許奇志 鄧朝軍 蔣際謀 陳秀萍
DOI:10.13925/j.cnki.gsxb.20230135
摘? ? 要:【目的】分析比較避雨設施葡萄下微生態(tài)環(huán)境對套種枇杷生長與結果的影響,為探討葡萄-枇杷套種模式提供依據(jù)?!痉椒ā吭?年生避雨設施葡萄下套種盆栽帶花蕾的新白8號枇杷3年生嫁接營養(yǎng)袋大苗,以露地盆栽帶花蕾的新白8號枇杷3年生嫁接營養(yǎng)袋大苗為對照,連續(xù)2 a(年)觀測比較枇杷樹體生長發(fā)育和果實質量差異?!窘Y果】避雨設施栽培葡萄的生長,使夏季(中午12:00)棚內(nèi)光照度降低了92.37%,溫度降低6.10 ℃,相對濕度提高20.87%;冬季棚內(nèi)溫度提高1.15~2.28 ℃。避雨設施葡萄下套種盆栽枇杷樹第2年的南北冠幅、樹高度、干周、葉幕層厚、枝梢數(shù)、枝梢質量、葉片質量顯著降低,花穗數(shù)、花穗大小顯著低于對照;單株產(chǎn)量是對照的69.67%,顯著低于對照;果穗質量、單果質量、可食率與對照差異不顯著;果實病蟲害明顯減少,好果率提高12.89%~27.25%。【結論】避雨設施葡萄下套種的枇杷可正常開花結果,有一定產(chǎn)量,且果實病蟲害減少,是一種可行的套種模式,但需進一步研究適宜的配套栽培技術,緩解避雨設施和葡萄生長對套種枇杷生長的蔭蔽影響。
關鍵詞:葡萄;避雨設施栽培;套種;枇杷;枝梢生長;結果
中圖分類號:S663.1 文獻標志碼:A 文章編號:1009-9980(2023)10-2149-11
Effects of grapes in shelter facilities on tree growth and fruiting of interplanted loquat
XU Qizhi, DENG Chaojun, JIANG Jimou*, CHEN Xiuping
(Fruit Research Institute, Fujian Academy of Agricultural Sciences/Fujian Breeding Engineering Technology Center for Longan & Loquat, Fuzhou 350013, Fujian, China)
Abstract: 【Objective】 In order to make full use of the limited space inside the horizontal grape trellis, this study observed and compared the differences in growth and fruiting between interplanted potted loquat trees under the grapes in shelter facilities and the potted loquat trees outside the facilities. The study will provide a reference for the application of “grape-loquat” interplanting model. 【Methods】 3-year-old loquat Xinbai No. 8 grafted trees with flower buds in the nutrition bag were interplanted with the 5-year-old grape Guipu No. 1 in the shelter facilities. 3-year-old potted loquat Xinbai No. 8 grafted trees with flower buds in the nutrition bags placed in the open air were used as the control. The effects of the ecological environment of the grape shelter facilities on tree growth, shoot growth quality, flowering quality, flowering shoot rate, leaf growth quality, fruit pest and disease incidence, fruit quality and yield per plant were observed for two consecutive years in interplanted potted loquat trees.【Results】 During the growth of the grapes, the shade effect on the loquat trees was highest when the grapes covered the trellis or during the period of growth of loquat summer shoots. The light intensity reduced by 92.37%, the temperature reduced by 6.10 ℃ and the relative humidity increased by 20.87% than that of the control at 12:00 am. During the post-harvest period of grapes or physiological differentiation period of loquat buds, there were a 76.70% decrease in light intensity, a 4.51 ℃ decrease in temperature and a 13.56% increase in relative humidity at 12:00 am. compared to the control. The lightest shade effect occurred in the period of grape winter pruning or growth stagnation period of young loquat fruit. The light intensity reduced by 15.90% and the temperature increased by 2.28 ℃ than that of the control at 12:00 am. In the potted loquat trees interplanted under the grapes, the number of shoot growth in the first year was 33.80% and significantly fewer than the control. There were no significant differences in tree crown width, tree height, trunk girth and canopy thickness between shaded loquat trees and the control. The number of shoot growth in the second year was 63.35% fewer than the control, and tree height, trunk girth and canopy thickness of shaded loquat trees were lower than the control by 29.04%, 26.40% and 44.65%, respectively. In the potted loquat trees interplanted under the grapes in shelter facilities, shoot length and leaf number in the first year were 36.30% and 32.33% lower than the control, respectively, with highly significant differences. Shoot thickness and panicle width were 17.91% and 21.86% lower than the control, respectively, with significant differences. Length and thickness of shoot, number of leaves, length and width of flowering spikes and number of flowering terminals in the second year were 57.44%, 29.38%, 49.56%, 47.13%, 50.71% and 42.51% lower than the control, respectively. The leaf length and width of summer shoots were significantly higher than that of the control; leaf length and width of spring shoots were significantly lower than that of the control, and no significant differences in leaf length and width in autumn shoots was found between the interplanted loquat trees and the control. The leaf thicknesses of spring, summer and autumn shoots were significantly smaller than that of the control. In the first year of the trial, due to the high rainfall during the fruit growing season, the rates of fruit cracking, anthracnose fruit and sunburn fruit for the interplanted potted loquat trees under grape shelter facilities were lower than that of the control by 16.65%, 26.20% and 7.93%, respectively. The rate of good fruit was 27.25% higher than that of the control. In the second year, the rate of fruit drop under the trellis was lower than that of the control by 14.03%. The rates of anthracnose, wrinkled, insect, and sunburn fruit were lower than that of the control by 14.28%, 3.88%, 3.04% and 3.73%, respectively. The rate of good fruit was higher than that of the control by 12.89%. In the first year of the trial, with no flower and fruit thinning, the spike weight and yield per plant of loquat trees in the trellis were 62.72% and 69.63% of those in the control, respectively. After flower and fruit thinning in the second year, the differences in cob weight, fruit mass, flesh thickness, soluble solids and flesh recovery of fruit from loquat trees in the trellis were insignificant compared to from the control trees; yield per plant was 69.67% of the control. 【Conclusion】 The loquat trees interplanted under the grapes in shelter facilities can grow and bear fruit normally, with lower incidence of fruit diseases and pests. It is a feasible model for interplant, but further research is needed on suitable supporting cultivation techniques to reduce the shading effect on the growth of interplanted loquat trees.
Key words: Grapes; Grown in shelter facilities; Interplanting; Potted loquat; Shoot growth; Fruiting
枇杷[Eriobotrya japonica (Thunb.) Lindl.]是我國南方特色常綠果樹,其果肉柔軟多汁、酸甜適口,是深受消費者喜愛的“早春第一果”。枇杷秋冬開花、春末夏初成熟,露地栽培的枇杷在果實膨大期和轉色期遇晴雨交替、高溫等異常氣候時發(fā)生裂果[1]、日灼[2]等生理性病害,在夏梢抽生期常因強光、高溫影響枝梢生長[3]。采用避雨設施栽培或樹冠覆蓋可避雨、遮陰防強光,是解決裂果、日灼等枇杷產(chǎn)業(yè)問題的有效途徑。避雨棚膜能緩解“光合午休”,增強光合能力,有利于植株生長發(fā)育[4]。枇杷夏季樹冠遮陰[5]、果實發(fā)育期避雨設施栽培[6]等,改善了生長環(huán)境,達到提高品質與產(chǎn)量、調(diào)節(jié)產(chǎn)期的效果。但設施栽培前期投入較大,要3~5 a(年)才可收回成本[7],制約了枇杷設施栽培模式的推廣。
近年來,避雨設施栽培在葡萄上的應用越來越廣,以福建為例,2013年福建省葡萄種植面積8074 hm2,其中設施栽培面積776.33 hm2[7]。立體高效栽培是當前葡萄設施栽培的一個重要方向,可充分利用設施大棚內(nèi)的有限空間,提高單位面積產(chǎn)量,獲取更高的經(jīng)濟效益[8]。水平棚架避雨栽培是福建葡萄設施栽培的主要種植模式[9]。水平棚架下有適合枇杷生長的空間,探討利用現(xiàn)有葡萄栽培設施發(fā)展“避雨設施葡萄-枇杷”套種模式具有重要的產(chǎn)業(yè)意義。
在枇杷花芽分化期利用遮陽網(wǎng)適度遮陰可明顯降低樹冠內(nèi)部與地下的溫度,有利于枇杷枝葉生長、提高枝梢抽穗率[5,10],也可促進枇杷弱枝的花期提前[10]。夏季是葡萄生長成熟期,枝、葉生長量大,此時正是枇杷夏、秋梢生長、花芽分化期,如過度蔭蔽會影響葉片光合產(chǎn)物累積,導致枇杷果實品質下降[10-11],長時間重度蔭蔽會造成落葉,甚至植株死亡[11];12月至翌年5月是葡萄落葉冬眠至萌芽開花時期,其間棚架下光照充足、無遮陰,正是枇杷開花結果、生長發(fā)育和成熟期,有利于枇杷果實生長。因此,枇杷與葡萄的物候期可以互補,生產(chǎn)操作互不影響,臺灣地區(qū)已有在棚架葡萄下套種枇杷的研究報道[10]。枇杷夏梢生長期、果實發(fā)育中后期受到短期、單一蔭蔽脅迫的影響已有報道,但枇杷在套種環(huán)境中受到持續(xù)、動態(tài)蔭蔽,對樹體生長和開花結果的影響尚不明確,避雨設施葡萄套種枇杷的可行性尚未可知。為此,筆者利用葡萄水平棚架避雨栽培的動態(tài)蔭蔽環(huán)境,研究避雨棚架及葡萄生長對套種枇杷樹體生長、枝葉質量、成花質量、果實病蟲害和產(chǎn)量的影響,為探討避雨栽培葡萄下套種枇杷種植模式的可行性提供參考依據(jù)。
1 材料和方法
1.1 試驗材料與試驗設計
試驗連續(xù)2 a在福建省農(nóng)業(yè)科學院果樹研究所葡萄、楊梅基地進行(福建省福州市),以避雨栽培葡萄下套種盆栽枇杷為處理,露地盆栽枇杷為對照。試驗區(qū)避雨設施栽培葡萄為鍍鋅鋼管連棟拱形大棚,單跨寬度為8.0 m,棚頂距地面高度4.0 m,肩高度2.5 m,大棚頂部常年覆蓋的流滴膜已使用3 a,透光率87.0%~97.0%,邊膜除冬季低溫期封閉外均為開放狀態(tài);葡萄水平棚架高度2.0 m;棚內(nèi)種植的葡萄品種為桂葡1號,根域限制栽培模式,樹齡5 a,株距2.0 m,行距8.0 m,“一字形”整形,葡萄3月中旬發(fā)芽,4月底—5月初滿架,12月上旬落葉,12月底修剪。桂葡1號葡萄樹生長旺盛,在開花結果期間沒有修剪徒長枝和過密枝。試驗用的枇杷品種為新白8號,選擇樹體大小和樹勢相近、帶花蕾的3年生嫁接大苗18株,移植在直徑60 cm、高度40 cm的無紡布營養(yǎng)袋內(nèi)(圖1-A)。枇杷樹高度150 cm,冠徑140 cm,干周15 cm,枝梢數(shù)10~13個。枇杷試驗樹9株置于棚內(nèi)2行葡萄樹之間,枇杷間的株距2.0 m,與葡萄主干的行距2.0 m;露地對照試驗樹9株置于距避雨葡萄棚外10.0 m遠的露地上,株距2.0 m。3株為1個試驗小區(qū),3次重復。每株試驗樹的樹盤上均放置1個滴灌頭,根據(jù)枇杷物候期及土壤濕度,設置一致的滴灌時間和滴灌量。試驗第1年處理區(qū)和對照區(qū)均未疏花疏果,獲得的穗質量、穗粒數(shù)、單果質量等為自然坐果數(shù)據(jù)(圖1-B);試驗第2年正常疏花疏果,根據(jù)結果枝生長情況選留4~6?!に?1(圖1-C);試驗樹其余修剪、套袋、施肥和病蟲害防治等均按大田常規(guī)管理。
1.2 測定內(nèi)容和方法
1.2.1 田間調(diào)查與果實品質分析 參照《農(nóng)作物種質資源鑒定技術規(guī)程 枇杷》[12],分別于2017年和2018年5月、8月、11月枇杷的春梢、夏梢、秋梢葉片成熟時測量葉片的長度、寬度、厚度;于每年11月調(diào)查枇杷的冠幅、樹高度、干周、葉幕層厚、枝梢數(shù)、花穗數(shù)等,并測量1年生枝梢長度(夏梢+秋梢)、夏梢粗度和花穗大小,統(tǒng)計枝梢抽穗率。
每年4月底—5月初枇杷果實成熟時,調(diào)查單株果穗數(shù),測定單株產(chǎn)量,按試驗小區(qū)每株采集成熟果穗各4穗,測定穗質量,并調(diào)查果實病蟲害情況;每試驗小區(qū)隨機選取成熟果實各20粒,測定單果質量、果肉厚度、果肉硬度和可溶性固形物含量,并統(tǒng)計可食率和單株產(chǎn)量。用精度0.01 g電子天平稱量單果質量,用精度0.01 mm電子游標卡尺測量果肉厚度,用GY-3型水果硬度計測定果肉硬度,用SRAP測糖儀測定可溶性固形物含量。
1.2.2 微生態(tài)環(huán)境測定 于葡萄冬剪/枇杷幼果滯長期(1月24日)、葡萄萌芽/枇杷幼果迅速膨大期(3月2日)、葡萄滿架/枇杷夏梢生長期(6月30日)、葡萄采果后/枇杷花芽生理分化期(8月30日),分別在試驗區(qū)和對照區(qū)各用3臺美國HOBO U12-012溫濕光度記錄儀,同步測定樹冠外圍的光照度、溫度和相對濕度,測定期為08:00—18:00,每1 h測定1次;選擇08:00、12:00和18:00共3個時間點分析棚內(nèi)葡萄架下枇杷和棚外枇杷的環(huán)境參數(shù)。
1.3 統(tǒng)計分析
數(shù)據(jù)用 Excel 2007進行基礎統(tǒng)計和作圖,采用DPS 6.5 軟件進行數(shù)據(jù)分析。
2 結果與分析
2.1 避雨設施葡萄對套種枇杷環(huán)境因子的影響
由表1可知,在1月24日(葡萄冬剪/枇杷幼果滯長期),08:00棚內(nèi)的溫度極顯著高于棚外,相對濕度顯著低于棚外,光照度是棚外的69.97%;12:00和18:00棚內(nèi)與棚外的相對濕度差異不顯著,12:00的光照度較棚外低15.90%、溫度高2.28 ℃,說明了冬季的避雨設施在夜間有保溫、白天有增溫作用。3月2日(葡萄萌芽/枇杷幼果迅速膨大期),棚內(nèi)處理08:00、12:00和18:00的光照度分別較棚外低51.09%、29.42%和28.42%,溫度、相對濕度與棚外差異不顯著。6月30日(葡萄滿架/枇杷夏梢生長期),除了08:00溫度差異不顯著外,棚內(nèi)的溫度、相對濕度和光照度均與棚外存在顯著或極顯著差異,12:00溫度較棚外降低6.10 ℃、相對濕度提高20.87%,3個時間點光照度分別降低了75.59%、92.37%、91.91%。8月30日(葡萄采果后/枇杷花芽生理分化期間),棚內(nèi)3個測定時間的光照度分別較棚外降低88.31%、76.70%、57.63%,12:00的溫度低于棚外4.51 ℃、相對濕度增加13.56%。避雨棚架及葡萄生長均造成光照度不同程度降低,但不同時期的降低幅度不同。其中,葡萄滿架/枇杷夏梢生長期影響最大,該期間的溫度和相對濕度也受到顯著影響,其次是葡萄采果后/枇杷花芽生理分化期,而葡萄冬剪/枇杷幼果滯長期光照度受到的影響最小,其溫度反而較對照提高。這說明避雨設施栽培葡萄冬季有增溫作用,夏季有降溫增濕效果。
2.2 避雨設施葡萄對套種枇杷樹體生長的影響
由表2可知,試驗第1年避雨設施葡萄下套種盆栽枇杷的枝梢數(shù)較棚外少33.80%,差異極顯著;冠幅、樹高度、葉幕層厚、干周均小于棚外,但差異不顯著。試驗第2年,棚內(nèi)枇杷的樹高度、干周、葉幕層厚、枝梢數(shù)均極顯著小于棚外試驗樹,其中枝梢數(shù)比對照減少63.35%,樹高度、干周、葉幕層厚分別降低29.04%、26.40%、44.65%;棚內(nèi)枇杷的南北冠幅比棚外顯著減小。這說明棚內(nèi)枇杷夏、秋季受葡萄棚架遮陰的影響,枇杷夏梢的側生枝抽發(fā)數(shù)量減少,并且影響夏秋梢的生長,使棚內(nèi)枝梢生長數(shù)量減少。
2.3 避雨設施葡萄對套種枇杷枝梢生長和成花質量的影響
由表3可知,試驗第1年避雨設施葡萄下套種的枇杷枝梢長度、粗度、葉片數(shù)和花穗寬度分別比對照低36.30%、17.91%、32.33%和21.86%,差異極顯著,花穗長度、花穗數(shù)與對照差異顯著,枝梢抽穗率與對照差異不顯著。試驗第2年,套種枇杷的1年生枝梢長度、粗度、葉片數(shù)、花穗長度、寬度和花穗數(shù)分別是對照樹的42.56%、70.62%、50.44%、52.87%、49.29%、47.06%,差異極顯著;枝梢抽穗率與對照差異不顯著。這說明了避雨設施栽培葡萄影響套種枇杷的枝梢質量和花穗質量。
2.4 避雨設施葡萄對套種枇杷葉片質量的影響
避雨設施葡萄下套種枇杷的葉片質量差異如圖2所示。棚內(nèi)枇杷的春梢葉片長度、寬度是棚外的88.24%和91.31%,顯著或極顯著小于棚外;夏梢的葉片長度、寬度是棚外的1.18倍和1.19倍,差異均達極顯著水平,秋梢葉片長度、寬度與對照差異不顯著;棚內(nèi)枇杷的春梢、夏梢、秋梢葉片厚度是棚外的82.86%、75.00%和69.23%,均極顯著小于棚外。這說明避雨設施栽培葡萄影響套種枇杷的春梢、夏梢、秋梢葉片質量。
2.5 避雨設施葡萄對套種枇杷果實病蟲害的影響
裂果、炭疽病、日灼、蟲果等影響枇杷果實的商品性和經(jīng)濟價值。如表4和圖3所示,試驗第1年由于果實生長季雨水較多,避雨設施葡萄下套種枇杷的裂果率、炭疽病果率、日灼果率分別較對照減少16.65%、26.20%、7.93%,未發(fā)現(xiàn)皺果和蟲果,好果率較對照高27.25%。試驗第2年疏花疏果,果實生長季干旱少雨,套種枇杷的落果率較對照低14.03%,炭疽病果率、皺果率、蟲果率、日灼果率分別較對照低14.28%、3.88%、3.04%、3.73%,好果率較對照高12.89%。這說明避雨設施栽培葡萄能有效減少套種枇杷果實病蟲害發(fā)生,提高枇杷好果率。
2.6 避雨設施葡萄對套種枇杷果實質量的影響
如表5所示,試驗第1年,在未疏花疏果條件下,棚內(nèi)枇杷的果穗質量、單株產(chǎn)量分別是棚外的62.72%、69.83%,極顯著或顯著低于棚外;棚內(nèi)枇杷的單果質量、可溶性固形物含量分別是棚外的92.25%和90.58%,差異顯著;果肉厚度、硬度、可食率與棚外差異不顯著。試驗第2年,統(tǒng)一疏花疏果,棚內(nèi)枇杷的果穗質量、單果質量、果肉厚度、可食率與棚外差異均不顯著;單株產(chǎn)量、可溶性固形物含量、果肉硬度分別是對照的69.67%、88.80%、84.72%,差異顯著。這說明避雨設施栽培葡萄會影響套種枇杷的產(chǎn)量和果實品質。
3 討 論
3.1 避雨設施葡萄對套種枇杷生長環(huán)境的動態(tài)影響
已有研究表明,套種、遮陰等造成的蔭蔽脅迫會影響光照度、溫度和相對濕度,如大棚覆蓋的塑料薄膜會降低棚內(nèi)的光照度[13-14],而對溫度的影響因季節(jié)、天氣而異[14-16];棚內(nèi)溫度隨垂直高度的增加而升高[16],相對濕度亦受一定影響[14];遮陽網(wǎng)在夏季遮陰樹冠,日平均氣溫和日平均相對濕度比棚外高,但最高氣溫、最大相對濕度較棚外低,日最低氣溫和最低相對濕度較棚外高[6];高位作物會對低位套種作物有蔭蔽作用[17],大幅降低光照度,影響溫度[18-19],對光質也造成影響,紅光與遠紅光比值降低[20];避雨設施栽培葡萄白天的光照度極顯著低于露地,午后的氣溫顯著高于露地、空氣濕度顯著低于露地[21],在4—5月,棚內(nèi)溫度較棚外高,且氣溫越高棚內(nèi)外的溫差越大,促進了枇杷果實的生長發(fā)育與成熟[7]。本試驗中,避雨設施栽培葡萄的無滴膜和葡萄枝葉等共同作用,造成4個時期中午光照度較對照低15.90%~92.37%,光照度下降幅度為葡萄冬剪/枇杷幼果滯長期<葡萄萌芽/枇杷幼果迅速膨大期<葡萄采果后/枇杷花芽生理分化期<葡萄滿架/枇杷夏梢生長期;葡萄冬剪/枇杷幼果滯長期因避雨棚邊膜封閉且透光率相對高,導致上午和中午的溫度顯著高于對照,葡萄滿架/枇杷夏梢生長期,葡萄的生長量最大,中午的溫度降低、相對濕度提高的幅度最大,葡萄采果后/枇杷花芽生理分化期間,中午的溫度對照較大幅度降低、相對濕度提高。已有研究認為,樹冠內(nèi)相對光照度低于30%為無效光區(qū)域[22-23],用透光率分別為15%、2.25%遮陽網(wǎng)持續(xù)遮陰脅迫下,枇杷落葉嚴重、干物質含量明顯下降[11]。因此在葡萄的年生長周期內(nèi),套種區(qū)的枇杷經(jīng)歷了“輕(葡萄冬剪期/枇杷幼果滯長期)-中(葡萄萌芽期/枇杷幼果迅速膨大期)-重(葡萄滿架果實生長期/枇杷夏梢生長期)-較重(葡萄采果后/枇杷花芽生理分化期)”的持續(xù)動態(tài)蔭蔽脅迫。
3.2 避雨設施葡萄下的動態(tài)環(huán)境因子變化對枇杷生長的影響
植物的生長發(fā)育與光信號密切相關,不同光強和光質影響枝葉生物量、光合生態(tài)參數(shù),影響形態(tài)建成和物質積累[20,24]。蔭蔽脅迫可誘導生長素(indoleacetic acid,IAA)、赤霉素(gibberellins,GA)等參與介導響應,進而影響生長發(fā)育狀態(tài)[25]。荔枝全株遮陰后,新葉的比重顯著降低,葉片變得“大而薄”[26],顯著降低荔枝枝梢的生長量[27]。但是,在樹體恢復期和主花期前期,蔭蔽度30%可以促進胡椒葉片的糖積累[28]。枇杷成年樹要求較充足的光照,蔭蔽嚴重的樹冠會造成內(nèi)膛郁閉或骨干枝光禿,結果部位外移[3],果實生長發(fā)育期持續(xù)高強度蔭蔽,會造成枇杷葉片變薄、落片,影響干物質積累[11]。本試驗中,由于受避雨設施葡萄的長期蔭蔽脅迫,棚內(nèi)套種盆栽枇杷的枝梢數(shù)量、枝梢長度、粗度、葉片數(shù)均明顯減少,而周政華等[5]認為夏季不同遮光率的遮陽網(wǎng)對枇杷新梢的數(shù)量、長度、粗度等沒有影響。結論不同,可能與本試驗遮陰時間長、遮陰強度不同及品種反應不同有關。棚內(nèi)枇杷種植第2年的南北冠幅、樹高度、干周、葉幕層厚、枝梢數(shù)均顯著減少,花穗變小、葉片薄但葉面積增大,與周琳耀等[26]研究結果相同,這是因為蔭蔽脅迫降低了紅光與遠紅光的比值,有利于植株葉片變大,以增加生物量積累[29]。這說明遮陰強度越大、持續(xù)時間越長,越不利于枇杷樹體生長。因此,避雨設施栽培葡萄套種枇杷,在夏季葡萄開花結果的生長旺盛期,需加強葡萄的修剪,增加光照,減弱對枇杷夏梢和秋梢生長的遮陰作用,此外還需對葡萄與枇杷的品種進行篩選。
3.3 避雨設施葡萄下的環(huán)境因子對枇杷結果的影響
蔭蔽脅迫影響作物的光合速率[30-31]、礦質營養(yǎng)積累[26]、坐果率[32]、產(chǎn)量[33]和病害發(fā)生[13,32],適度遮陰會提高桃[22]、草莓[34]果實品質。櫻桃果實膨大期適度遮陰可降低裂果率、增加單果質量[35]。開花早期遮陰對番茄果實產(chǎn)量影響較小,盛花期重度遮陰使產(chǎn)量降低[36]。本試驗中,第1年未疏花疏果,葡萄遮陰顯著影響枇杷花穗數(shù)、花穗大小、果穗質量、單果質量和單株產(chǎn)量;第2年正常疏花疏果后,棚內(nèi)枇杷的單株產(chǎn)量較棚外顯著減少,對果穗質量、單果質量的影響不顯著。這是因為枇杷的結果枝性狀與產(chǎn)量關系密切,而持續(xù)動態(tài)蔭蔽脅迫下,光合產(chǎn)物的積累受到影響[11,31],造成枝梢數(shù)量與質量下降,進而顯著影響枇杷的開花結果,降低產(chǎn)量。果實成熟期覆蓋遮陽網(wǎng)[5]、設施栽培[37]可改善生長環(huán)境,有效防止裂果,但設施內(nèi)溫度過高會導致果實日灼與皺果[37]。試驗第1年,果實生長季雨水較多,避雨設施葡萄下套種盆栽枇杷的裂果率、炭疽病果率、日灼果率明顯減少。第2年干旱少雨,棚內(nèi)枇杷落果率、炭疽病果率、日灼果率、皺果率顯著減少。這表明避雨設施葡萄可減少套種枇杷果實的病蟲害,提高好果率。
4 結 論
避雨設施栽培葡萄的生長發(fā)育,可動態(tài)影響套種區(qū)的微生態(tài)環(huán)境,降低套種枇杷的枝梢、花穗的數(shù)量和質量,而套種的枇杷可正常生長、結果,且果實病蟲害減少,說明避雨設施栽培葡萄下套種枇杷是一種可行的種植模式,但需進一步研究適宜的配套栽培技術。
致謝:本試驗得到本所葡萄和楊梅課題組的試驗場地支持,一并致謝!
參考文獻 References:
[1] 許奇志,鄧朝軍,蔣際謀,陳天佑,陳秀萍,鄭少泉. 枇杷裂果病發(fā)生影響因素探討[J]. 中國南方果樹,2016,45(2):93-96.
XU Qizhi,DENG Chaojun,JIANG Jimou,CHEN Tianyou,CHEN Xiuping,ZHENG Shaoquan. Discussion on influencing factors of loquat fruit cracking disease[J]. South China Fruits,2016,45(2):93-96.
[2] 鄧朝軍,蔣際謀,張小艷,許奇志,章希娟,魏秀清,鄭少泉. 枇杷果皮熱傷害發(fā)生影響因子研究[J]. 福建農(nóng)業(yè)學報,2012,27(10):1081-1086.
DENG Chaojun,JIANG Jimou,ZHANG Xiaoyan,XU Qizhi,ZHANG Xijuan,WEI Xiuqing,ZHENG Shaoquan. Research on influence factors in heat injury of loquat peel[J]. Fujian Journal of Agricultural Sciences,2012,27(10):1081-1086.
[3] 蔣際謀,陳秀萍. 枇杷優(yōu)質栽培百問百答[M]. 2版. 北京:中國農(nóng)業(yè)出版社,2009:8.
JIANG Jimou,CHEN Xiuping. Questions and answers on quality cultivation of loquat[M]. 2nd ed. Beijing:China Agriculture Press,2009:8.
[4] 李中瀚,劉明慧,唐美玲,鄭秋玲,徐魯成,高振,杜遠鵬. 避雨棚膜Coverlys TF150?對葡萄植株生長發(fā)育及光合特性的影響[J]. 果樹學報,2023,40(6):1171-1179.
LI Zhonghan,LIU Minghui,TANG Meiling,ZHENG Qiuling,XU Lucheng,GAO Zhen,DU Yuanpeng. Effects of Coverlys TF150? on the growth and photosynthetic characteristics of grape plants[J]. Journal of Fruit Science,2023,40(6):1171-1179.
[5] 周政華,文向多,胡小三. 樹冠遮陰對大五星枇杷生長結果的影響試驗[J]. 現(xiàn)代農(nóng)業(yè)科技,2007(11):6-7.
ZHOU Zhenghua,WEN Xiangduo,HU Xiaosan. Effect of crown shading on growth and fruiting of Dawuxing loquat[J]. Modern Agricultural Science and Technology,2007(11):6-7.
[6] 許晶明. 設施栽培對早鐘6號枇杷果實生長的影響[J]. 福建農(nóng)業(yè)學報,2011,26(6):1142-1145.
XU Jingming. Facility for cultivating Zaozhong Ⅵ loquat[J]. Fujian Journal of Agricultural Sciences,2011,26(6):1142-1145.
[7] 顏惠煌,陳旭,邱志鵬,李敏,邱棟梁. 福建省葡萄設施栽培現(xiàn)狀及發(fā)展前景[J]. 亞熱帶農(nóng)業(yè)研究,2014,10(4):285-287.
YAN Huihuang,CHEN Xu,QIU Zhipeng,LI Min,QIU Dongliang. Current status and prospects of grape protected cultivation in Fujian Province[J]. Subtropical Agriculture Research,2014,10(4):285-287.
[8] 鐘珍梅,劉明香,李振武. 設施葡萄立體栽培模式與經(jīng)濟效益分析[J]. 現(xiàn)代農(nóng)業(yè)科技,2016(10):240,242.
ZHONG Zhenmei,LIU Mingxiang,LI Zhenwu. Stereoscopic cultivation mode and economic benefit analysis of facility grape[J]. Modern Agricultural Science and Technology,2016(10):240,242.
[9] 雷龑,蔡盛華,詹小敏,黃新忠. 福建葡萄產(chǎn)業(yè)發(fā)展現(xiàn)狀與對策[J]. 中外葡萄與葡萄酒,2009(11):73-75.
LEI Yan,CAI Shenghua,ZHAN Xiaomin,HUANG Xinzhong. Present situation and countermeasures of grape industry development in Fujian[J]. Sino-Overseas Grapevine & Wine,2009(11):73-75.
[10] 林嘉興,張林仁. 遮光處理對枇杷產(chǎn)期及品質之影響[J]. 臺中區(qū)農(nóng)業(yè)改良場特刊,1994(34):117-126.
LIN Jiaxing,ZHANG Linren. Effect of shading treatment on production season and quality of loquat[J]. Special Issue of Taichung Agricultural Improvement Farm,1994(34):117-126.
[11] 單幼霞. 光脅迫對枇杷果實發(fā)育期間生理生化的影響[D]. 杭州:浙江農(nóng)林大學,2018.
SHAN Youxia. The effect of light stress on physiological and biochemical characteristics on loquat during fruit development[D]. Hangzhou:Zhejiang A & F University,2018.
[12] 中華人民共和國農(nóng)業(yè)部. 農(nóng)作物種質資源鑒定技術規(guī)程 枇杷:NY/T 1304—2007[S]. 北京:中國標準出版社,2007.
The Ministry of Agriculture of the Peoples Republic of China. Technical code for evaluating germplasm resources loquat [Eriobotrya japonica (Thunb.) Lindl.]:NY/T 1304—2007[S]. Beijing:Standards Press of China,2007.
[13] 栗進朝,段羅順,張曉申. 避雨對葡萄病害和光照度的影響[J]. 果樹學報,2009,26(6):847-850.
LI Jinchao,DUAN Luoshun,ZHANG Xiaoshen. Effect of rainproof cultivation on grape disease incidence and light intensity under the shelter[J]. Journal of Fruit Science,2009,26(6):847-850.
[14] 韓真,李秀杰,張慶田,劉利,李勃. 避雨栽培對葡萄葉幕光照度和成本收益的影響[J]. 山東農(nóng)業(yè)科學,2018,50(11):52-54.
HAN Zhen,LI Xiujie,ZHANG Qingtian,LIU Li,LI Bo. Effects of rain-shelter cultivation on light intensity in canopy,cost and benefit[J]. Shandong Agricultural Sciences,2018,50(11):52-54.
[15] 常萍,吳文瑩,呂中偉. 葡萄避雨棚內(nèi)外光照度及溫度變化動態(tài)研究[J]. 中國果菜,2016,36(9):31-34.
CHANG Ping,WU Wenying,L? Zhongwei. Grape rain shed light on the dynamic changes of internal and external strength and temperature[J]. China Fruit Vegetable,2016,36(9):31-34.
[16] 沈長華,戴琳貴,曹李興,葉永青,祁敏. 南方連棟避雨塑料大棚小氣候及其對紅提葡萄品質的影響[J]. 中國農(nóng)業(yè)氣象,2009,30(S1):68-72.
SHEN Changhua,DAI Lingui,CAO Lixing,YE Yongqing,QI Min. Microclimate of multi-span plastic greenhouse and its impacts on quality of Red Globe grape in southern China[J]. Chinese Journal of Agrometeorology,2009,30(S1):68-72.
[17] 劉衛(wèi)國,蔣濤,佘躍輝,楊峰,楊文鈺. 大豆苗期莖稈對蔭蔽脅迫響應的生理機制初探[J]. 中國油料作物學報,2011,33(2):141-146.
LIU Weiguo,JIANG Tao,SHE Yuehui,YANG Feng,YANG Wenyu. Preliminary study on physiological response mechanism of soybean (Glycine max) stem to shade stress at seedling stage[J]. Chinese Journal of Oil Crop Sciences,2011,33(2):141-146.
[18] 許軻,張洪程,戴其根,霍中洋,張軍. 稻田套播麥共生期農(nóng)田生態(tài)環(huán)境特征及對小麥生長的影響[J]. 中國農(nóng)業(yè)科學,2008,41(8):2263-2270.
XU Ke,ZHANG Hongcheng,DAI Qigen,HUO Zhongyang,ZHANG Jun. Characteristics of farmland eco-environment at interplanting stage of wheat interplanted in paddy and their effects on wheat growth[J]. Scientia Agricultura Sinica,2008,41(8):2263-2270.
[19] 張保民,張黎黎. 麥田套種對玉米環(huán)境因子及生長發(fā)育影響的研究[J]. 山東農(nóng)業(yè)大學學報(自然科學版),2008,39(4):495-500.
ZHANG Baomin,ZHANG Lili. Wheat field interplantion to corn environment factor and growth growthinfulence research[J]. Journal of Shandong Agricultural University (Natural Science Edition),2008,39(4):495-500.
[20] 程亞嬌,諶俊旭,王仲林,范元芳,陳思宇,李澤林,劉沁林,李中川,楊峰,楊文鈺. 光強和光質對大豆幼苗形態(tài)及光合特性的影響[J]. 中國農(nóng)業(yè)科學,2018,51(14):2655-2663.
CHENG Yajiao,CHEN Junxu,WANG Zhonglin,F(xiàn)AN Yuanfang,CHEN Siyu,LI Zelin,LIU Qinlin,LI Zhongchuan,YANG Feng,YANG Wenyu. Effects of light intensity and light quality on morphological and photosynthetic characteristics of soybean seedlings[J]. Scientia Agricultura Sinica,2018,51(14):2655-2663.
[21] 曹錳. 避雨栽培對葡萄生長小氣候及果實品質的影響[D]. 北京:中國農(nóng)業(yè)科學院,2015.
CAO Meng. Rain-shelter cultivation influences microclimate and grape quality[D]. Beijing:Chinese Academy of Agricultural Sciences,2015.
[22] 何鳳梨,王飛,魏欽平,王小偉,張強. 桃樹冠層相對光照分布與果實產(chǎn)量品質關系的研究[J]. 中國農(nóng)業(yè)科學,2008,41(2):502-507.
HE Fengli,WANG Fei,WEI Qinping,WANG Xiaowei,ZHANG Qiang. Relationship between distribution of relative light intensity in canopy and yield and quality of peach fruit[J]. Scientia Agricultura Sinica,2008,41(2):502-507.
[23] WERTHEIM S J,WAGENMAKERS P S,BOOTSMA J H,GROOT M J. Orchard systems for apple and pear:Conditions for success[J]. Acta Horticulturae,2001(557):209-227.
[24] YYANG F,WANG X C,LIAO D P,LU F Z,GAO R C,LIU W G,YONG T W,WU X L,DU J B,LIU J,YANG W Y. Yield response to different planting geometries in maize-soybean relay strip intercropping systems[J]. Agronomy Journal,2015,107(1):296-304.
[25] 帥海威,孟永杰,陳鋒,周文冠,羅曉峰,楊文鈺,舒凱. 植物蔭蔽脅迫的激素信號響應[J]. 植物學報,2018,53(1):139-148.
SHUAI Haiwei,MENG Yongjie,CHEN Feng,ZHOU Wenguan,LUO Xiaofeng,YANG Wenyu,SHU Kai. Phytohormone-mediated plant shade responses[J]. Chinese Bulletin of Botany,2018,53(1):139-148.
[26] 周琳耀,莫偉平,張靜逸,黃俊波,貝學文,付欣雨,王惠聰,黃旭明. 遮陰對荔枝光合特征及礦質營養(yǎng)積累的影響[J]. 果樹學報,2014,31(2):270-275.
ZHOU Linyao,MO Weiping,ZHANG Jingyi,HUANG Junbo,BEI Xuewen,F(xiàn)U Xinyu,WANG Huicong,HUANG Xuming. Effects of shading on photosynthetic characteristics and mineral nutrition in Litchi[J]. Journal of Fruit Science,2014,31(2):270-275.
[27] HIEKE S,MENZEL C M,L?DDERS P. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis)[J]. Tree Physiology,2002,22(17):1249-1256.
[28] 祖超,楊建峰,李志剛,王燦,魚歡,鄔華松. 遮陰對胡椒主花期葉片碳代謝及成花量的影響[J]. 熱帶作物學報,2015,36(9):1561-1567.
ZU Chao,YANG Jianfeng,LI Zhigang,WANG Can,YU Huan,WU Huasong. Effect of shading on carbon metabolism and inflorescence quantity in black pepper during full-bloom stage[J]. Chinese Journal of Tropical Crops,2015,36(9):1561-1567.
[29] PARK Y,RUNKLE E S. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation[J]. Environmental and Experimental Botany,2017,136:41-49.
[30] 陳延松,袁華玲,衛(wèi)文淵,劉思芹,陳加偉,姚成林. 夏季遮陽對‘紅陽獼猴桃凈光合速率的影響及其與生理生態(tài)因子的關系[J]. 果樹學報,2017,34(9):1144-1151.
CHEN Yansong,YUAN Hualing,WEI Wenyuan,LIU Siqin,CHEN Jiawei,YAO Chenglin. Impact of summer shading on net photosynthetic rate of Actinidia chinensisHongyang and its related eco-physiological factors[J]. Journal of Fruit Science,2017,34(9):1144-1151.
[31] 莫偉平,周琳耀,張靜逸,黃俊波,貝學文,付欣雨,王惠聰,黃旭明. 遮陰和環(huán)剝對荔枝枝梢生長和光合生理的影響[J]. 園藝學報,2013,40(1):117-124.
MO Weiping,ZHOU Linyao,ZHANG Jingyi,HUANG Junbo,BEI Xuewen,F(xiàn)U Xinyu,WANG Huicong,HUANG Xuming. Effects of shading and girdling on shoot growth and photosynthesis in Litchi[J]. Acta Horticulturae Sinica,2013,40(1):117-124.
[32] 陶麗,倪書邦,賀熙勇,陳麗蘭,陳國云,肖高中. 遮陰對澳洲堅果樹干日灼、生長及座果的影響[J]. 熱帶農(nóng)業(yè)科技,2004,27(2):7-9.
TAO Li,NI Shubang,HE Xiyong,CHEN Lilan,CHEN Guoyun,XIAO Gaozhong. Effect of shading on Sun burn,growth and fruit setting of macadamia[J]. Tropical Agricultural Science & Technology,2004,27(2):7-9.
[33] 劉賢趙,康紹忠. 番茄不同生育階段遮陰對光合作用與產(chǎn)量的影響[J]. 園藝學報,2002,29(5):427-432.
LIU Xianzhao,KANG Shaozhong. Effects of shading on photosynthesis and yield of tomato plants at different growth stages[J]. Acta Horticulturae Sinica,2002,29(5):427-432.
[34] 彭鑫,王喜樂,倪彬彬,陳思蘭,葉超琳,胡君艷,左照江. 遮陰對草莓光合特性和果實品質的影響[J]. 果樹學報,2018,35(9):1087-1097.
PENG Xin,WANG Xile,NI Binbin,CHEN Silan,YE Chaolin,HU Junyan,ZUO Zhaojiang. Effects of shading on photosynthetic characteristics and fruit quality in strawberry[J]. Journal of Fruit Science,2018,35(9):1087-1097.
[35] 曹甲,黃宗興,劉珠琴. 遮陽處理對中國櫻桃果實品質的影響[J]. 園藝與種苗,2017,37(8):44-45.
CAO Jia,HUANG Zongxing,LIU Zhuqin. Effects of shading treatment on Chinese cherry fruit quality[J]. Horticulture & Seed,2017,37(8):44-45.
[36] 劉賢趙,康紹忠. 不同生長階段遮陰對番茄光合作用、干物質分配與葉N、P、K的影響[J]. 生態(tài)學報,2002,22(12):2264-2271.
LIU Xianzhao,KANG Shaozhong. Effects of shading on photosynthesis,dry matter partitioning and N,P,K concentrations in leaves of tomato plants at different growth stages[J]. Acta Ecologica Sinica,2002,22(12):2264-2271.
[37] 陳俊偉,孫鈞,周曉音,李曉穎,徐紅霞,朱治龍,張林,陳翔,王朝麗. 浙江白肉枇杷避雨設施栽培技術[J]. 浙江農(nóng)業(yè)科學,2017,58(12):2190-2192.
CHEN Junwei,SUN Jun,ZHOU Xiaoyin,LI Xiaoying,XU Hongxia,ZHU Zhilong,ZHANG Lin,CHEN Xiang,WANG Chaoli. Cultivation techniques of Zhejiang white meat loquat protected from rain[J]. Journal of Zhejiang Agricultural Sciences,2017,58(12):2190-2192.
收稿日期:2023-04-03 接受日期:2023-07-03
基金項目:福建省屬公益類科研院所基本科研專項(2020R1028006,2016R1013-9);中央引導地方科技發(fā)展專項(2021L3022);國家重點研發(fā)計劃項目(2019YFD1000905);福建省農(nóng)業(yè)科學院科技創(chuàng)新團隊(CXTD2021004-1);中國農(nóng)技協(xié)福建科協(xié)莆田枇杷科技小院
作者簡介:許奇志,男,農(nóng)藝師,主要從事果樹栽培、育種與種質資源研究。Tel:13328279661,E-mail:xqzhi1839@163.com
通信作者Author for correspondence. Tel:13774575126,E-mail:jjm2516@126.com