1.3.1 氣體采集與測定
利用分離式靜態(tài)箱?氣相色譜法監(jiān)測田間溫室氣體(N2O、CH4和CO2)。該分離式靜態(tài)箱由底座、箱體組成,在水稻移栽前將底座置于大田,底座內(nèi)外圍邊長分別為 36cm、44cm,以2穴×2穴規(guī)格在底座內(nèi)栽水稻,為減少人工破壞土層使土壤氣體自然釋放和便于采集氣體,底座與大田過道間設(shè)有木樁。取樣箱體由不銹鋼制成,長×寬×高為40cm × 40cm × 50cm,外用鋁箔紙隔熱減小外界溫度影響,上罩箱僅下端口敞開,下罩箱上、下端口均敞開(植株高度超過50cm時使用),在箱體側(cè)面中心有1個直徑22.5mm 的圓孔,用于抽取氣體。本試驗采氣共10次,先后在水稻移栽后5、10、15、20、30、40、50、60、70和80d每日8:00 ?11:00取樣,為使取氣整體裝置不漏氣需將稻田里底座的凹槽(高5cm)加水密封,將箱體直接放置底座上,于裝置組成后的第0、10、20和30min先后用外接三通閥的30mL聚乙烯注射器采集氣體,同時記錄箱體內(nèi)溫度,CK、T1和T2三種處理均3次重復(fù)。其中水稻移栽后30~50d內(nèi)曬田,移栽后50d復(fù)水,移栽后60d為齊穗期。
表1 各處理的實際用肥量(kg·74m?2)
注: 74m2是每個小區(qū)的面積。
Note: 74m2is the experimental district area.
表2 兩試驗?zāi)甓仍绲旧L季主要耕作措施時間記錄(月?日)
(1)排放通量計算
完成采氣后48h內(nèi)用氣相色譜儀(Agilent7890A GC)檢測,并計算N2O、CH4和CO2排放通量[32]。
式中,F(xiàn)為CO2、CH4(mgC·m?2·h?1)和N2O (mgN·m?2·h?1)的排放通量;ρ為標(biāo)準(zhǔn)狀況下 N2O-N、CO2-C和CH4-C密度,分別取值1.25g·L?1、0.54g·L?1和0.54g·L?1;V為氣箱體積(0.08m3);W為底座內(nèi)土壤表面積(0.16m2),△C/△V為單位時間內(nèi)氣體濃度變化率;T為氣箱內(nèi)溫度(℃)。
(2)累計排放量計算
式中,f為采氣期N2O、CH4或 CO2的累計排放量(g·hm?2),F(xiàn)i、Fi?1分別表示第 i 次、第i?1次氣體樣品排放通量;d 為前后兩次氣體測定相隔天數(shù)(d);n為氣體監(jiān)測總次數(shù)。
(3)綜合CO2排放當(dāng)量
綜合CO2排放當(dāng)量(Combined CO2equivalent emissions)即溫室氣體(N2O 、CH4和CO2)的排放當(dāng)量,以CO2當(dāng)量(kg)計算N2O和 CH4排放量,100a的影響尺度上1kg N2O排放當(dāng)量為 1kg CO2的298倍,1kg CH4排放當(dāng)量為1kg CO2的25 倍。計算公式分別為
E(CO2)= f(CO2) ×1 (3)
E(CH4)= f(CH4) ×25 (4)
E(N2O)= f(N2O) ×298×10?3(5)
CE=E(CO2)+E(CH4)+ E(N2O) (6)
式中,E(CO2)、E(CH4)和E(N2O)分別為CO2、CH4和N2O排放當(dāng)量(CO2kg·hm?2),CE為N2O、CH4和CO2的綜合CO2排放當(dāng)量(CO2kg·hm?2),即N2O、CH4和CO2排放量的總CO2當(dāng)量,單位均為CO2kg·hm?2。
1.3.2 水稻考種及產(chǎn)量測定
在水稻成熟期各處理選取3個1m2長勢均勻的區(qū)域,進(jìn)行實際產(chǎn)量測定;采用5點取樣法于水稻成熟期各個小區(qū)取樣并考查有效穗數(shù)、每穗總粒數(shù)、每穗實粒數(shù)、結(jié)實率和千粒質(zhì)量,進(jìn)行理論產(chǎn)量計算,曬干后測定稻谷質(zhì)量和含水量,按標(biāo)準(zhǔn)含水量 13.5% 折算水稻產(chǎn)量。
利用SPSS19.0軟件整理試驗數(shù)據(jù),以LSD法、Duncan法做多重比較和組間樣本方差分析(統(tǒng)計顯著水平P<0.05),用 WPS Excel 2016 制圖。
2.1.1 對CH4排放的影響
由圖1可見,兩個試驗?zāi)甓人旧L季CH4排放均集中發(fā)生在曬田期和齊穗期。不施肥處理(CK)中,早稻生長季CH4排放通量變化相對平穩(wěn),2021年最大排放通量為1.14mg·m?2·h?1,發(fā)生在移栽后30d(即曬田期),累計排放量為8.88kg·hm?2,顯著低于其他處理;2022年CK處理最大排放通量為0.63mg·m?2·h?1,發(fā)生在移栽后80d,累計排放量為5.88kg·hm?2,顯著低于T1和T2處理?;侍幚恚═1)中,CH4排放通量變化基本呈現(xiàn)雙峰型,分別在移栽后30d、60d(即復(fù)水后)出現(xiàn)排放峰值,2021年最大排放通量為6.38mg·m?2·h?1,累計排放量為39.27kg·hm?2,大于CK和T2處理;2022年最大排放通量為2.99mg·m?2·h?1,累計排放量為23.62kg·hm?2,顯著大于CK和T2處理,說明單施化肥會顯著增加CH4排放。生物炭處理(T2)中,2021年最大排放通量為3.74mg·m?2·h?1,發(fā)生在移栽后40d,比T1處理降低41.38%,累計排放量為27.00kg·hm?2,比T1處理降低31.25%;2022年最大排放通量為1.48mg·m?2·h?1,發(fā)生在移栽后30d,比T1處理降低50.50%,累計排放量為11.81kg·hm?2,比T1處理顯著降低50%。試驗期間,利用曬田控制無效分蘗,此時各施肥處理CH4排放基本下降,復(fù)水后出現(xiàn)小增幅,水稻收獲前降低,生物炭處理比化肥處理后期增幅小,說明生物炭配施化肥可減緩CH4排放。
2.1.2 對CO2排放的影響
由圖2可見,各處理在水稻植株生長前期土壤呼吸作用持續(xù)增強(qiáng),曬田后 CO2排放達(dá)最大峰值,在齊穗期呈下降且平緩趨勢。不施肥處理(CK)中,2021年CO2排放通量在移栽60d時達(dá)到最大峰值,為36.21mg·m?2·h?1,累計排放量為339.16kg·hm?2;2022年排放通量在移栽60d達(dá)到最大峰值,為42.99mg·m?2·h?1,累計排放量為594.94kg·hm?2。化肥處理(T1)中,2021年排放通量在移栽40d達(dá)到最大峰值,為171.83mg·m?2·h?1,累計排放量為1034.21kg·hm?2,與CK和T2處理存在顯著差異;2022年排放通量在移栽60d時達(dá)到最大峰值,為121.47mg·m?2·h?1,累計排放量為1194.35kg·hm?2,均大于CK和T2處理,說明化肥影響CO2的排放。生物炭處理(T2)中,2021年在移栽40d達(dá)到最大峰值,為73.24mg·m?2·h?1,比T1處理減小57.38%,累計排放量為643.39kg·hm?2,比T1處理減小37.68%;2022年在移栽60d達(dá)到最大峰值,為101.96mg·m?2·h?1,比T1處理減小16.06%,累計排放量為770.13kg·hm?2,比T1處理減小35.52%。整體看來,2021年T2處理后期CO2排放有較小幅度上升,而2022 年各處理趨勢基本一致,CO2排放通量逐漸上升,至移栽后60d達(dá)到峰值再下降,但末期有較大增幅,可能是由于氣溫升高影響??梢?,生物炭能減緩CO2排放,其延緩排放效應(yīng)較明顯。
圖1 兩試驗?zāi)甓仍绲咎顲H4 排放通量變化過程(a)及其生長季累計排放量比較(b)
注:短線表示標(biāo)準(zhǔn)誤。小寫字母表示處理間在0.05水平上的差異顯著性。下同。
Note:The bar is standard error. Lowercase indicates the difference significance among treatments at 0.05 level. The same as below.
圖2 早稻田CO2排放通量變化過程(a)及其生長季累計排放量比較(b)
由圖3可見,整個早稻季生育期內(nèi),N2O排放通量呈現(xiàn)出化肥較高而生物炭配施化肥次之的趨勢,2021年與2022年的N2O排放通量變化趨勢基本一致,呈現(xiàn)雙峰型。不施肥處理(CK)中,2021年N2O排放通量在移栽60d時達(dá)到最大峰值,為2.54mg·m?2·h?1,累計排放量為6.06g·hm?2;2022年在移栽70d達(dá)到最大峰值,為24.53mg·m?2·h?1,累計排放量為56.67g·hm?2。單施化肥處理(T1)中,2021年排放量在移栽30d達(dá)到最大峰值,為21.93mg·m?2·h?1,累計排放量為144.23g·hm?2,與CK和T2處理存在顯著差異;2022年在移栽70d達(dá)到最大峰值,為84.65mg·m?2·h?1,累計排放量為293.58g·hm?2,均顯著大于CK和T2處理,說明化肥影響N2O排放。生物炭處理(T2)中,2021年在移栽10d達(dá)到最大峰值,為20.74mg·m?2·h?1,比T1處理減小5.43%,累計排放量為95.87g·hm?2,比T1處理顯著降低33.53%;2022年在移栽70d達(dá)到最大峰值為22.22mg·m?2·h?1,比T1處理減小73.75%,累計排放量為134.08g·hm?2,比T1處理顯著降低54.33%,與CK處理無顯著差異。從圖3a總體看出,T1、T2處理的第一個峰值基本在水稻移栽30d內(nèi)出現(xiàn),尤以2022年早稻季生育后期由于排水落干,N2O排放出現(xiàn)一個小高峰隨即迅速回落,T2處理為負(fù)值,表現(xiàn)為吸收狀態(tài)??梢姡锾繉2O 排放有顯著影響。
圖3 早稻田N2O排放通量變化過程(a)及其生長季累計排放量比較(b)
由表3得出,不施肥處理(CK)的溫室氣體排放當(dāng)量較小。單施化肥處理(T1)的溫室氣體排放當(dāng)量最大,其中2021年綜合CO2排放當(dāng)量為2058.88kgCO2·hm?2,N2O、CH4和CO2排放當(dāng)量分別占綜合CO2排放當(dāng)量的2.09%、47.68%和50.23%,除CH4排放當(dāng)量外,與CK和T2處理的其他排放當(dāng)量均存在顯著差異;2022年綜合CO2排放當(dāng)量最大,為1825.73kgCO2·hm?2,N2O、CH4和CO2排放當(dāng)量分別占綜合CO2排放當(dāng)量的2.24%、32.34%和65.42%。生物炭配施化肥處理(T2)條件下,2021年綜合CO2排放當(dāng)量為1347.06kgCO2· hm?2,比T1處理顯著減小34.57%,N2O、CH4和CO2排放當(dāng)量分別占綜合CO2排放當(dāng)量的2.12%、50.12%和47.76%,2022年綜合CO2排放當(dāng)量為1092.70kgCO2·hm?2,比T1處理顯著減小40.15%,與CK處理無顯著差異,N2O、CH4和CO2排放當(dāng)量分別占綜合CO2排放當(dāng)量的2.49%、27.03%和70.28%。從CH4排放當(dāng)量角度看,2021年T2處理與CK、T1處理無顯著差異,2022年與CK處理仍無顯著差異但顯著低于T1處理,從綜合CO2排放當(dāng)量看,2021年T2處理顯著大于CK處理,而2022年與CK處理無顯著差異??梢?,生物炭配施化肥對CH4排放影響較大,通過減緩CH4排放進(jìn)而降低綜合CO2排放當(dāng)量。
由表4可知,不施肥處理(CK)由于缺乏水稻植株生長必需營養(yǎng)導(dǎo)致產(chǎn)量較小。在 2021年,與化肥處理(T1)相比,生物炭配施化肥處理(T2)的成穗率和有效穗數(shù)分別提高1.94%和9.59%,T2處理的理論產(chǎn)量為6178.65kg·hm?2,實際產(chǎn)量為5658.6kg·hm?2,分別是T1處理的1.02、1.06倍,高于T1處理實際產(chǎn)量5.76%。在2022年,與T1處理相比,T2處理的成穗率、有效穗數(shù)和每穗總粒數(shù)差異不明顯,千粒重和結(jié)實率分別顯著增加45.43%和22%,T2處理的理論產(chǎn)量和實際產(chǎn)量顯著大于T1處理,分別為6808.65kg·hm?2和6133.65kg·hm?2,分別是 T1處理的1.33、1.32倍。可見,生物炭對水稻增產(chǎn)有一定積極作用。
表3 處理間稻田溫室氣體(N2O、CO2和CH4)綜合CO2排放當(dāng)量比較(kgCO2·hm?2)
3.1.1 生物炭對集約化稻田碳源溫室氣體排放的影響
生物炭降低了稻田土壤CH4和CO2排放,與化肥配施可減緩單施化肥引起的溫室氣體增排效應(yīng)。稻田產(chǎn)甲烷菌、甲烷氧化菌等微生物影響CH4排放[33],本研究發(fā)現(xiàn),水稻移栽5d內(nèi)根系處于伸根、定根狀態(tài),生長較慢,導(dǎo)致CH4排放量較?。灰圃?0d內(nèi)CH4排放變化范圍為0~2mg·m?2·h?1,土壤有機(jī)質(zhì)的分解為微生物提供反應(yīng)底物,且發(fā)達(dá)的早秈稻根系分泌了與產(chǎn)甲烷菌有關(guān)的底物,CH4排放增加;隨后進(jìn)入曬田控制水稻分蘗,CH4主要排放量在分蘗后期和齊穗期,隨后CH4排放迅速回落,變化明顯,可能是由于生物炭能增大土壤透氣性和土壤pH值,且含少量呋喃和酚類化合物等有毒物質(zhì),可抑制產(chǎn)甲烷菌活性和促進(jìn)大部分最適pH值為6.8~7.2的甲烷氧化菌活性[34],利于提升土壤氧化還原電位和氧化CH4能力[35],土壤碳源減少,連續(xù)2a的水稻生育期內(nèi)生物炭處理的CH4累計排放量、排放當(dāng)量均低于單施化肥處理,與王紫君等[36]研究結(jié)果相似。土壤活性有機(jī)碳含量和微生物群落豐度是影響CO2排放的主要因素[37],本研究中CO2排放集中在曬田?齊穗期即在曬田期后達(dá)到峰值后逐漸回落,生物炭處理排放通量、累計排放量整體低于單施化肥處理,與廖添懷等[38]研究結(jié)果基本一致,主要可能是生物炭給微生物生長提供了所需的碳源,其易分解態(tài)碳素被微生物優(yōu)先利用,促進(jìn)微生物的共代謝和有機(jī)碳礦化,后期逐漸轉(zhuǎn)成負(fù)向激發(fā)效應(yīng),同時利于土壤團(tuán)聚體形成,減緩?fù)寥涝加袡C(jī)碳礦化,提高土壤有機(jī)碳的含量與穩(wěn)定性,促進(jìn)土壤有機(jī)無機(jī)結(jié)合體的形成,從而保護(hù)減少土壤有機(jī)碳與微生物、細(xì)胞外酶和氧氣的接觸面,潛在降低碳排放[39?40]。連續(xù)2a生物炭處理的水稻在移栽70d后CO2排放有增幅,且2022年增幅較大,可能是土壤CO2排放通量受土壤溫度和水分的影響[41],本研究中水稻生長后期土壤物理環(huán)境變化較大導(dǎo)致土壤有機(jī)碳礦化分解速率增加。因此,適宜的生物炭配施化肥還通過增大土壤碳氮比調(diào)控土壤微生物活性,增加了土壤微生物碳含量,促進(jìn)土壤固碳[42],抑制礦化作用[43],進(jìn)而減小稻田排放CH4和CO2,降低排放當(dāng)量。而從2a的CH4、CO2排放當(dāng)量及綜合排放當(dāng)量角度看,生物炭配施化肥與單施化肥的差異不穩(wěn)定,仍需后續(xù)進(jìn)行監(jiān)測以探究生物炭對土壤碳源排放的長期效應(yīng)。
3.1.2 生物炭對集約化稻田氮源溫室氣體排放的影響
本研究表明,與單施化肥相比,生物炭可抑制N2O排放,顯著降低累計排放量,減小排放當(dāng)量,與前人研究結(jié)果相似[44]。土壤N2O是土壤氮素硝化和反硝化過程的產(chǎn)物。南方稻區(qū)多為紅壤酸性土壤,不利于硝化菌(適宜pH值為6.6~8.0)繁殖,生物炭可能提高土壤pH值,增加了硝化菌和亞硝態(tài)氮氧化菌豐度,促進(jìn)土壤硝化[45?46]。本研究由于水稻生長初期的需氮量低,造成過量的氮轉(zhuǎn)成氣態(tài)氮,N2O排放集中在移栽40d內(nèi),隨著肥效時長逐漸下降,在曬田時有峰值,隨后迅速回落,生物炭與化肥配施后N2O排放通量整體水平比化肥處理低,一方面可能是生物炭碳氮比較高,使土壤有機(jī)質(zhì)的分解速度減小,對N2O的產(chǎn)生起到抑制作用[47];另一方面,生物炭為硝化、反硝化微生物活動提供P、K、Mg等營養(yǎng)物質(zhì)和反應(yīng)底物刺激微生物活性,提高土壤反硝化細(xì)菌與N2O轉(zhuǎn)成N2過程中氧化亞氮還原酶的活性,且抑制土壤氮循環(huán)酶(如脲酶、蛋白酶)的活性,降低了微生物反硝化速率,從而減少N2O排放[48]。此外生物炭可能利于土壤膠體形成,可吸附更多導(dǎo)致N2O增排的NH+4-N、NO?3-N。本研究與2021年早稻季移栽后70d相比,2022 年收獲前N2O排放出現(xiàn)小高峰,可能是稻田落干,生物炭可改良土壤透氣性和土壤水分狀況,在好氧條件下提高硝化作用速率,導(dǎo)致N2O排放相對增加[49]。
3.1.3 生物炭對集約化稻作產(chǎn)量的影響
本研究發(fā)現(xiàn)生物炭配施化肥比單施化肥增產(chǎn)效果好,這與楊彩迪等[50]的研究結(jié)果相似。稻田生物炭投入2a后,增產(chǎn)效果明顯,與化肥處理(T1)相比,2021年生物炭配施化肥處理(T2)的理論產(chǎn)量、實際產(chǎn)量分別為T1處理的1.02、1.06倍,未見顯著差異;2022年T2的理論產(chǎn)量、實際產(chǎn)量顯著提高,分別是T1的1.33、1.32倍。一方面,作物種植時間越長,農(nóng)田土壤碳源被利用消耗[51],南方早秈稻區(qū)實行冬季休耕(或冬種綠肥)制度,利于降低田間病蟲草害基數(shù),熟化土壤,配施生物炭后能有效優(yōu)化土壤環(huán)境[52],可能刺激土壤微生物活性并加快土壤養(yǎng)分循環(huán)[53],一定程度上利于培肥土壤及地力恢復(fù)。稻田免耕保護(hù)性耕作在南方稻區(qū)已得到較為廣泛應(yīng)用,本研究2a的大田試驗在課題組前期免耕稻田基礎(chǔ)上開展,根據(jù)土壤情況和耕作面積選擇適宜的配施化肥比例還田,將生物炭做基肥一次性充分混施以減少氣體污染和保證肥效,促進(jìn)實現(xiàn)“改土、保水、保肥、壯根”的良好效果。南方早秈稻區(qū)易遭受低溫陰雨引發(fā)爛秧現(xiàn)象導(dǎo)致減產(chǎn),壟作提高了耕作面,研究表明配施生物炭(中等用量)可增加土壤通氣性,提高了田間持水率和凈光合速率[54],利于根系生長與土壤保水控水,促進(jìn)干物質(zhì)積累。另一方面,農(nóng)田配施生物炭能吸附一定的礦質(zhì)營養(yǎng)元素,可促進(jìn)養(yǎng)分利用效率,在土壤環(huán)境作用下生物炭含有的作物生長必需元素得到持續(xù)釋放而被植株吸收利用[55],實現(xiàn)水稻增產(chǎn)和提高氮肥利用率[56]??梢?,生物炭促進(jìn)調(diào)控集約化稻田增產(chǎn),利于構(gòu)建與南方早秈稻種植制度匹配的集約化綠色低碳稻作技術(shù)。
生物炭配施化肥通過改變土壤微環(huán)境及自身吸附作用,對稻田N2O、CH4和CO2排放具有一定的減緩作用,能調(diào)控CO2和N2O的累計排放量,顯著降低 CH4排放當(dāng)量,提升早秈稻生產(chǎn)力,利于優(yōu)化集約化早稻低碳可持續(xù)種植結(jié)構(gòu)。
[1] IPCC.Climate change 2021:the physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change [R].2021.
[2] 秦大河,周波濤.氣候變化與環(huán)境保護(hù)[J].科學(xué)與社會,2014,4(2):19-26.
Qin D H,Zhou B T.Climate change and environmental protection[J].Science and Society,2014,4(2):19-26.(in Chinese)
[3] 唐博文.從國際經(jīng)驗看中國農(nóng)業(yè)溫室氣體減排路徑[J].世界農(nóng)業(yè),2022(3):18-24.
Tang B W.China's agricultural greenhouse gas emission reduction path from international experience[J].World Agriculture,2022(3):18-24.(in Chinese)
[4] Knoblauch C,Maarifat A A,Pfeiffer E M,et al.Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils[J].Soil Biology & Biochemistry,2011,43(9):1768-1778.
[5] 周振.全球化肥形勢出現(xiàn)新變化我國糧食安全有隱憂[J].中國經(jīng)貿(mào)導(dǎo)刊,2021(16):53-55.
Zhou Z.New changes in the global fertilizer situation; China's food security is concerned[J].China Economic & Trade Herald,2021(16):53-55.(in Chinese)
[6] 張俊伶,張江周,申建波,等.土壤健康與農(nóng)業(yè)綠色發(fā)展:機(jī)遇與對策[J].土壤學(xué)報,2020,57(4):783-796.
Zhang J L,Zhang J Z,Shen J B,et al.Soil health and agriculture green development:opportunities and challenges [J].Acta Pedologica Sinica,2020,57(4):783-796.(in Chinese)
[7] 謝邵文,楊芬,馮含笑,等.中國化肥農(nóng)藥施用總體特征及減施效果分析[J].環(huán)境污染與防治,2019,41(4):490-495.
Xie S W,Yang F,Feng H X,et al.General characteristics of the chemical fertilizers and pesticides use and the analysis of use reduction effect in China[J].Environmental Pollution and Control,2019,41(4):490-495.(in Chinese)
[8] Zhang X,Fang Q,Zhang T,et al.Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China:a meta-analysis[J].Global Change Biology,2019,26(2):888-900.
[9] 邱子健,申衛(wèi)收,林先貴.化肥減量增效技術(shù)及其農(nóng)學(xué)、生態(tài)環(huán)境效應(yīng)[J].中國土壤與肥料,2022(4):237-248.
Qiu Z J,Shen W S,Lin X G.Chemical fertilizer reduction technology and its agronomic and ecological environment effects[J].Soils and Fertilizers Sciences in China,2022(4): 237-248.(in Chinese)
[10] 陳松文,劉天奇,曹湊貴,等.水稻生產(chǎn)碳中和現(xiàn)狀及低碳稻作技術(shù)策略[J].華中農(nóng)業(yè)大學(xué)學(xué)報,2021,40(3):3-12.
Chen S W,Liu T Q,Cao C G,et al.Situation of carbon neutrality in rice production and techniques for low-carbon rice farming[J].Journal of Huazhong Agricultural University, 2021,40(3):3-12.(in Chinese)
[11] Devakumar A S,Pardis R,Manjunath V.Carbon footprint of crop cultivation process under semiarid conditions[J].Agric Res,2018(7):167-175.
[12] Lugato E,Leip A,Jones A.Mitigation potential of soil carbon management overestimated by neglecting N2O emissions[J].Nat Clim Change,2018(8):219-223.
[13] 生態(tài)環(huán)境部應(yīng)對氣候變化司.中華人民共和國氣候變化第三次國家信息通報.https://www.mee.gov.cn/ywgz/ydqhbh/ wsqtkz/201907/P020190701762678052438.pdf.
Ministry of Ecology and Environment of the People's Republic of China.The People’s Republic of China Third National Communication on Climate Change (mee.gov.cn). https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701762678052438.pdf.(in Chinese)
[14] 范紫月,宋春玉,齊曉波,等.中國農(nóng)業(yè)系統(tǒng)近40年溫室氣體排放核算[J/OL].生態(tài)學(xué)報,2022,42(23):9470-9482.
Fan Z Y,Song C Y,Qi X B,et al.Greenhouse gas emission accounting of China's agricultural system in recent 40 years[J/OL].Acta Ecologica Sinica,2022,42(23):9470-9482. (in Chinese)
[15] 甄偉,莊鴻源,米松華.中國農(nóng)業(yè)中間投入溫室氣體排放與減排潛力[J].浙江農(nóng)業(yè)學(xué)報,2021,33(11):2185-2194.
Zhen W,Zhuang H Y,Mi S H.Analysis of agricultural intermediate input greenhouse gas emissions and emission reduction potential in China[J].Acta Agriculturae Zhejiangensis, 2021,33(11):2185-2194.(in Chinese)
[16] 謝永浩,劉爭.中國省域種植業(yè)碳匯量、碳排放量的時空分異及公平性研究[J].世界農(nóng)業(yè),2022(2):100-109.
Xie Y H,Liu Z.Study on the temporal and spatial differentiation and equity of carbon sink and carbon emission of China's provincial planting industry[J].World Agriculture,2022(2):100-109.(in Chinese)
[17] 謝祖彬,劉琦.生物質(zhì)炭的固碳減排與合理施用[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2020,39(4):901-907.
Xie Z B,Liu Q.Rational application of biochar to sequester carbon and mitigate soil GHGs emissions:a review[J]. Journal of Agro-Environment Science,2020,39(4):901-907. (in Chinese)
[18] 馬珍,黃凱文,張珍明,等.添加生物炭對土壤磷素有效性影響研究進(jìn)展[J].東北農(nóng)業(yè)大學(xué)學(xué)報,2021,52(8):89-96.
Ma Z,Huang K W,Zhang Z M,et al.Effects of adding biochar on availability of soil phospho-rus:a review[J]. Journal of Northeast A gricultural University,2021,52(8): 89-96.(in Chinese)
[19] Li B,Huang W H,Elsgaard L,et al.Optimal biochar amendment rate reduced the yield-scaled N2O emissions from ultiso is in an intensive vegetable field in South China[J]. Science of the Total Environment,2020,723: 138161.
[20] 楊世梅,何騰兵,楊麗,等.秸稈與生物炭覆蓋對土壤養(yǎng)分及溫室氣體排放的影響[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2022,48(1):75-81.
Yang S M,He T B,Yang L,et al.Effects of straw and biochar mulching on the soil nutrients and greenhouse gas emissions[J].Journal of Hunan Agricultural University (Natural Sciences),2022,48(1):75-81.(in Chinese)
[21] Wu Z,Zhang Q Q,Zhang X,et al.Biochar-enriched soil mitigated N2O and NO emissions similarly as fresh biochar for wheat production[J].Science of the Total Environment, 2020,701:134943.
[22] Wang D,Fonte S J,Parikh S J,et al.Biochar additions can enhance soil structure and the physical stabilization of C in aggregates[J].Geoderma,2017,303:110-117.
[23] 周際海,陳晏敏,袁穎紅,等.秸稈與生物質(zhì)炭施用對土壤溫室氣體排放的影響差異[J].水土保持學(xué)報,2019,33 (4):248-254.
Zhou J H,Chen Y M,Yuan Y H,et al.Effects of biochar and wheat straw returning on soil greenhouse gases emission[J]. Journal of Soil and Water Conservation,2019,33(4):248- 254.(in Chinese)
[24] 屈忠義,高利華,李昌見,等.秸稈生物炭對玉米農(nóng)田溫室氣體排放的影響[J].農(nóng)業(yè)機(jī)械學(xué)報,2016,47(12):111-118.
Qu Z Y,Gao L H,Li C J,et al.Impacts of straw biochar on emission1 of greenhouse gas in maize field [J].Transactions of the Chinese Society for Agricultural Machinery,2016,47 (12):111-118.(in Chinese)
[25] 高悅,張愛平,杜章留,等.優(yōu)化施氮條件下添加生物炭對寧夏灌區(qū)土壤條件和水稻生長的影響[J].中國農(nóng)業(yè)氣象, 2019,40(5):327-336.
Gao Y,Zhang A P,Du Z L,et al.Effects of biochar on soil conditions and rice growth in Ningxia irrigated area under optimized nitrogen application conditions[J].Chinese Journal of Agrometeorology,2019,40(5):327-336.(in Chinese)
[26] Hale S E,Nurida N L,Jubaedah,et al.The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics[J].Science of the Total Environment, 2020,719.
[27] 于衷浦,楊浩鵬,紀(jì)利成,等.化肥減量配施生物炭基肥對玉米產(chǎn)量及土壤溫室氣體排放特征的影響[J].河南農(nóng)業(yè)大學(xué)學(xué)報,2022,56(5):742-749.
Yu Z P,Yang H P,Ji L C,et al.Effects of biochar-based fertilizer addition on maize yield and greenhouse gas emission characteristics[J].Journal of Henan Agricultural University,2022,56(5):742-749.(in Chinese)
[28] Liu Q,Liu B,Zhang Y,et al.Biochar application as a tool to decrease soil nitrogen losses(NH3volatilization,N2O emissions,and N leaching) from croplands:options and mitigation strength in a global perspective[J].Global Change Biology,2019,25(6):2077-2093.
[29] 魏永霞,朱畑豫,劉慧.連年施加生物炭對黑土區(qū)土壤改良與玉米產(chǎn)量的影響[J].農(nóng)業(yè)機(jī)械學(xué)報,2022,53(1):291-301.
Wei Y X,Zhu T Y,Liu H.Effects of successive application of biochar on soil improvement and maize yield of black soil region[J].Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):291-301.(in Chinese)
[30] 吳金水,李勇,童成立,等.亞熱帶水稻土碳循環(huán)的生物地球化學(xué)特點與長期固碳效應(yīng)[J].農(nóng)業(yè)現(xiàn)代化研究,2018, 39(6):895-906.
Wu J S,Li Y,Tong C L,et al.The key geo-biochemical processes of the long-term carbon sequestration and its mechanisms in the subtropical paddy soils[J].Research of Agricultural Modernization,2018,39(6):895-906.(in Chinese)
[31] 胡鈞銘,黃忠華,羅維鋼,等.蕉肥間作下微噴灌對蕉園土壤水氮動態(tài)及香蕉產(chǎn)量的影響[J].廣西植物,2018,38(6): 710-718.
Hu J M,Huang Z H,Luo W G,et al.Effects of micro- sprinkler irrigation on soil water and nitrogen and yield under banana-mung bean intercropping[J].Guihaia,2018,38 (6):710-718.(in Chinese)
[32] 黃太慶,馬煜春,熊正琴,等.不同種植制度對稻田旱作季節(jié)CH4和N2O排放的影響[J].生態(tài)與農(nóng)村環(huán)境學(xué)報,2010, 26(6):519-523.
Huang T Q,Ma Y C,Xiong Z Q,et al.CH4and N2O emissions from paddy field during the upland crop growing season in relation to cropping pattern[J].Journal of Ecology and Rural Environment,2010,26(6):519-523.(in Chinese)
[33] 唐海明,肖小平,湯文光,等.長期施肥對雙季稻田甲烷排放和關(guān)鍵功能微生物的影響[J].生態(tài)學(xué)報,2017,37(22): 7668-7678.
Tang H M,Xiao X P,Tang W G,et al.Effects of long-term fertilizer treatments on CH4fluxes and key functional microorganisms in a double-cropping paddy field[J].Acta Ecologica Sinica,2017,37(22):7668-7678.(in Chinese)
[34] 汪勇,呂茹潔,黎星,等.生物炭與氮肥施用對雙季稻田溫室氣體排放的影響[J].中國稻米,2021,27(1):20-26.
Wang Y,Lv R J,Li X,et al.Effects of biochar and nitrogen incorporation on greenhouse gas emissions in double rice-cropping system[J].China Rice,2021,27(1):20-26.(in Chinese)
[35] 孟夢,呂成文,李玉娥,等.添加生物炭對華南早稻田CH4和N2O排放的影響[J].中國農(nóng)業(yè)氣象,2013,34(4):396-402.
Meng M,Lv C W,Li Y E,et al.Effect of biochar on CH4and N2O emissions from early rice field in south China[J]. Chinese Journal of Agrometeorology,2013,34(4): 396-402. (in Chinese)
[36] 王紫君,王鴻浩,李金秋,等.椰糠生物炭對熱區(qū)雙季稻田N2O和CH4排放的影響[J].環(huán)境科學(xué),2021,42(8):3931-3942.
Wang Z J,Wang H H,Li J Q,et al.Effects of coconut chaff biochar amendment on methane and nitrous oxide emissions from paddy fields in hot areas[J].Environmental Science,2021,42(8):3931-3942.(in Chinese)
[37] Wang Y,Zhang J,Kuang S,et al.Effcts of wheat straw and its biochar application on soil physiochemical properties and organic carbon fractions in flue-eured tobacco field[J]. Joumal of Plant Nutition and Fertitizer,2020,26(2):285- 294.
[38] 廖添懷,李歡,王艷玲.稻稈及稻稈生物炭添加對稻田紅壤有機(jī)碳組分及CH4和CO2累計排放量的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2022,41(7):1598-1609.
Liao T H,Li H,Wang Y L.Effects of addition of rice straw and rice straw biochar on soil organic carbon fractions and cumulative emissions of CH4and CO2in reddish paddy soil[J].Journal of Agro-Environment Science,2022,41(7): 1598-1609.(in Chinese)
[39] 江明華,程建中,李心清,等.生物炭對農(nóng)田土壤CO2排放的影響研究進(jìn)展[J].地球與環(huán)境,2021,49(6):726-736.
Jiang M H,Cheng J Z,Li X Q,et al.The effect of biochar on the farmland soil CO2emission:a review[J].Earth and Environment,2021,49(6):726-736.(in Chinese)
[40] 高尚志,劉日月,竇森,等.不同施量生物炭對土壤團(tuán)聚體及其有機(jī)碳含量的影響[J].吉林農(nóng)業(yè)大學(xué)學(xué)報,2022,44 (4):421-430.
Gao S Z,Liu R Y,Dou S,et al.Effects of different application rates of biochar on soil aggregates and their organic carbon content[J].Journal of Jilin Agricultural University,2022,44(4):421-430.(in Chinese)
[41] 范靖尉,白晉華,任寰宇,等.減氮和施生物炭對華北夏玉米?冬小麥田土壤CO2和N2O排放的影響[J].中國農(nóng)業(yè)氣象,2016,37(2):121-130.
Fan J W,Bai J H,Ren H Y,et al.Effects of reducing nitrogen and biochar application on CO2and N2O emissions from summer maize-winter wheat field in north China[J]. Chinese Journal of Agrometeorology,2016,37(2):121-130. (in Chinese)
[42] 郭琴波,王小利,段建軍,等.氮肥減量配施生物炭對稻田有機(jī)碳礦化及酶活性影響[J].水土保持報,2021,35(5): 369-374.
Guo Q B,Wang X L,Duan J J,et al.Effects of nitrogen reduction combined with biochar application on organic carbon mineralization and enzyme activity in paddy field [J].Journal of Soil and Water Conservation,2021,35(5): 369-374.(in Chinese)
[43] 馬雯琪,蔣靖佰倫,李典鵬,等.施用生物質(zhì)炭5年后夏玉米土壤呼吸研究[J].農(nóng)業(yè)資源與環(huán)境學(xué)報,2021,38(1):111- 118.
Ma W Q,Jiang J B L,Li D P,et al.Effect of biochar application on soil respiration in a summer maize crop after five years[J].Journal of Agricultural Resources and Environment, 2021,38(1):111-118.(in Chinese)
[44] 宋敏,齊鵬,蔡立群,等.不同生物質(zhì)炭輸入水平下黃綿土N2O 日排放特性[J].干旱地區(qū)農(nóng)業(yè)研究,2017,35(4):137- 144.
Song M,Qi P,Cai L Q,et al.Diurnal variations of gases emission in loessial soil under biochar application[J]. Agricultural Research in the Arid Areas,2017,35(4): 137-144.(in Chinese)
[45] Teutscherova N,Vazquez E,Masaguer A,et al.Comparson of lime and biochar-mediated pH changes in nitrification and ammonia oxidizers in degraded acid soil[J].Biology and Fertility of Soils,2017,53(7):811-821.
[46] Luo X,Wang A,Hou C,et al.The limited effects of carbona-ceous material amendments on nitrite-oxidizing bacteria in an Alfisol[J].Science of the Total Environment, 2020,734:139398.
[47] 謝立勇,許婧,郭李萍,等.生物炭對棕壤玉米田CO2與N2O排放的影響[J].中國農(nóng)業(yè)氣象,2018,39(8):493-501.
Xie L Y,Xu J,Guo L P,et al.Impacts of biochar application on CO2and N2O emissions from brown soil with maize[J].Chinese Journal of Agrometeorology,2018,39(8): 493-501.(in Chinese)
[48] 趙光昕,張晴雯,劉杏認(rèn),等.農(nóng)田土壤硝化反硝化作用及其對生物炭添加響應(yīng)的研究進(jìn)展[J].中國農(nóng)業(yè)氣象,2018, 39(7):442-452.
Zhao G X,Zhang Q W,Liu X R,et al.Nitrification and denitrification and its response to biochar addition in agricultural soil:a review[J].Chinese Journal of Agrometeorology, 2018,39(7):442-452.(in Chinese)
[49] 宋開付,于海洋,張廣斌,等.川中丘陵區(qū)覆膜再生稻田N2O 排放規(guī)律研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2019,38(6): 1381-1387.
Song K F,Yu H Y,Zhang G B,et al.N2O emissions from ratoon paddy fields covered with plastic film mulchi-ng in the hilly area of central Sichuan,China[J].Journal of Agro- Environment Science,2019,38(6):1381-1387.(in Chinese)
[50] 楊彩迪,宗玉統(tǒng),盧升高,等.不同生物炭對酸性農(nóng)田土壤性質(zhì)和作物產(chǎn)量的動態(tài)影響[J].環(huán)境科學(xué),2020,41(4): 1914-1920.
Yang C D,Zong Y T,Lu S G,et al.Dynamic effects of different biochars on soil properties and crop yield of acid farmland[J].Environmental Science,2020,41(4):1914-1920. (in Chinese)
[51] Pan F,Li Y Y,Chapman S J,et al.Effect of rice straw application on microbial community and activity in paddy soil under different water status[J].Environmental Science and Pollution Research,2016,23(6):5941-5948.
[52] 秦玲玲.關(guān)于土地休耕與生態(tài)補(bǔ)償?shù)奈墨I(xiàn)綜述[J].農(nóng)業(yè)經(jīng)濟(jì),2020(2):88-90.
Qin L L.Literature review on land fallow and ecological compensation[J].Agricultural Economy,2020(2):88-90.(in Chinese)
[53] 宋大利,習(xí)向銀,黃紹敏,等.秸稈生物炭配施氮肥對潮土土壤碳氮含量及作物產(chǎn)量的影響[J].植物營養(yǎng)與肥料學(xué)報,2017,23(2):369-379.
Song D L,Xi X Y,Huang S M,et al.Effects of combined application of straw biochar and nitrogen on soil carbon and nitrogen contents and crop yields in a fluvoaquic soil[J].Plant Nutrition and Fertilizer Science,2017,23(2): 369-379.(in Chinese)
[54] 劉慧敏,張圣也,郭懷剛,等.生物炭對谷子幼苗生長及光合特性的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2020,38(1):86-91.
Liu H M,Zhang S Y,Guo H G,et al.Effects of biochar supplement in soil on growth and photosynthetic characteristics of millet seedlings[J].Agricultural Research in the Arid Areas,2020,38(1):86-91.(in Chinese)
[55] 吳震,董玉兵,熊正琴.生物炭施用3年后對稻麥輪作系統(tǒng)CH4和N2O綜合溫室效應(yīng)的影響[J].應(yīng)用生態(tài)學(xué)報,2018, 29(1):141-148.
Wu Z,Dong Y B,Xiong Z Q.Effects of biochar application three-years ago on global warming potentials of CH4and N2O in a rice-wheat rotation system[J].Chinese Journal of Applied Ecology,2018,29(1):141-148.(in Chinese)
[56] 向偉,王雷,劉天奇,等.生物炭與無機(jī)氮配施對稻田溫室氣體排放及氮肥利用率的影響[J].中國農(nóng)業(yè)科學(xué),2020, 53(22):4634-4645.
Xiang W,Wang L,Liu T Q,et al.Effects of Biochar plus inorganic nitrogen on the greenhouse gas and nitrogen use efficiency from rice fields[J].Scientia Agricultura Sinica, 2020,53(22):4634-4645.(in Chinese)
Effect of Isonitrogen Substitution for Biochar Application on Greenhouse Gas Emissions from Southern No-till Early Rice Fields
LI Shi1,2, ZHANG Jun-hui1, HU Jun-ming1, ZHOU Feng-jue2, LI Ting-ting1, XU Mei-hua1,2, MA Jie-ping1,2,LU Zhan-cai1,2
(1.Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciencess/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, China;2.Agricultural College, Guangxi University, Nanning 530004)
Biochar has been recognized as a new exogenous organic substrate and is often used as an important organic resource for carbon reduction because of its stability, adsorption and carbon nutrient richness. The study was conducted in a typical indica rice area of Nanning from 2021 to 2022, against the background of having high early indica rice yields, simultaneous rain and heat, and unique cropping system. In this paper, authors set three treatments: Control treatment (CK): no fertilizer. Inorganic N input (T1, chemical fertilizer) treatment: chemical fertilizer application at conventional fertilizer level, compound fertilizer 800kg·ha?1, urea 260.87kg·ha?1, potassium 193.55kg·ha?1. Inorganic N with organic N (T2, biochar + chemical fertilizer) treatment: biochar 4000kg·ha?1, compound fertilizer 738.67kg·ha?1, urea 146.09kg·ha?1, potassium 34.19kg·ha?1. The cumulative greenhouse gas emissions, emission equivalents, rice yield traits and the effect of isonitrogen substitution of biochar application on greenhouse gas emissions and rice yield in early southern rice fields were analyzed by regular monitoring of soil greenhouse gas emissions in rice fields during the rice reproductive period using a split static box-meteorological chromatography method 5d after rice transplanting, this study provide a basis for optimizing intensive early rice low-carbon cultivation and reduce fertilizer and increase efficiency. The results showed that: (1) biochar can reduce CH4and CO2emissions from paddy soils, and reduce the combined emission equivalent by slowing down CH4emissions. The application of fertilizer with biochar can mitigate the increase of greenhouse gas carbon emissions caused by fertilizer application alone, and its delayed effect of mitigating CO2emissions is more obvious. In biochar treatment (T2), compared with the chemical fertilizer treatment (T1), the maximum CH4emission flux in 2021 was reduced by 41.38% and the cumulative emission was reduced by 31.25%, and the maximum emission flux in 2022 was reduced by 50.50% and the cumulative emission was significantly reduced by 50%, and the combined emission equivalents of 2 years were significantly lower than those of the T1 treatment. The maximum CO2emission flux and cumulative emission in 2021 were reduced by 57.38% and 37.68%, respectively, compared with the T1 treatment, and the corresponding reduction in 2022 was 16.06% and 35.52% compared to the T1 treatment. (2) Biochar can suppress N2O emissions, significantly reduce cumulative emissions, and reduce nitrogen source emission equivalents. Compared to the T1 treatment, the maximum N2O emission flux was reduced by 5.43% and the cumulative emission was significantly reduced by 33.53% in 2021 in T2 treatment; the maximum emission flux was reduced by 73.75% and the cumulative emission was significantly reduced by 54.33% in 2022, and there was no significant change with the CK treatment. (3) Biochar facilitates the optimization of intensive early indica rice cultivation structure and enhances the productivity of early indica rice. After biochar was put into the paddy field for 2 years, the effect of increasing yield became more and more obvious, and the theoretical yield of T2 treatment was 1.02?1.33 times that of T1 treatment, while the actual yield was 1.06?1.32 times that of T1 treatment. Fertilizer with biochar reduced greenhouse gas emissions and increased rice yield in early indica rice fields, which can be used as an optimization model for low-carbon production of intensive early indica rice in the south.
Greenhouse gas; Biochar; Low carbon optimization; Intensive rice field; Early indica rice
10.3969/j.issn.1000-6362.2023.10.001
收稿日期:2022?11?19
國家自然科學(xué)基金項目(41661074);廣西“新世紀(jì)十百千人才工程”專項資金(2018221);廣西科技基地和人才專項(2022AC18008);廣西農(nóng)業(yè)科學(xué)院創(chuàng)新團(tuán)隊項目(桂農(nóng)科2021YT040)
通訊作者:胡鈞銘,研究員,主要從事農(nóng)業(yè)有機(jī)資源利用與生境調(diào)控及逆境生態(tài)研究,E-mail:jmhu06@126.com
李詩,E-mail:2012038808@qq.com;張俊輝,E-mail:281113990@qq.com
李詩,張俊輝,胡鈞銘,等.等氮替代施入生物炭對南方免耕早稻田溫室氣體排放的影響[J].中國農(nóng)業(yè)氣象,2023,44(10):863-875