国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

倒春寒逆境下葉面噴施磷酸二氫鉀對(duì)小麥穂粒結(jié)實(shí)的影響*

2023-10-20 06:13代雯慈王捧娜黃謹(jǐn)衛(wèi)蔡洪梅鄭寶強(qiáng)李金才
中國(guó)農(nóng)業(yè)氣象 2023年10期
關(guān)鍵詞:小穗結(jié)實(shí)粒數(shù)

代雯慈,王捧娜,翁 穎,黃謹(jǐn)衛(wèi),于 敏,吳 宇,蔡洪梅,鄭寶強(qiáng),李金才,2**,陳 翔**

倒春寒逆境下葉面噴施磷酸二氫鉀對(duì)小麥穂粒結(jié)實(shí)的影響*

代雯慈1,王捧娜1,翁 穎1,黃謹(jǐn)衛(wèi)1,于 敏1,吳 宇1,蔡洪梅1,鄭寶強(qiáng)1,李金才1,2**,陳 翔1**

(1.安徽農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/農(nóng)業(yè)部華東地區(qū)作物栽培科學(xué)觀測(cè)站,合肥 230036;2.江蘇省現(xiàn)代作物生產(chǎn)協(xié)同創(chuàng)新中心,南京 210095)

以抗倒春寒性強(qiáng)的小麥品種煙農(nóng)19(YN19)和抗倒春寒性弱的品種新麥26(XM26)為材料,在2022年3月17?23日(小麥孕穗期)大田倒春寒逆境發(fā)生后葉面噴施0.2%的磷酸二氫鉀(Potassium dihydrogen phosphate,PDP,KH2PO4)溶液,比較分析倒春寒逆境下噴施PDP后小麥結(jié)實(shí)粒數(shù)和粒重在不同小穂位和粒位的分布特征,以探究其對(duì)小麥穂粒結(jié)實(shí)的影響。結(jié)果表明:(1)與CK處理相比,倒春寒逆境下噴施PDP可增加兩小麥品種穗部結(jié)實(shí)粒數(shù),其中品種XM26中部和下部小穗位結(jié)實(shí)總粒數(shù)分別顯著增加8.33%和33.33%,對(duì)上部小穗位結(jié)實(shí)總粒數(shù)影響不顯著,第1、2、3和4粒位(G1、G2、G3和G4)結(jié)實(shí)總粒數(shù)分別增加8.11%、3.13%、4.35%和60.00%;品種YN19下部小穗位結(jié)實(shí)總粒數(shù)顯著增加23.08%,對(duì)上部和中部小穗位結(jié)實(shí)總粒數(shù)影響不顯著,G1、G2和G3位結(jié)實(shí)總粒數(shù)分別增加2.70%、0和13.33%。(2)與CK處理相比,倒春寒逆境下噴施PDP可提高兩小麥品種籽粒粒重,其中品種XM26中部和下部小穗位總粒重分別顯著提升18.46%和46.16%,對(duì)上部小穗位總粒重影響不顯著,G1、G2、G3和G4位總粒重分別提升16.71%、11.13%、18.71%和108.35%;品種YN19上部和下部小穗位總粒重分別顯著提升21.70%和33.63%,對(duì)中部小穗位總粒重影響不顯著,G1、G2和G3位總粒重分別提升15.97%、13.12%和17.55%。(3)倒春寒逆境下葉面噴施PDP對(duì)抗倒春寒性弱的品種XM26主要通過增加其穗部結(jié)實(shí)粒數(shù)來緩解倒春寒導(dǎo)致的產(chǎn)量損失;對(duì)抗倒春寒性強(qiáng)的品種YN19則主要通過提高粒重來降低產(chǎn)量損失。綜上所述,倒春寒逆境下噴施PDP可通過提高小麥下部小穗位和各小穗位的弱勢(shì)粒位結(jié)實(shí)粒數(shù)和粒重來減輕產(chǎn)量損失。

倒春寒;小麥;磷酸二氫鉀;穗粒位;結(jié)實(shí)特性

小麥(L.)是世界三大糧食作物之一,全球超過60%的人口以小麥為主食[1]。Gu等[2]研究指出,未來全球人口持續(xù)增長(zhǎng),預(yù)計(jì)到2050年將達(dá)到97億。隨著全球人口和人均消費(fèi)量的增加,預(yù)計(jì)2010?2050年人類對(duì)口糧的需求量將增長(zhǎng)35%~56%[3]。同時(shí)以全球氣候變暖為主要特征的氣候變化加劇了對(duì)大氣環(huán)流的影響,導(dǎo)致極端低溫氣候?yàn)?zāi)害事件頻發(fā)重發(fā),已成為影響小麥生長(zhǎng)發(fā)育和產(chǎn)量品質(zhì)形成的主要農(nóng)業(yè)氣象災(zāi)害之一[4]。黃淮麥區(qū)是中國(guó)最大的小麥主產(chǎn)區(qū),近10a該地區(qū)小麥倒春寒災(zāi)害的年際發(fā)生頻率達(dá)到了40%,輕中度倒春寒災(zāi)害年份可造成小麥減產(chǎn)10%~30%,重度災(zāi)害年份小麥減產(chǎn)幅度可達(dá)50%以上,且籽粒品質(zhì)劣化[5?6]。倒春寒已成為限制黃淮麥區(qū)小麥高產(chǎn)高質(zhì)高效發(fā)展的重要因素,提高小麥生產(chǎn)的防災(zāi)減災(zāi)能力已成為當(dāng)前生產(chǎn)中亟待解決的問題。

應(yīng)用外源物質(zhì)緩解低溫逆境對(duì)小麥生長(zhǎng)發(fā)育造成的傷害已成為國(guó)內(nèi)外小麥生產(chǎn)防災(zāi)減災(zāi)領(lǐng)域的研究熱點(diǎn)之一[7?8]。作為一種綠色無毒、高效的水溶性速效磷鉀復(fù)合肥,磷酸二氫鉀(Potassium dihydrogen phosphate, PDP,KH2PO4)因具有提高小麥抗寒、抗干熱風(fēng)和防倒伏等抗逆能力,而廣泛應(yīng)用于小麥生產(chǎn)中[9?11]。Lv等[9]研究表明,葉面噴施PDP可通過改變小麥花后籽粒的激素含量與比例變化進(jìn)而增加籽粒庫(kù)容、灌漿速率和粒重。唐秀巧等[10]研究表明灌漿期高溫脅迫前對(duì)小麥進(jìn)行PDP葉面噴施可提高根系活性氧清除能力,延緩根系衰老并使旗葉維持較高的光合能力,提高成熟期小麥干物質(zhì)的積累,從而減輕高溫脅迫對(duì)小麥產(chǎn)量造成的損失。蘇慧等[11]研究報(bào)道小麥倒春寒災(zāi)害發(fā)生前葉面噴施PDP可增強(qiáng)旗葉的ROS清除能力來維持細(xì)胞結(jié)構(gòu)的完整性,穗部結(jié)實(shí)率可提高8%~17%。

前人在施用PDP對(duì)提高小麥抗逆能力進(jìn)而提升產(chǎn)量品質(zhì)等方面做了大量研究[9?12],卻鮮有研究報(bào)道PDP對(duì)倒春寒逆境下小麥穗部發(fā)育狀況的影響,尤其是對(duì)不同穂粒位結(jié)實(shí)粒數(shù)和粒重的定量分析尚未見報(bào)道。小麥穗部不同穗位和粒位的籽粒發(fā)育由于受到遺傳因素、營(yíng)養(yǎng)供應(yīng)和外界因素的影響,不同穗粒位籽粒發(fā)育存在時(shí)空差異,導(dǎo)致其結(jié)實(shí)粒數(shù)和粒重存在很大差異[13?14]。因此,本研究以抗倒春寒性強(qiáng)的小麥品種煙農(nóng)19和抗倒春寒性弱的新麥26為材料,探究大田倒春寒逆境下葉面噴施PDP對(duì)小麥不同穂位與粒位結(jié)實(shí)粒數(shù)和粒重的影響,探明倒春寒逆境下外源噴施PDP對(duì)小麥穗部籽粒發(fā)育的影響效應(yīng),以期為小麥倒春寒災(zāi)害的災(zāi)損評(píng)估和抗逆栽培調(diào)控技術(shù)的研發(fā)提供理論依據(jù)。

1 材料與方法

1.1 供試材料

在前期研究基礎(chǔ)上[15],采用抗倒春寒性強(qiáng)的小麥品種煙農(nóng)19(YN19)和抗倒春寒性弱的小麥品種新麥26(XM26)為供試材料。試驗(yàn)于2021年11月4日?2022年5月26日在安徽農(nóng)業(yè)大學(xué)農(nóng)萃園基地(31°52′N,117°16′E,海拔21.3m)進(jìn)行,試驗(yàn)地土壤為黃棕壤土,0?20cm土層pH值6.5,有機(jī)質(zhì)含量10.6mg·kg?1,全氮含量1.13g·kg?1,速效氮含量33.1mg·kg?1,速效鉀含量76.2mg·kg?1。

1.2 試驗(yàn)設(shè)計(jì)

采用大田盆栽土培試驗(yàn),盆栽土取自農(nóng)萃園0?20cm耕層土壤。盆栽桶為PVC材質(zhì),高35cm,直徑26cm,5個(gè)排水孔。每桶裝土8kg,每盆施氮磷鉀復(fù)混肥4.32g(N:P:K=15:15:15),小麥播種日期為2021年11月4日,土壤經(jīng)水沉實(shí)后播種,每盆均勻播種18粒小麥,播種深度為3cm,將盆栽桶埋入大田后,盆內(nèi)土壤與盆外大田保持齊平,于三葉期(2021年11月21日)每盆定苗9株。2022年3月17?22日(小麥孕穗期)遭遇大田倒春寒逆境,且3月17日和22日夜間最低溫度均達(dá)到3℃(https:// www.tianqi.com/shushanqu/)(圖1)。根據(jù)“倒春寒氣象指標(biāo)”國(guó)家標(biāo)準(zhǔn)(GB/T 34816?2017)[16],將這種前期暖后期冷且后期氣溫明顯低于正常年份氣溫的現(xiàn)象定義為倒春寒。試驗(yàn)設(shè)置2個(gè)處理,即噴施PDP(0.2%磷酸二氫鉀溶液,KH2PO4)和CK(噴等量蒸餾水,H2O)。倒春寒災(zāi)害發(fā)生后的次日(2022年3月23日10:00),兩小麥品種各處理選擇8盆長(zhǎng)勢(shì)基本一致的盆栽進(jìn)行噴施處理,每盆噴施200mL處理溶液,溶液噴施時(shí)以小麥葉面表層形成一層水霧但不下滴為準(zhǔn)。同時(shí)為防止不同處理間溶液混雜,噴施處理時(shí)不同處理盆栽桶用塑料布隔開。大田盆栽桶周圍種植相同品種的小麥,其它管理措施按一般大田小麥高產(chǎn)栽培措施進(jìn)行。

圖1 試驗(yàn)地2022年3月16?24日氣溫變化過程

1.3 項(xiàng)目測(cè)定

于成熟期(2022年5月26日)選取不同處理?xiàng)l件下長(zhǎng)勢(shì)基本一致的小麥植株各3盆,自然晾曬2周。每株挑出主莖穗,根據(jù)小穗在穂軸上著生次序,對(duì)小穗自基部向頂部編號(hào),參考張艷敏等[17]方法,將麥穗劃分為下、中、上3個(gè)部位,其中麥穗下部6個(gè)小穗為下部穗位、上部6個(gè)小穗為上部穗位,其余為中部穗位,將第1、第2、第3和第4粒位分別標(biāo)記為G1、G2、G3和G4[18](圖2)。利用萬(wàn)分之一電子天平(EX224ZH)分別稱量各小穗不同粒位的籽粒干物重。

1.4 數(shù)據(jù)分析

采用Microsoft Excel 2016進(jìn)行數(shù)據(jù)整理,SPSS 22.0進(jìn)行獨(dú)立樣本T檢驗(yàn)分析(P<0.05),圖表數(shù)據(jù)均為平均值±標(biāo)準(zhǔn)誤差。

2 結(jié)果與分析

2.1 倒春寒逆境下噴施PDP對(duì)小穂結(jié)實(shí)分布的影響

由圖3可見,不同噴施處理?xiàng)l件下,兩小麥品種穂部結(jié)實(shí)粒數(shù)均隨小穗位自下部至頂部呈現(xiàn)先增后降的單峰曲線變化趨勢(shì)。上部和下部小穗位的結(jié)實(shí)粒數(shù)平均在0~3粒,中部在3~4粒。與CK處理相比,倒春寒逆境下噴施PDP處理,抗倒春寒性弱的品種XM26穗部結(jié)實(shí)總粒數(shù)顯著增加8.25%,抗倒春寒性強(qiáng)的品種YN19穗部結(jié)實(shí)總粒數(shù)增加3.61%。其中,品種XM26第3、4和13小穗位結(jié)實(shí)粒數(shù)分別顯著增加100%、100%和33.33%,品種YN19第6小穂位結(jié)實(shí)粒數(shù)顯著增加50%。由此可見,倒春寒逆境條件噴施PDP能增加兩小麥品種的結(jié)實(shí)粒數(shù),且抗倒春寒性弱的品種XM26結(jié)實(shí)粒數(shù)增加幅度大于抗倒春寒性強(qiáng)的品種YN19,其中品種XM26第3、4小穗位和品種YN19第6小穂位結(jié)實(shí)粒數(shù)增幅最顯著。

2.2 倒春寒逆境下噴施PDP對(duì)粒位結(jié)實(shí)分布的影響

由圖4可見,倒春寒逆境下兩小麥品種PDP處理和CK處理的各小穗位不同粒位結(jié)實(shí)粒數(shù)均表現(xiàn)為G1位結(jié)實(shí)粒數(shù)最多,即G1>G2>G3>G4。與CK相比,倒春寒逆境下PDP處理的G1位平均結(jié)實(shí)粒數(shù)達(dá)到1的小穗數(shù)顯著多于CK。此外,品種XM26的G1、G2、G3和G4位結(jié)實(shí)總粒數(shù)分別增加8.11%、3.13%、4.35%和60.00%,品種YN19的G1、G2和G3位結(jié)實(shí)總粒數(shù)分別增加2.70%、0和13.33%??梢?,倒春寒逆境下噴施PDP,小麥弱勢(shì)粒位(G3、G4)結(jié)實(shí)總粒數(shù)的增幅大于強(qiáng)勢(shì)粒位(G1、G2),其中以抗倒春寒性弱的品種XM26的G4位和抗倒春寒性強(qiáng)的品種YN19的G3位結(jié)實(shí)總粒數(shù)增幅最大。

2.3 倒春寒逆境下噴施PDP對(duì)不同部位小穗上粒位結(jié)實(shí)總粒數(shù)的影響

將小麥穗分上、中、下三個(gè)部分,分別統(tǒng)計(jì)每個(gè)部位的小穗位結(jié)實(shí)總粒數(shù)(表1)。倒春寒逆境下,兩小麥品種各處理不同穗粒位結(jié)實(shí)總粒數(shù)均表現(xiàn)為中部穗位>上部穗位>下部穗位。與CK相比,倒春寒逆境下噴施PDP,品種XM26中部和下部小穗位結(jié)實(shí)總粒數(shù)分別顯著增加8.33%和33.33%,上部小穗位結(jié)實(shí)總粒數(shù)差異不顯著,品種YN19下部小穗位結(jié)實(shí)總粒數(shù)顯著增加23.08%,上部和中部小穗位結(jié)實(shí)總粒數(shù)差異不顯著。比較各處理各部位小穗不同粒位結(jié)實(shí)總粒數(shù)發(fā)現(xiàn),品種XM26中部小穗位G3、G4位和下部小穗位的G1位分別顯著增加15.79%、60.00%和100.00%,品種YN19下部小穗位G3位結(jié)實(shí)總粒數(shù)顯著增加100%(P<0.05)。綜上所述,倒春寒逆境下噴施PDP,兩小麥品種下部小穂位結(jié)實(shí)總粒數(shù)增幅大于中部和上部小穂位,其中以品種XM26的下部小穗G1位和品種YN19的下部小穗G3位增幅最顯著。

圖3 不同噴施處理兩品種各小穂位結(jié)實(shí)粒數(shù)比較

注:CK和PDP分別為大田倒春寒發(fā)生后(2022?03?23)噴施蒸餾水(H2O)和PDP(KH2PO4)處理。品種新麥26(XM26)穗部著生24個(gè)小穗,品種煙農(nóng)19(YN19)穗部著生22個(gè)小穗。短線表示標(biāo)準(zhǔn)誤,*表示處理間在0.05水平上的差異顯著性。下同。

Note: CK and PDP are treated with spraying H2O and KH2PO4(PDP) underlate spring coldness (2022.03.23). The spikelets are numbered from base to top in accordance with the sequence on spikelet axis. There are twenty-four spikelets on the Xinmai26(XM26) spike, and twenty-two spikelets on the Yannong19(YN19) spike. Short line represents standard error.*indicates the difference significance among treatments at 0.05 level. The same as below.

圖4 不同噴施處理兩品種各小穂不同粒位的結(jié)實(shí)粒數(shù)比較

注:G1、G2、G3和G4分別表示小穗第1、2、3和4粒位籽粒。下同。

Note: G1, G2, G3and G4 represent grains at the 1st, 2nd, 3rdand 4thgrain positions of spikelet, respectively. The same as below.

表1 不同噴施處理下不同部位小穗上穗粒位結(jié)實(shí)總粒數(shù)的比較

注:表中數(shù)據(jù)均為平均值±標(biāo)準(zhǔn)誤差。小寫字母表示處理間在0.05水平上的差異顯著性。麥穗下部6個(gè)小穗為下部穗位,上部6個(gè)小穗為上部穗位,其余為中部穗位。下同。

Note: Data are mean±standard error. Lowercase indicates the difference significance among treatments at 0.05 level.The lower 6 spikelets of the wheat ear are the lower spikelets, the upper 6 spikelets are the upper spikelets, and the rest are the middle spikelets .The same as below.

2.4 倒春寒逆境下噴施PDP對(duì)小穂位上粒重分布的影響

由圖5可見,倒春寒逆境下兩小麥品種不同處理小穗位粒重均隨小穗位置的升高(基部至頂部)呈二次曲線的變化趨勢(shì)。不同處理小穗位粒重隨小穗位變化方程的擬合系數(shù)R2均在0.82以上(表2),說明建立的二次曲線方程能較好地反映小穗位粒重的變化情況。擬合方程的拐點(diǎn)表示小穗位最大粒重出現(xiàn)的位置,兩小麥品種不同處理小穗位粒重最大值均出現(xiàn)在中部第11?12小穗位。

與CK相比,倒春寒逆境下噴施PDP兩小麥品種小穗位粒重提高的幅度存在差異。品種XM26和YN19穗部總粒重較CK分別顯著增加18.07%和 15.16%,小穗位最大粒重分別增加 16.73%和10.46%。與CK相比,倒春寒逆境下噴施PDP品種XM26第4、7?8和17小穗位粒重較CK顯著提高10.56%~106.61%,其中第4小穂位粒重提升幅度最大;品種YN19第3、5?6、9?10、16?19小穗位粒重顯著提高12.68%~53.27%,其中第6小穂位粒重提升幅度最大。由此可見,倒春寒逆境下噴施PDP可顯著提高兩小麥品種的穗部總粒重,但提升幅度因品種和小穗位置而存在差異,抗倒春寒性弱的品種XM26穗部總粒重增幅大于抗倒春寒性強(qiáng)的品種YN19,其中品種XM26第4小穂位和品種YN19第6小穂位粒重增幅最為顯著。

圖5 不同噴施處理兩品種小穂粒重隨小穂位的變化及比較

表2 不同處理小穗粒重(y)隨小穂位(x)分布的擬合方程

注:小穗編號(hào)表示最大籽粒干物重出現(xiàn)的小穗位。下同。

Note: The code of spikelet indicates the spikelet position where the maximum dry weight of spikelet grain is located. The same as below.

2.5 倒春寒逆境下噴施PDP對(duì)穗粒位上粒重分布的影響

由圖6可見,倒春寒逆境下噴施PDP兩小麥品種各處理同一粒位粒重較CK處理均提高(除XM26第4、18?19、21、23小穗位G1,第16小穗位G3和YN19第7、11?14小穗位G3外),且各粒位籽粒干重均隨小穗位自基部至頂部呈二次曲線的變化趨勢(shì),這與小麥不同小穗位的粒重變化趨勢(shì)相同。進(jìn)一步通過二次方程擬合小麥不同穗位的粒位粒重變化發(fā)現(xiàn)(表3),其擬合方程R2均達(dá)到0.74以上,說明建立的二次曲線方程能較好地反映粒位粒重隨小穗位的變化情況。比較各處理不同粒位粒重發(fā)現(xiàn),倒春寒逆境下品種XM26各處理穗粒位最大粒重出現(xiàn)在中部第10?12小穗位,品種YN19各處理穗粒位最大粒重出現(xiàn)在中部第9?10小穗位。

倒春寒逆境下兩小麥品種PDP處理和對(duì)照處理的小穂位各粒位粒重均表現(xiàn)為G1位總粒重最大,即G1>G2>G3>G4。與CK相比,倒春寒逆境下噴施PDP品種XM26的G1、G2、G3和G4位總粒重分別提升16.71%、11.13%、18.71%和108.35%,品種YN19的G1、G2和G3位總粒重分別提升15.97%、13.12%和17.55%。其中,品種XM26 PDP處理的第5?10、14?16、22小穗位G1、第5?6、8?9、12?13、20小穗位G2、第5?11、13小穗位G3和第10?11小穗位G4的粒位粒重較CK分別顯著提升7.82%~19.14%、3.95%~16.88%、8.75%~27.34%和23.51%~50.35%(P<0.05),且對(duì)第22小穗位G1、第20小穗位G2、第5小穗位G3、第10小穗位G4提升幅度最大。品種YN19的PDP處理較CK則表現(xiàn)為第3、5?11、13?14、16?19小穗位G1、第4?5、8?10、15?19小穗位G2和第10小穗位G3的粒位粒重分別顯著提升7.20%~22.33%、10.76%~27.75%和11.56%(P<0.05),其中第19小穗位G1、第4小穗位G2和第10小穗位G3提升幅度最大。由此可見,倒春寒逆境下噴施PDP對(duì)小穗位粒位粒重提升幅度因小麥品種的抗倒春寒性和穗粒位的不同而有所差異,弱勢(shì)粒位(G3、G4)總粒重提升幅度大于強(qiáng)勢(shì)粒位(G1、G2),表現(xiàn)為抗倒春寒性弱的品種XM26的G4位和抗倒春寒性強(qiáng)的品種YN19的G3位總粒重提升幅度最大,其中以品種XM26第10小穗位G4和品種YN19第10小穗位G3粒重提升幅度最為顯著。

2.6 倒春寒逆境下噴施PDP對(duì)不同部位穗粒位總粒重的影響

將小麥穗分上、中、下三個(gè)部分,分別統(tǒng)計(jì)每個(gè)部位的小穗粒位總粒重(表4)。倒春寒逆境下,兩小麥品種各處理不同穗粒位總粒重均表現(xiàn)出中部穗位>下部穗位>上部穂位。與CK相比,倒春寒逆境下噴施PDP,品種XM26的中部和下部穗位總粒重分別顯著增加18.46%和46.16%,上部小穗位總粒重差異不顯著,品種YN19上部和下部穗位總粒重分別顯著增加21.70%和33.63%,中部小穗位總粒重差異不顯著。其中,倒春寒逆境下噴施PDP對(duì)品種XM26中部穗位G4位和品種YN19上部穗位G1總粒重影響最大,分別較CK顯著提升108.35%和26.02%(P<0.05)。綜上,倒春寒逆境下噴施PDP,兩小麥品種下部小穂位總粒重增幅均大于中部和上部小穂位,其中以品種XM26下部小穗位G1和品種YN19下部小穗位G2總粒重增加幅度最為顯著。

圖6 不同噴施處理兩品種穂粒位上粒重隨小穂位的變化及比較

注:品種XM26穗部著生24個(gè)小穗,小穗編號(hào)為3?23的小穗含有第1粒位籽粒,小穗編號(hào)為4?21的小穗含有第2粒位籽粒,小穗編號(hào)為5?17的小穗含有第3粒位籽粒,小穗編號(hào)為9?13的小穗含有第4粒位籽粒。品種YN19穗部著生22個(gè)小穗,小穗編號(hào)為3?21的小穗含有第1粒位籽粒,小穗編號(hào)為4?19的小穗含有第2粒位籽粒,小穗編號(hào)為5?14的小穗含有第3粒位籽粒。

Note: There are twenty-four spikelets on the XM26 spike. The spikelets numbered 3?23 contain the first grains. The spikelets numbered 4?21 contain the second grains. The spikelets numbered 5?17 contain the third grains. The spikelets numbered 9?13 contain the fourth grains. There are twenty-two spikelets on the YN19 spike,. The spikelets numbered 3?21 contain the first grains. The spikelets numbered 4?19 contain the second grains. The spikelets numbered 5?14 contain the third grains.

表3 不同處理小麥粒位籽粒干重(y)隨小穗位(x)變化的擬合方程

表4 不同處理不同部位穗粒位總粒干重的比較(mg)

3 結(jié)論與討論

3.1 討論

小麥不同穗粒位籽粒發(fā)育由于受到遺傳因素、營(yíng)養(yǎng)供應(yīng)和外界因素的影響存在時(shí)空差異性,穗器官早期分化及營(yíng)養(yǎng)物質(zhì)分配不均衡導(dǎo)致其維管束分化存在較大差異,因此不同穗位、粒位間籽粒結(jié)實(shí)與物質(zhì)積累空間分布呈不均勻[19?20]。前人研究指出[21]小麥中部小穗的小穗軸維管束系統(tǒng)最發(fā)達(dá),且從中部小穗沿穗軸到基部和頂部小穗呈遞減的趨勢(shì),因此中部小穗位結(jié)實(shí)粒數(shù)多、粒重大,上部和下部小穗位次之,表現(xiàn)出籽粒發(fā)育的近中優(yōu)勢(shì)。本研究結(jié)果也印證了這一觀點(diǎn),倒春寒逆境下兩小麥各處理結(jié)實(shí)粒數(shù)和粒重在小穂位和粒位的分布都呈二次曲線變化,這與前人的研究結(jié)果一致[22],表明倒春寒逆境并未改變其分布規(guī)律。

穗粒數(shù)是構(gòu)成小麥產(chǎn)量的三要素之一,小麥粒重由于受品種遺傳特性和環(huán)境條件的制約導(dǎo)致增幅相對(duì)有限,提高穗粒數(shù)是目前進(jìn)一步提高小麥產(chǎn)量的關(guān)鍵[23]。一般認(rèn)為穗粒數(shù)的減少是倒春寒災(zāi)害導(dǎo)致小麥減產(chǎn)的主要原因[24],而倒春寒引起的花粉母細(xì)胞分裂異常、花藥營(yíng)養(yǎng)物質(zhì)供給不足,導(dǎo)致花粉育性降低,又是造成穗粒數(shù)減少的主要原因[25]。楊麗等[26]研究表明,倒春寒脅迫導(dǎo)致小麥小穗軸維管束數(shù)目和面積減少,幼穂中蔗糖代謝失調(diào)誘導(dǎo)蔗糖含量積累,最終導(dǎo)致穗粒數(shù)顯著下降。張成琦等[27]研究表明,小麥孕穗期噴施PDP可改善植株磷素營(yíng)養(yǎng)狀況,增加穗部可孕小花數(shù)和結(jié)實(shí)率,起到“?;ㄔ隽!钡男Ч?。本研究也表明,倒春寒逆境下噴施PDP可增加兩小麥品種穂粒數(shù),表明倒春寒逆境下噴施PDP可緩解倒春寒逆境對(duì)穗部籽粒發(fā)育造成的傷害。這可能是因?yàn)槿~面噴施PDP促進(jìn)了小麥同化物的生產(chǎn)與供給,使穗部維持較高的蔗糖含量,有利于促進(jìn)小花發(fā)育,減少小花退化,從而增加可育小花數(shù)和結(jié)實(shí)粒數(shù)[28]。

Zhang等[29]研究表明,倒春寒逆境改變了小麥幼穗內(nèi)源激素含量與比例的變化,誘導(dǎo)幼穗基因表達(dá)上調(diào),和基因表達(dá)下調(diào),從而影響蔗糖的轉(zhuǎn)運(yùn)和代謝,尤其是蔗糖在下部和中部小穂的積累,使小花發(fā)育滯后且育性降低,最終導(dǎo)致小麥穗粒數(shù)降低。蘇慧等[11]研究發(fā)現(xiàn),倒春寒災(zāi)害發(fā)生前葉面噴施PDP可顯著降低上部小穂的蔗糖、果糖含量,提高還原糖含量,緩解倒春寒對(duì)上部小穂的傷害,從而提高穗部結(jié)實(shí)率。Zheng等[30]研究表明,小麥葉面噴施6?芐基氨基嘌呤可通過增加下部小穗和中部小穗弱勢(shì)花位的可孕小花數(shù)來降低穗部小花敗育率。本研究結(jié)果也表明,倒春寒逆境下噴施PDP兩小麥品種下部小穂位結(jié)實(shí)總粒數(shù)增幅大于上部和中部小穂位,且弱勢(shì)粒位(G3、G4)的結(jié)實(shí)總粒數(shù)增幅大于強(qiáng)勢(shì)粒位(G1、G2)。這可能是因?yàn)樾←湻[部組織結(jié)構(gòu)和營(yíng)養(yǎng)供應(yīng)存在差異,上部和下部小穂位及小穂中的弱勢(shì)小花(第3、4小花)表現(xiàn)出明顯的碳氮營(yíng)養(yǎng)失衡,因此小麥上部和下部小穂發(fā)育劣于中部小穂,弱勢(shì)小花發(fā)育劣于強(qiáng)勢(shì)小花[31]。而倒春寒逆境下噴施PDP可增強(qiáng)小麥植株的光合作用,促進(jìn)植株養(yǎng)分的供應(yīng)和轉(zhuǎn)運(yùn),調(diào)節(jié)碳氮養(yǎng)分在穂部不同穂粒位的供應(yīng)和分布,維持碳氮代謝平衡,這可能有利于下部弱勢(shì)小穂和弱勢(shì)小花的發(fā)育與結(jié)實(shí)[32]。

磷酸二氫鉀作為高效磷鉀復(fù)合肥,小麥葉面噴施吸收后,磷素有利于提高葉片的光合能力,增強(qiáng)植株的抗逆能力,而鉀離子則有利于促進(jìn)光合物質(zhì)向穂部運(yùn)輸[33],從而促進(jìn)小麥籽粒灌漿和粒重的形成[34]。Zhang 等[35]研究表明,倒春寒逆境下噴施生長(zhǎng)調(diào)節(jié)劑顯著降低細(xì)胞膜脂過氧化程度,維持ROS平衡,提高葉片生理活性,從而促進(jìn)小麥籽粒灌漿速率,粒重增加。本研究也表明,倒春寒逆境下噴施PDP可增加兩小麥品種籽粒粒重。這可能是因?yàn)榈勾汉婢诚聡娛㏄DP,一方面在小麥籽粒灌漿前期促進(jìn)養(yǎng)分的轉(zhuǎn)運(yùn)與供應(yīng),提高籽粒灌漿速率[36],另一方面延緩小麥生育后期旗葉衰老,延長(zhǎng)籽粒灌漿時(shí)間,粒重增加[9,37]。

馬泉等[38]研究表明,孕穗期倒春寒降低小麥葉片光能轉(zhuǎn)化效率,影響小麥花后干物質(zhì)積累及其對(duì)籽粒產(chǎn)量的貢獻(xiàn),限制弱勢(shì)粒的灌漿充實(shí),導(dǎo)致小麥粒重下降。梁子龍[36]研究表明,葉面噴施磷鉀肥可顯著提高弱勢(shì)粒的最大灌漿速率,從而提高小麥粒重。本研究結(jié)果與前人基本一致,倒春寒逆境下噴施PDP,兩小麥品種下部小穂位總粒重提升幅度均大于上部和中部小穂位,且弱勢(shì)粒位總粒重增幅大于強(qiáng)勢(shì)粒位。這可能是因?yàn)橹胁啃》[和小穂基部的維管束數(shù)目和面積較大,有利于同化物和生理活性物質(zhì)的運(yùn)輸,因此中部小穂和強(qiáng)勢(shì)粒位(G1、G2)籽粒灌漿占有明顯優(yōu)勢(shì)[39],而葉面噴施PDP促進(jìn)了可溶性總糖向上部和下部小穗轉(zhuǎn)運(yùn),從而促進(jìn)上部和下部小穗籽粒淀粉合成,粒重增加[36]。為豐富和完善倒春寒的防控機(jī)理,后續(xù)倒春寒逆境下葉面噴施PDP對(duì)弱勢(shì)小穗及弱勢(shì)粒位籽粒養(yǎng)分分配積累的影響有待進(jìn)一步研究。

倒春寒一般發(fā)生在3月中下旬?4月上旬,小麥正處于營(yíng)養(yǎng)生長(zhǎng)與生殖生長(zhǎng)并進(jìn)的關(guān)鍵時(shí)期(拔節(jié)?孕穗期),此時(shí)小麥對(duì)低溫極為敏感,一般4℃以下的短時(shí)低溫脅迫就可能對(duì)小麥幼穂的正常生長(zhǎng)發(fā)育造成傷害[40?41]。王瑞霞等[42]研究表明,小麥倒春寒發(fā)生后葉片細(xì)胞結(jié)構(gòu)破壞嚴(yán)重,光合系統(tǒng)受損,單株產(chǎn)量顯著降低,尤其以穗粒數(shù)的降幅最為嚴(yán)重。曹娜等[43]研究表明,早稻在幼穗分化期遭遇低溫脅迫后噴施PDP可增加葉片葉綠素含量,提高葉片凈光合速率,促進(jìn)地上部干物質(zhì)積累,進(jìn)而提升早稻穗粒數(shù)、千粒重和產(chǎn)量。本研究發(fā)現(xiàn),倒春寒逆境下葉面噴施PDP主要是通過增加抗倒春寒性弱的品種XM26的穗粒數(shù)和抗倒春寒性強(qiáng)的品種YN19的籽粒粒重來減少倒春寒導(dǎo)致的產(chǎn)量損失。表明倒春寒逆境下葉面噴施PDP主要通過增加穗部結(jié)實(shí)粒數(shù)來緩解倒春寒對(duì)抗倒春寒性弱的品種產(chǎn)量影響,而對(duì)于抗倒春寒性強(qiáng)的品種則主要提高其粒重來緩解產(chǎn)量損失。這與孫東岳等[44]磷素后移對(duì)藥隔期倒春寒危害下兩抗倒春寒性不同品種小麥產(chǎn)量的影響研究結(jié)果一致。

本研究分析了倒春寒逆境下葉面噴施磷酸二氫鉀對(duì)小麥不同穗粒位結(jié)實(shí)數(shù)和粒重的影響,明確了葉面噴施PDP主要是通過增加抗倒春寒性弱的品種XM26穗粒數(shù)和抗倒春寒性強(qiáng)的品種YN19籽粒粒重來減少倒春寒導(dǎo)致的產(chǎn)量損失。由于試驗(yàn)是在大田倒春寒條件下進(jìn)行的,未能進(jìn)行不同程度倒春寒逆境下噴施PDP對(duì)小麥不同穗粒位結(jié)實(shí)數(shù)和粒重的影響分析。后續(xù)還需增加輕、中、重度倒春寒逆境下葉面噴施PDP試驗(yàn),以進(jìn)一步量化PDP對(duì)不同等級(jí)倒春寒逆境下小麥不同穗粒位結(jié)實(shí)數(shù)和粒重的分布特征和差異性。同時(shí)關(guān)于倒春寒逆境下噴施PDP調(diào)控小麥不同部位小花發(fā)育及結(jié)實(shí)成粒的內(nèi)在生理機(jī)制仍需進(jìn)一步深入探究。

3.2 結(jié)論

(1)倒春寒逆境下噴施PDP可增加兩小麥品種穗部結(jié)實(shí)粒數(shù),其中下部小穂位結(jié)實(shí)總粒數(shù)增幅大于上部和中部小穂位,且弱勢(shì)粒位結(jié)實(shí)總粒數(shù)增幅大于強(qiáng)勢(shì)粒位。

(2)倒春寒逆境下噴施PDP可提高兩小麥品種籽粒粒重,其中下部小穂位總粒重提高幅度大于上部和中部小穂位,且弱勢(shì)粒位總粒重提高幅度大于強(qiáng)勢(shì)粒位。

(3)倒春寒逆境下葉面噴施PDP主要通過提高抗倒春寒性弱的品種XM26穗部結(jié)實(shí)粒數(shù)來緩解產(chǎn)量損失,對(duì)抗倒春寒性強(qiáng)的品種YN19則主要通過提高粒重降低產(chǎn)量損失。

因此,大田生產(chǎn)中倒春寒災(zāi)害發(fā)生后及時(shí)噴施PDP可作為減少小麥產(chǎn)量損失的重要化控措施,若能與無人機(jī)飛防結(jié)合,能有效提高小麥生產(chǎn)的防災(zāi)減災(zāi)能力。

[1] Hong T J,Liu J X,Yu M X,et al.Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat[J].Agricultural and Forest Meteorology, 2017,243:33-42.

[2] Gu D,Andreev K,Dupre M E.Major trends in population growth around the world[J].China Cdc Weekly,2021,3(28): 604-613.

[3] Van D M,Morley T,Rau M L,et al.A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050[J]. Nature Food,2021,2(7): 494-501.

[4] 陳翔,于敏,蔡洪梅,等.小麥倒春寒研究現(xiàn)狀與進(jìn)展[J].應(yīng)用生態(tài)學(xué)報(bào),2021,32(8):2999-3009.

Chen X,Yu M,Cai H M,et al.Current status and research advances of late spring coldness in wheat[J].Chinese Journal of Applied Ecology,2021,32(8):2999-3009.(in Chinese)

[5] Zohner C M,Mo L,Renner S S,et al.Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(22):12192-12200.

[6] Li X,Jang D,Liu F.Winter soil warming exacerbates the impacts of spring low temperature stress on wheat[J]. Journal of Agronomy and Crop Science, 2016, 202(6): 554-563.

[7] Wang W,Wang X,Huang M,et al.Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid[J].Journal of Plant Growth Regulation,2021,40(2):811-823.

[8] 趙欣,孟德義,蒼晶,等.外源SA對(duì)低溫脅迫下冬小麥糖酵解代謝的影響[J].麥類作物學(xué)報(bào),2022,42(8):1031-1038.

Zhao X,Meng D Y,Cang J,et al.Effect of exogenous SA on glycolytic metabolism of winter wheat(L.)under low temperature stress[J].Journal of Triticeae Crops,2022,42(8): 1031-1038.(in Chinese)

[9] Lv X K,Han J,Liao Y C,et al.Effect of phosphorus and potassium foliage application post-anthesis on grain filling and hormonal changes of wheat[J].Field Crops Research, 2017,214:83-93.

[10] 唐秀巧,王靜靜,龍媛媛,等.花后噴施KH2PO4對(duì)灌漿期高溫脅迫下小麥根系生理特性及產(chǎn)量的影響[J].核農(nóng)學(xué)報(bào),2022,36(8):1685-1691.

Tang X Q,Wang J J,Long Y Y,et al.Effect of spraying KH2PO4after anthesis on root physiological characteristics and yield of wheat under high temperature stress at grain filling stage[J].Journal of Nuclear Agricultural Sciences, 2022,36(8):1685-1691.(in Chinese)

[11] 蘇慧,李金鵬,胡燕美,等.噴施KH2PO4對(duì)孕穗期低溫脅迫下小麥葉片抗氧化特性與幼穗凍害的影響[J].麥類作物學(xué)報(bào),2021,41(5):585-593.

Su H,Li J P,Hu Y M,et al.Effect of spraying KH2PO4on leaf physiological characteristics and freezing damage of young spike of cold stress at wheat booting stage[J].Journal of Triticeae Crops,2021,41(5):585-593.(in Chinese)

[12] 劉文歡,李勝楠,侯閣閣,等.不同營(yíng)養(yǎng)復(fù)配劑葉面噴施對(duì)冬小麥干熱風(fēng)抗性及產(chǎn)量的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2019,25(9):1600-1606.

Liu W H,Li S N,Hou G G,et al.Effects of foliar-spraying of different nutritional mixtures on stress toleranceto dry-hot wind and yield in winter wheat[J].Journal of Plant Nutrition and Fertilizers,2019,25(9):1600-1606.(in Chinese)

[13] 李豪圣,曹新有,宋健民,等.不同小麥品種粒重和蛋白質(zhì)含量的穗粒位效應(yīng)分析[J].作物學(xué)報(bào),2017,43(2):238-252.

Li H S,Cao X Y,Song J M,et al.Effects of spikelet and grain positions on grain weight and protein content of different wheat varieties[J].Acta Agronomica Sinica,2017,43(2): 238-252.(in Chinese)

[14] 譚秀山,畢建杰,王金花,等.冬小麥不同穗位籽粒淀粉粒差異及其與粒重的相關(guān)性[J].作物學(xué)報(bào),2012,38(10): 1920-1929.

Tan X S,Bi J J,Wang J H,et al.Differences of starch granules in grains from different spikelet positions and their correlation with grain weight in winter wheat[J].Acta Agronomica Sinica,2012, 38(10):1920-1929.(in Chinese)

[15] Zheng J C,Liu T,Zheng Q X,et al.Identification of cold tolerance and analysis of genetic diversity for major wheat varieties in Jianghuai region of China[J].Pakistan Journal of Botany,2020,52(3):839-849.

[16] 吳義城,楊文剛,黃永學(xué),等.倒春寒氣象指標(biāo)(GB/T 34816- 2017)[S].北京:氣象出版社,2017.

Wu Y C,Yang W G,Huang Y X,et al.Meteorological index of late spring coldness(GB/T 34816-2017)[S].Beijing: China Meteorological Press,2017.(in Chinese)

[17] 張艷敏,李晉生,黃瑞恒,等.雜種小麥不同部位小穗灌漿特點(diǎn)及生理原因探討[J].河北農(nóng)業(yè)科學(xué),1994(2):1-2.

Zhang Y M,Li J S,Huang R H,et al.Characteristics and physiological reasons of filling grain in different spikelets of hybrid wheat[J].Journal of Hebei Agricultural Sciences,1994(2):1-2.(in Chinese)

[18] 徐亞楠,吳玥,柳斌輝,等.干熱風(fēng)對(duì)冬小麥不同穗粒位粒重的影響效應(yīng)[J].中國(guó)農(nóng)業(yè)氣象,2021,42(7):583-595.

Xu Y N,Wu Y,Liu B H,et al.Effect of dry-hot wind on grain weight of winter wheat at different spikelet and grain positions[J].Chinese Journal of Agrometeorology,2021, 42(7):583-595.(in Chinese)

[19] 潘潔,姜東,曹衛(wèi)星,等.小麥穗籽粒數(shù)、單粒重及單粒蛋白質(zhì)含量的小穗位和粒位效應(yīng)[J].作物學(xué)報(bào),2005,31(4): 431-437.

Pan J,Jiang D,Cao W X,et al.Effects of spikelet and grain positions on grain number weight and protein content of wheat spike[J].Acta Agronomica Sinica,2005,31(4):431- 437.(in Chinese)

[20] 裴雪霞,王姣愛,黨建友,等.小麥結(jié)實(shí)粒數(shù)、粒重和品質(zhì)的小穗位和粒位效應(yīng)[J].中國(guó)農(nóng)業(yè)科學(xué),2008,41(2):381-390.

Pei X X,Wang J A,Dang J Y,et al.Effects of spikelet and grain position on fertile spikelet number,grain weight and quality of wheat[J].Scientia Agricultura Sinica,2008,41(2): 381-390.(in Chinese)

[21] 李金才,魏鳳珍,丁顯萍.小麥穗軸和小穗軸維管束系統(tǒng)及與穗部生產(chǎn)力關(guān)系的研究[J].作物學(xué)報(bào),1999, 25(3): 315-319.

Li J C,Wei F Z,Ding X P.Relationship between vascular bundle system of rachis and rachilla and ear productivity in wheat[J].Acta Agronomica Sinica,1999,25(3):315-319.(in Chinese)

[22] 左毅,馬冬云,張艷菲,等.冬小麥籽粒蛋白質(zhì)含量及氮代謝關(guān)鍵酶活性的穗粒位差異[J].華北農(nóng)學(xué)報(bào),2012,27(6): 202-207.

Zuo Y,Ma D Y,Zhang Y F,et al.Effects of spikelet and grain positions on grain protein contentand nitrogen metabolism enzyme activity of winter wheat[J].Acta Agriculturae Boreali-Sinica,2012,27(6):202-207.(in Chinese)

[23] Fischer R. The importance of grain or kernel number in wheat: a reply to Sinclair and Jamieson[J]. Field Crops Research, 2008,105:15–21.

[24] Liu L L,Xia Y M,Liu B,et al.Individual and combined effects of jointing and booting low-temperature stress on wheat yield[J].European Journal of Agronomy,2020,113: 125989.

[25] 高蕓,張玉雪,馬泉,等.春季低溫對(duì)小麥花粉育性及粒數(shù)形成的影響[J].作物學(xué)報(bào),2021,47(1):104-115.

Gao Y,Zhang Y X,Ma Q,et al.Effects of low temperature in spring on fertility of pollen and formation of grain number in wheat[J].Acta Agronomica Sinica,2021,47(1):104-115. (in Chinese)

[26] 楊麗,李洋,王佳勤,等.孕穗期低溫對(duì)小麥幼穗發(fā)育及產(chǎn)量的影響[J].核農(nóng)學(xué)報(bào),2022,36(12): 2490-2500.

Yang L,Li Y,Wang J Q,et al.Effects of low temperature at booting stage on young ears development and yield of wheat[J].Journal of Nuclear Agricultural Sciences,2022,36 (12):2490-2500. (in Chinese)

[27] 張成琦,何元農(nóng).小黑麥后期噴施磷酸二氫鉀對(duì)增粒增重效果的觀察[J].貴州農(nóng)業(yè)科學(xué),1982(5):32-33.

Zhang C Q,He Y N.Observation of the effect of spraying potassium dihydrogen phosphate on grain number and weight increased in triticale late stage[J].Guizhou Agricultural Sciences,1982(5):32-33.(in Chinese)

[28] 魏凌基,孔廣超,艾尼瓦爾.蔗糖對(duì)小黑麥離體培養(yǎng)穗粒數(shù)的調(diào)節(jié)作用[J].種子,2003(2):9-10.

Wei L J,Kong G C,Ainiwaer.Regulate effects of concentration of sucrose on grain number of detached triticale ears in liquid culture[J].Seed,2003(2):9-10.(in Chinese)

[29] Zhang W,Wang J,Huang Z,et al.Effects of low temperature at booting stage on sucrose metabolism and endogenous hormone contents in winter wheat spikelet[J].Frontiers in Plant Science,2019(10):498.

[30] Zheng C F,Zhu Y J,Wang C Y,et al.Wheat grain yield increase in response to pre-anthesis foliar application of 6-benzylaminopurine is dependent on floret development [J].Plos One,2017,11(6):e0156627.

[31] 李明慧,張慶琛,李剛,等.小麥穗與小穗及籽粒差異的解剖結(jié)構(gòu)和生理原因研究[J].安徽農(nóng)業(yè)科學(xué),2008,36(3): 938-940.

Li M H,Zhang Q C,Li G,et al.Research on the relationship between the development imbalance of wheat ear spikelet and grain and vascular bundle system and its physio-logical reason[J]. Journal of Anhui Agricultural Sciences,2008, 36(3):938-940.(in Chinese)

[32] 楊茂,黃琴,張震,等.離體穗培養(yǎng)條件下C、N供給對(duì)小麥穗粒數(shù)、粒重及蛋白質(zhì)含量的影響[J].麥類作物學(xué)報(bào), 2021,41(3):328-337.

Yang M,Huang Q,Zhang Z,et al.Effect of carbon and nitrogen levels in culture medium on grain number per spike,grain weight,and protein content of wheat under detached spike culture[J].Journal of Triticeae Crops,2021, 41(3):328-337.(in Chinese)

[33] Anna A,John P H,Patrick A,et al.Nutrient sensing and signalling in plants:potassium and phosphorus[J].Advances in Botanical Research,2005,43:209-257.

[34] 鄭險(xiǎn)峰,張英利,王春陽(yáng),等.葉面噴施磷酸二氫鉀和鋅錳對(duì)旱地冬小麥的效應(yīng)[J].中國(guó)農(nóng)學(xué)通報(bào),2008,24(11):263- 266.

Zheng X F,Zhang Y L,Wang C Y,et al.Effects of foliar nutrition of KH2PO4Zn and Mn for winter wheat on dry land[J].Chinese Agricultural Science Bulletin,2008,24(11): 263-266.(in Chinese)

[35] Zhang W J,Huang Z L,Xu K F.The effect of plant growth regulators on recovery of wheat physiological and yield-related characteristics at booting stage following chilling stress[J].Acta Physiologiae Plantarum,2019,41(8): 133.

[36] 梁子龍.葉面噴施磷鉀對(duì)小麥籽粒灌漿及生理過程的影響[D].楊凌:西北農(nóng)林科技大學(xué),2016.

Liang Z L.Influence of foliane spray of phosphorous and potassium on grain weight of winter wheat and response to drought stress[D].Yangling:Northwest A & F University, 2016.(in Chinese)

[37] 徐亞楠,吳玥,紀(jì)冰祎,等.磷糖類制劑對(duì)冬小麥抗干熱風(fēng)特性和產(chǎn)量的影響[J].麥類作物學(xué)報(bào),2022,42(2):236-245.

Xu Y N,Wu Y,Ji B Y,et al.Effects of different chemical regulators on stress tolerance to dry-hot wind and yield in winter wheat[J].Journal of Triticeae Crops,2022,42(2): 236-245.(in Chinese)

[38] 馬泉,張玉雪,陶源,等.春季不同時(shí)期低溫對(duì)小麥光合特性和粒重形成的影響[J].麥類作物學(xué)報(bào),2022,42(2):226-235.

Ma Q,Zhang Y X,Tao Y,et al.Effects of low temperature at different stages in spring on photosynthetic characteristics and grain weight formation of wheat[J].Journal of Triticeae Crops,2022,42(2):226-235.(in Chinese)

[39] 武翠,邵國(guó)軍,呂文彥,等.不同發(fā)育時(shí)期水稻強(qiáng)、弱勢(shì)粒灌漿速率的遺傳分析[J].中國(guó)農(nóng)業(yè)科學(xué),2007,40(6):1135-1141.

Wu C,Shao G J,Lv W Y,et al.Genetic analysis of grain filling rate in different growth stages of superior and inferior grains in rice[J].Scientia Agricultura Sinica,2007, 40(6):1135-1141.(in Chinese)

[40] 陳翔,林濤,林非非,等.黃淮麥區(qū)小麥倒春寒危害機(jī)理及防控措施研究進(jìn)展[J].麥類作物學(xué)報(bào),2020,40(2):243-250.

Chen X,Lin T,Lin F F,et al.Research progress on damage mechanism and prevention and control measures of late spring coldness of wheat in Huanghuai region[J].Journal of Triticeae Crops,2020,40(2):243-250.(in Chinese)

[41] 王永華,李金才,魏鳳珍,等.小麥凍害類型、診斷特征及其預(yù)防對(duì)策與補(bǔ)救措施[J].中國(guó)農(nóng)學(xué)通報(bào),2006,22(4):345- 348.

Wang Y H,Li J C,Wei F Z,et al.Types of freeze injury and diagnostic characteristics of winter wheat and prevention measure and salvage measure[J].Chinese Agricultural Science Bulletin,2006,22(4):345-348.(in Chinese)

[42] 王瑞霞,閆長(zhǎng)生,張秀英,等.春季低溫對(duì)小麥產(chǎn)量和光合特性的影響[J].作物學(xué)報(bào),2018,44(2):288-296.

Wang R X,Yan C S,Zhang X Y,et al.Effect of low temperature in spring on yield and photosynthetic characteristics of wheat[J].Acta Agronomica Sinica,2018, 44(2):288-296.(in Chinese)

[43] 曹娜,陳小榮,賀浩華,等.幼穗分化期噴施磷鉀肥對(duì)早稻抵御低溫及產(chǎn)量和生理特性的影響[J].應(yīng)用生態(tài)學(xué)報(bào), 2017,28(11):3562-3570.

Cao N,Chen X R,He H H,et al.Effects of spraying P and K fertilizers during panicle primordium differentiation stage oncold resistance,yield and physiological characteristics of early rice[J].Chinese Journal of Applied Ecology,2017, 28(11):3562-3570.(in Chinese)

[44] 孫東岳,許輝,劉倩倩,等.磷素后移對(duì)藥隔期倒春寒小麥旗葉光合及抗氧化系統(tǒng)的影響[J].中國(guó)農(nóng)業(yè)氣象,2023, 44(2):123-132.

Sun D Y,Xu H,Liu Q Q,et al.Effects of phosphorus fertilizer postpone on photosynthesis and antioxidant system of wheat flag leaves under late spring coldness at connectivum stage[J]. Chinese Journal of Agrometeorology, 2023,44(2):123-132.(in Chinese)

Effects of Foliar Spraying KH2PO4on Wheat Grain Setting Characteristics under Late Spring Coldness

DAI Wen-ci1, WANG Peng-na1, WENG Ying1, HUANG Jin-wei1, YU Min1, WU Yu1, CAI Hong-mei1, ZHENG Bao-qiang1, LI Jin-cai1, 2, CHEN Xiang1

(1.College of Agronomy, Anhui Agricultural University/Crop Cultivation Science Observatory in East China of the Ministry of Agriculture and Rural Affairs, Hefei 230036, China; 2.Collaborative Innovation Center of Modern Crop Production in Jiangsu, Nanjing 210095)

In order to clarify the effect of spraying (potassium dihydrogen phosphate, PDP, KH2PO4) on the grain setting characteristics of wheat under late spring coldness, Yannong 19 (YN19) with strong resistance to reversed late spring coldness and Xinmai 26 (XM26) with weak resistance to reversed late spring coldness were selected as materials. PDP was sprayed on the leaf surface after late spring coldness occurred on March 17?23, 2022 (booting stage). The distribution characteristics of spraying PDP on fertile grain number and grain weight with different spikelet and different grain positions under late spring coldness were compared and analyzed. The results showed that: (1)compared with CK, spraying PDPunder late spring coldness increased the total fertile grain numbers of varieties XM26 and YN19. Among them, the total fertile grain numbers at the middle and lower spikelet of XM26 significantly increased by 8.33% and 33.33%, respectively, with no significant effect on the total fertile grain number at the upper spikelets. And the total fertile grain numbers of XM26 at G1 (the first grain position), G2 (the second grain position), G3 (the third grain position) and G4 (the fourth grain position) position increased by 8.11%, 3.13%, 4.35%, and 60.00%, respectively. The total fertile grain numbers at the lower spikelet of YN19 significantly increased by 23.08%, with no significant effect on the total fertile grain numbers at the upper and middle spikelets. The total fertile grain numbers of YN19 at G1, G2 and G3 positionincreased by 2.70%, 0 and 13.33%, respectively. (2)Compared with CK, spraying PDP under late spring coldness increased the grain weights of varieties XM26 and YN19. Among them, the total grain weights at the middle and lower spikelet of XM26 significantly increased by 18.46% and 46.16%, respectively, with no significant effect on the total grain weights at the upper spikelets. And the total grain weights of XM26 at G1, G2, G3 and G4 positionincreased by 2.70%, 4.44% and 13.33%, respectively. The total grain weights at the upper and lower spikelet of YN19 significantly increased by 21.70% and 33.63%, with no significant effect on the total grain weights at the middle spikelets. The total grain weights of YN19 at G1, G2 and G3 position increased by 15.97%, 13.12% and 17.55%, respectively. (3) Spraying PDPunder late spring coldness mainly alleviates the yield loss by increasing the fertile grain numbers of XM26 with weak resistance to reversed late spring coldness, and increasing grain weight of YN19 with strong resistance to reversed late spring coldness. It was concluded that spraying PDP after the late spring coldness could increase the fertile grain number and grain weight of the lower spikelet and the weaker grain positions to reduce the yield loss.

Late spring coldness;L; Potassium dihydrogen phosphate; Spikelet and grain positions; Grain setting characteristics

10.3969/j.issn.1000-6362.2023.10.003

2022?10?28

安徽省自然科學(xué)基金(2008085QC122);淮北市重大科技專項(xiàng)(HK2021013);安徽省重大科技專項(xiàng)(202003b06020021);“十四五”安徽省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(340000222426000100009);安徽農(nóng)業(yè)大學(xué)校級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(X202210364739)

通訊作者:陳翔,講師,碩士生導(dǎo)師,研究方向?yàn)樽魑锷砩鷳B(tài),E-mail:cxagricultural@163.com;李金才,教授,博士生導(dǎo)師,研究方向?yàn)樽魑锷砩鷳B(tài),E-mail:ljc5122423@126.com

代雯慈,E-mail:15637625302@163.com

代雯慈,王捧娜,翁穎,等.倒春寒逆境下葉面噴施磷酸二氫鉀對(duì)小麥穂粒結(jié)實(shí)的影響[J].中國(guó)農(nóng)業(yè)氣象,2023,44(10):889-902

猜你喜歡
小穗結(jié)實(shí)粒數(shù)
抽吸參數(shù)對(duì)電加熱卷煙氣溶膠粒數(shù)和粒徑的影響
小麥穗頂部和基部小穗結(jié)實(shí)粒數(shù)的全基因組關(guān)聯(lián)分析
最新研究表明,不育小穗有助于提高高粱等禾本植物的產(chǎn)量
我科學(xué)家成功克隆水稻小穗發(fā)育新基因
水稻小穗發(fā)育新基因克隆成功
Super Strong Beard 超級(jí)結(jié)實(shí)的大胡子
甘藍(lán)型高角粒油菜不同部位角粒數(shù)差異研究
找出結(jié)實(shí)的繩子
結(jié)實(shí)的紙筒
湯姆開鎖記