楊凡 范志偉 溫超 李曉麗 李志強 齊文華
摘要地面三維激光掃描儀(Terrestrial Laser Scanning,TLS)作為新興的一門技術,逐漸被應用到測量等各個領域,是獲取地物目標 LiDAR( Light Detection and Ranging)高精度數(shù)據(jù)的主要途徑。TLS 能夠探測到建(構)筑物更多細節(jié)方面的信息,主要包括建筑物結構的變形和損傷(包括建筑物墻體的剪切開裂、墻面脫落及承重構件的損傷),同時可以獲得諸如墻體傾斜、裂縫空間分布、體積和位置變化計算等更多的測量數(shù)據(jù)。TLS 高精度數(shù)據(jù)的獲取為提取變形較小、肉眼無法識別的破壞特征提供了技術幫助。本研究回顧總結了 TLS 在建筑物變形監(jiān)測、三維建模、數(shù)據(jù)分析方法和建筑物震害損失分析方面的研究。在文獻回顧和深入討論后,提出了 TLS 在建筑物震害分析中未來的研究方向。
關鍵詞地面三維激光掃描儀;LiDAR;建筑物;地震震害
中圖分類號: P225.2;TU198文獻標識碼: A文章編號:2096-7780(2023)07-0289-07
doi:10.19987/j.dzkxjz.2022-167
A review of application of terrestrial laser scanning inbuilding seismic damage analysis
Yang Fan1, 2, 3),F(xiàn)an Zhiwei1, 2),Wen Chao1, 2),Li Xiaoli4),Li Zhiqiang4),Qi Wenhua3)
1) Hebei Hongshan National Observatory on Thick Sediments and Seismic Hazards, Hebei Xingtai 055350, China
2) Hebei Earthquake Agency, Hebei Shijiazhuang 050021, China
3) Institute of Geology, China Earthquake Administration, Beijing 100029, China
4) China Earthquake Networks Center, Beijing 100045, China
Abstract TerrestrialLaserScanning (TLS),asanemergingtechnology,is gradually being applied to various fields such as surveying,and it is the main way to obtain LiDAR high-precision data for ground-based targets. TLS can detect more detailed information about the building,mainly including deformation and damage of the building structure (including shear cracking of the building walls,wall shedding and damage of load-bearing elements),and it can obtain more measurement data such as wall tilt,spatial distribution of cracks,volume and position change calculation,etc. The acquisition of TLS high-precision data provides technical assistance for extracting damage features that are less deformed and cannot be identified by the naked eye. This study reviews and summarizes the research of TLS in building deforma- tion monitoring,3D modeling,data analysis methods and building ballast loss analysis. After the literature review and in- depth discussion,future research directions of TLS in seismic analysis of buildings are proposed.
KeywordsTLS; LiDAR; building; seismic damage
引言
LiDAR( Light Detection and Ranging)又稱為激光雷達或激光測距儀,該技術的興起開始于20世紀70 年代后期,是近幾十年來快速發(fā)展的一種新型測量技術,它可直接獲取目標物的三維坐標,從而實現(xiàn)對目標物信息的提取和三維場景的建模,已經(jīng)廣泛應用到各個行業(yè),其具有的分辨率高、抗干擾能力強、低空探測性能好等優(yōu)點,為其廣泛的應用前景提供了保障。LiDAR 基于搭載平臺的不同,激光雷達可分為星載激光雷達、機載激光雷達、車載激光雷達和地面激光雷達[1]。
隨著科學技術的發(fā)展,激光雷達( LiDAR)技術在20世紀80年代快速發(fā)展(圖1),地面三維激光掃描儀( Terrestrial Laser Scanning,TLS)作為新興的一門技術,逐漸被應用到測量等各個領域,是獲取地物目標 LiDAR 高精度數(shù)據(jù)的主要途徑。TLS 是一種利用激光反射信號進行量測的新型傳感技術,它可以通過發(fā)射和接收激光光束測量目標與掃描儀之間的距離,并通過激光光束發(fā)射時掃描儀的姿態(tài)角計算目標表面所有采樣點的三維坐標。與傳統(tǒng)的遙感技術相比,三維激光掃描技術具有準確、快速、實時獲取目標地物表面真實形狀數(shù)據(jù)的能力。由于其基于主動式的測量方式,不依賴于可見光,具有更加靈活的作業(yè)方式[2-3]。與機載 LiDAR 相比,TLS 能夠探測到建(構)筑物更多細節(jié)方面的信息,主要包括建筑物結構的變形和損傷(包括建筑物墻體的剪切開裂、墻面脫落及承重構件的損傷),同時可以獲得諸如墻體傾斜、裂縫空間分布、體積和位置變化計算等更多的測量數(shù)據(jù)。TLS 高精度數(shù)據(jù)的獲取為提取偏差較小、肉眼無法識別的破壞特征提供了技術幫助[4]。
近些年來,地面激光掃描技術在三維建模、文物保護、變形監(jiān)測、森林結構調查、建筑物幾何質量評估等不同領域得到廣泛應用[5]。地面攝影測量被證明是一種準確的地震損害快速評估方法[6],利用 TLS 掃描震后建筑物獲取三維點云數(shù)據(jù),快速提取建筑物震害信息能夠為震后的應急救援和損失評估提供技術支撐和科學保障。該應用的一個重要擴展功能是在地震后使用 TLS 掃描看似安全的建筑物,以確保不存在視覺上可能無法檢測到的重大變形[7]。利用三維激光掃描儀對建(構)筑物進行掃描,不僅可以獲得建(構)筑物高精度平面數(shù)據(jù)信息,同時還能獲取建(構)筑物垂直于平面的變形信息,為震后建(構)筑物的震害等級定量分析提供了高精度數(shù)據(jù)支撐,提高了建(構)筑物中肉眼難辨的傾斜和變形識別認知度及震害信息的判別精度,尤其是地震現(xiàn)場科考過程中對基本完好、輕微破壞建筑物識別判定模糊的問題和震后建筑物的安全隱患問題[8]。
1 地面三維激光掃描儀的應用
1.1 在 LiDAR 點云數(shù)據(jù)信息提取方法方面
沈蔚等[9]和王大瑩等[10]將“Alpha Shapes 算法”應用于建筑物 LiDAR 數(shù)據(jù)輪廓線提取與規(guī)則化,實踐證明了該算法在 LiDAR點云數(shù)據(jù)提取建筑輪廓線方面的精準性。Makuch 和Gawronek[2]提出了基于三維激光掃描儀數(shù)據(jù)利用 PCA 分析和區(qū)域增長算法進行自動檢測的方案,提高了建筑物外立面測量的精度和工作效率,為局部表面修復的幾何特征分析提供參考依據(jù)。孟濤等[11]提出了基于曲線內插法對點云空洞修補的方法。朱濱等[12]基于 PCA 算法計算分析點云數(shù)據(jù)的法向量,實現(xiàn)建筑物點云里面邊界的提取。周強等[13]基于全局平面擬合結果,使用邊緣系數(shù)方法提取古陶瓷片的邊緣輪廓。廖中平等[14]提出了調節(jié)滾動圓半徑的 Alpha-Shapes 平面點云邊界提取算法。Nasrollahi 等[15]基于 LiDAR 數(shù)據(jù)的深度神經(jīng)網(wǎng)絡分析三維點集,用于檢測混凝土表面缺陷。Mo-hammadi等[16]利用深度學習的方法結合三維點云數(shù)據(jù)的幾何、顏色等特點定量評估目標物在颶風破壞后的災損情況。盧凌雯和梁棟棟[17]針對不同尺度三維點云數(shù)據(jù),提出了一種基于 PCL 不同尺度下最優(yōu)順序組合的點云濾波去噪方法。陳茂霖[18]通過對地面 LiDAR 原始點云數(shù)據(jù)的索引、拼接及建筑物提取分析,實現(xiàn)建筑物平面分割與重構。Saraf 等[19]基于地面 LiDAR 數(shù)據(jù)構建建筑物數(shù)字表面模型( DSM),并對模型中提取的建筑物進行準確性評價。為了解決 LiDAR點云提取復雜建筑物屋頂面不完整和閾值難設置的問題,趙傳等[20]建立了結合點云空間分布的法向量密度聚類提取屋頂面點云的研究方法。針對地面 LiDAR 點云冗余數(shù)據(jù)影響,陳朋等[21]提出建筑物點云特征線提取方法,用于點云數(shù)據(jù)特征信息的提取。為了解決多視點立體和密集匹配算法的局限性,Shao 等[22]提出了一種基于低空遙感影像的新型多視角密集點云生成算法。
1.2 在建筑物幾何質量評估和變形監(jiān)測方面
利用 TLS 對建筑物結構構件損壞的持續(xù)監(jiān)測與分析實驗,證明了它在結構建模和分析應用方面的有效性[23-24]。利用 TLS 獲取的高精度數(shù)據(jù)結合最小二乘法應用于建筑物平面規(guī)整度的質量評價[25]。劉興奇[26]基于地面三維激光掃描技術進行逆向建模,對墻體垂直度和整體傾斜度進行檢測。趙興友[27]通過三維激光掃描儀在建筑物立面測繪精度實例分析,驗證了三維激光掃描儀在建筑物立面檢測中的可行性。羅奎等[28]采用 Leica P40地面三維激光掃描儀對塔式建筑物分期采集,對兩期數(shù)據(jù)進行模型擬合和點位差異分析,實現(xiàn)對塔式建筑物的變形監(jiān)測。《混凝土結構工程施工質量驗收規(guī)范》( GB 50204—2015)為混凝土結構工程施工質量驗收提供了統(tǒng)一的技術要求和技術指標[29]。《砌體結構工程施工質量驗收規(guī)范》( GB 50203—2011)為砌體結構工程施工質量驗收提供了統(tǒng)一的技術要求和技術指標[30]。Kim 等[31]利用三維激光掃描儀收集預制混凝土構建數(shù)據(jù),開展目標物幾何質量檢測研究,并證明了其可行性。Sun 等[32]為了解決三維激光掃描儀在變形監(jiān)測領域缺乏適用的分析方法,提出了一種基于點云法向量提取基準特征和分析變形的方法。Tang 等[33]回顧了從激光掃描的點云數(shù)據(jù)自動重建已建 BIM 模型的相關技術。P?tr?ucean等[34]回顧了關于已建 BIM 模型重建的最先進的研究工作,特別是側重于從點云數(shù)據(jù)對建筑元素的幾何形狀進行建模。Lu 和 Lee[35]回顧了基于圖像的 BIM 模型重建的方法。Son 等[36] 回顧了點云數(shù)據(jù)在兩個具體應用中的使用,包括生產(chǎn)監(jiān)控和民用基礎設施的自動布局。Ma 和 Liu[37]介紹了土木工程中的三維重建技術及其應用。Ray 和Teizer[38]獲得了建筑設備的點云數(shù)據(jù),以計算建筑設備的盲點圖,并進一步設計更安全的建筑設備。 Cheng 和Teizer[39]根據(jù)點云數(shù)據(jù)生成了施工現(xiàn)場資源的三維模型,并在 VR 環(huán)境下基于模型進行了安全隱患模擬。Fang 等[40]提出了一個框架,利用從點云數(shù)據(jù)生成的建筑工地三維模型來協(xié)助基于 VR 的移動起重機吊裝作業(yè)。
1.3 在三維建模和文物保護方面
利用 TLS 對古建筑掃描評估和三維建模,為古建筑的保護和維修提出了有效解決方案[41]?;谌S建模的三維形狀特征測量方法,評估震后建筑物破壞程度[7]?;谌蔷W(wǎng)不規(guī)則模型,利用 LiDAR 數(shù)據(jù)和 GIS 對建筑物進行三維建模,實現(xiàn)震后建筑物損失評估和災難場景構建[42]。Xu 等[43]基于地面三維激光掃描儀點云數(shù)據(jù)的高精度 B-Spline 優(yōu)化模型,結合有限元分析對拱形建筑進行裂縫區(qū)域預測。
Antón 等[44]利用地面激光掃描數(shù)據(jù)對考古群進行三維建模,并通過有限元方法對結構破壞區(qū)域進行靜態(tài)和模態(tài)分析。Russhakim等[45]通過對比分析地面三維激光掃描儀和手持移動激光掃描儀( MLS)的數(shù)據(jù)精度,證明了地面三維激光掃描儀的數(shù)據(jù)精度高于 MLS。Antón 等[46]利用點云數(shù)據(jù)和 BIM 工具對創(chuàng)建歷史建筑物信息模型( HBIM)的三維建模精度進行了分析。Yang 等[47]利用 TLS 獲取的混凝土復合結構高精度數(shù)據(jù),對拱形結構建筑物進行測量,介紹了原始和優(yōu)化點云提取方法的不同。為了解決歷史建筑物三維重建的精度高和部件信息數(shù)量多的問題,李敏珍等[48]提出 TLS 高精度數(shù)據(jù)精細化模型重建的方法,實現(xiàn)模型的部件化管理。
1.4 在震后建筑物的損失分析方面
地震發(fā)生后建筑物震害分布圖有助于救援人員更好的開展救援行動,為了從 LiDAR 數(shù)據(jù)中快速提取建筑物震害數(shù)據(jù),判定建筑物的震害等級,有必要了解 LiDAR 數(shù)據(jù)特征和分類器的有效性。Jiao 等[49] 和 Jiang 等[50]提出了基于地面 LiDAR 數(shù)據(jù)的建筑物形狀分析模型,有效解決了建筑物等高多邊形序列提取、形狀離散參數(shù)提取、不規(guī)則建筑物區(qū)塊分割與震害分析等問題。在震后建筑物墻體裂縫提取方面, Jiang 等[50]采用平面三角剖分建模方法構建三角形不規(guī)則網(wǎng)絡數(shù)據(jù)集,基于裂縫寬度的反距離加權點云光柵化方法生成柵格曲面,根據(jù)裂縫的形狀特征提取相關信息。崔驛寧等[51]通過3D 點云深度學習的方法建立單體建筑物震害分類識別和震后點云場景分割模型,進行建筑物震害信息提取。Zhang 等[52]提出了基于擴張卷積的全卷積網(wǎng)絡用于混凝土裂縫檢測。Liao 等[53]基于地面激光雷達掃描數(shù)據(jù)結合有限元模型分析預測建筑物的抗震性能。Vasilakos 等[6]將地面攝影測量數(shù)據(jù)與激光掃描儀的點云數(shù)據(jù)進行對比分析,驗證了地面攝影測量在震后快速損失評估中的可行性。Turkan 等[54]提出了一種基于自適應小波神經(jīng)網(wǎng)絡的方法將 TLS 數(shù)據(jù)壓縮成低分辨率和高分辨率的組合,實現(xiàn)自動檢測混凝土裂縫和其他形式的損壞。Rastiveis等[55]提出一種基于對象的方法,利用 LiDAR 數(shù)據(jù)繪制地震后的破壞性建筑。Puente 等[56]提出了一種基于擬合平面與點云距離的方法,用于監(jiān)測建筑物 LiDAR 數(shù)據(jù)的漸進式破壞。Yang 等[8] 利用地面 LiDAR數(shù)據(jù)的高精度特點,結合 Alpha sha- pes 算法創(chuàng)建了三角網(wǎng)矢量模型(TIN-shape modle),解決了震后建筑物破壞特征提取偏差較小、肉眼無法識別的問題。Janalipour和 Mohammadzadeh[57]研究了基于 LiDAR 數(shù)據(jù)的3種紋理提取方法和3種模糊系統(tǒng)用于建立建筑物破壞圖。為解決震后機載 LiDAR 數(shù)據(jù)對建筑物結構破壞的判定,He 等[58]提出單個屋頂?shù)娜S形狀描述法,通過識別完整屋頂?shù)木o湊和規(guī)則的輪廓以及受損屋頂?shù)匿忼X狀和不規(guī)則的輪廓的空間模式來檢測有表面損傷的屋頂和表現(xiàn)出結構損傷的屋頂。Pellegrinelli等[59]利用 TLS 和水準儀兩種方法對意大利震后歷史建筑斜塔進行監(jiān)測對比,證明了兩種方法在建筑物變形中應用的可行性。
2 對未來研究的建議
地面三維激光掃描儀在城鎮(zhèn)建筑物震害損失評估應用方面,通過持續(xù)采集震前震后建筑物數(shù)據(jù)進行三維建模對比分析,實現(xiàn)建筑物震害信息的快速提取和震害等級判定,但是在數(shù)據(jù)采集方面存在一定的局限性。基于地面 LiDAR 數(shù)據(jù)高精度特點,對建筑物震害信息的提取與分析,解決了傾斜、鼓包、外閃等特征在震害等級輕微破壞和中等破壞判定模糊的問題。
在中國農(nóng)村,居民自建房屋結構類型、幾何形狀、建筑材料的隨機性和自定義性較強,震后損壞建筑物震害信息提取變得更加復雜,這是影響建筑物震害等級定量分析方法在地震應急中實用化推廣的最根本原因。探討不同結構類型建筑物不同承重構件的震害特征和信息檢測提取方法,將是未來地震現(xiàn)場工作建(構)筑物震害等級劃分和安全鑒定的一個研究內容。
低成本地面 LiDAR 數(shù)據(jù)采集設備的面世投產(chǎn)為后期推廣應用奠定了基礎,但其采集數(shù)據(jù)精度是否滿足建筑物震害信息定量分析要求,有待進一步驗證。
目前數(shù)據(jù)采集設備多樣化,紅外設備也具有建筑物數(shù)據(jù)采集的功能,該設備采集的建筑物震害信息數(shù)據(jù)與地面 LiDAR點云數(shù)據(jù)之間存在怎樣的對應關系,是否滿足建筑物震害信息定量分析的要求,有待進一步研究。
3 結論
本文回顧了地面三維激光掃描儀在建筑物變形監(jiān)測、震害信息提取等方面的研究,從廣泛認可的期刊收集整理了相關研究論文,并對論文的研究內容進行了分類和總結,包括 LiDAR 數(shù)據(jù)提取方法、分析方法、模型構建等。為研究基于地面三維激光掃描儀在建筑物震害信息提取分析的相關人員提供了重要參考。
本研究總結了 TLS 在建(構)筑物變形監(jiān)測、數(shù)據(jù)分析方法、震害信息提取等方面的先進算法和技術,但仍然存在局限性。在研究文獻收集整理過程中
未對建筑物結構類型進行細化分類。需要在后期研究中對不同結構類型建筑物的安全鑒定進行有針對性研究。
參考文獻
[1]竇愛霞.基于機載 LiDAR 數(shù)據(jù)的建筑物震害識別特征參數(shù)研究[D].北京:中國地震局地質研究所,2018
Dou A X. Studyonearthquakedamageidentificationfeature parametersof building basedonairborne LiDAR data[D]. Beijing: Institute of Geology,China Earthquake Administration,2018
[2]Makuch M,Gawronek P.3D point cloud analysis for damage detection on hyperboloid cooling towershells[J]. RemoteSensing,2020,12(10):1542
[3]Markiewicz J,?apiński L,Kot P,et al. The quality assessment of different geolocalisation methods for a sensor system to monitor structural health of monumental objects[J]. Sensors,2020,20(10):2915
[4]Yang F,F(xiàn)an Z W,Wen C,et al. Three-dimensional point cloud analysis for building seismic damage information[J]. Photogrammetric Engineering & Remote Sensing,2022,88(2):103-111
[5]李瑞雪.基于地面 LiDAR 數(shù)據(jù)的建筑物立面識別及提取研究[D].贛州:江西理工大學,2019
LiR X. Researchon buildingfacade recognitionandextraction based researchon terrestrialLiDARdata[D]. Ganzhou: Jiangxi University of Science and Technology,2019
[6]Vasilakos C,Chatzistamatis S,Roussou O,et al. Terrestrial photogrammetry vs laser scanning for rapid earthquake damage assess- ment[J]. ISPRS-International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-3/W4:527-533
[7]Liu W,DongPL,Liu JB,et al. Evaluation of three-dimensional shape signatures for automated assessment of post-earthquake building damage[J]. Earthquake Spectra,2013,29(3):897-910
[8]Yang F,Wen X T,Wang X S,et al. A model study of building seismic damage information extraction and analysis on ground-based liDAR data[J]. Advances in Civil Engineering,2021(5):1-14
[9]沈蔚,李京,陳云浩,等.基于 LIDAR 數(shù)據(jù)的建筑輪廓線提取及規(guī)則化算法研究[J].遙感學報,2008,12(5):692-698
ShenW,LiJ,Chen Y H,et al. Algorithms study of building boundary extraction and normalization based on LIDARdata[J]. Journal of Remote Sensing,2008,12(5):692-698
[10]王大瑩,程新文,鄭艷麗,等.在Matlab平臺下基于形態(tài)學方法對 LIDAR 數(shù)據(jù)進行建筑物邊緣提取[J].測繪科學,2010,35(1):172-173,92
Wang DY,Cheng X W,Zheng YL,et al. Mathematic morphology-based building edge detection under Matlab platform[J]. Science of Surveying and Mapping,2010,35(1):172-173,92
[11]孟濤,王軻,任峰,等.基于曲線內插法的點云空洞修補應用研究[J].測繪與空間地理信息,2021,44(11):173-175
MengT,Wang K,Ren F,et al. Research on the application of point-cloud holes repair algorithm based on curve interpolation method[J]. Geomatics &Spatital Information Technology,2021,44(11):173-175
[12]朱濱,程小龍,劉紹龍,等.基于 PCA 法矢估計的建筑點云立面邊界提取[J].測繪與空間地理信息,2021,44(6):38-40
Zhu B,Cheng X L,Liu S L,et al. Building point cloud elevation boundary extraction based on PCA normal vector estimation[J]. Geomatics &Spatital Information Technology,2021,44(6):38-40
[13]周強,張敏,李巍,等.基于點云數(shù)據(jù)的古陶瓷碎片邊緣輪廓提取技術[J].陜西科技大學學報,2021,39(6):174-181
Zhou Q,Zhang M,Li W,et al. Edge contour extraction of ancient ceramic fragments based on point cloud data[J]. Journal of Shaanxi University of Science & Technology,2021,39(6):174-181
[14]廖中平,陳立,白慧鵬,等.自適應α-shapes 平面點云邊界提取方法[J].長沙理工大學學報(自然科學版),2019,16(2):15-21
Liao Z P,Chen L,Bai H P,et al. Adaptive Alpha shapes plane point cloud boundary extraction method[J]. Journal of Changsha University of Science and Technology( Natural Science),2019,16(2):15-21
[15]Nasrollahi M,BolourianN,Hammad A. Concrete surface defect detection using deep neural network based on LiDAR scanning[C]//( CSCE 2019)7th International Construction Conference jointly with the construction research congress( CRC 2019). Laval,QC: CSCE Annual Conference,2019:CON032
[16]Mohammadi ME, Watson D, Wood R. Deep learning-based damage detection from aerialSfM point clouds[J]. Drones,2019,3(3):68
[17]盧凌雯,梁棟棟.點云數(shù)據(jù)多種濾波方式組合優(yōu)化研究[J].安徽師范大學學報(自然科學版),2018,41(1):50-54
Lu L W,Liang D D. Research on combining optimization of various filtering methods for point cloud data[J]. Journal of Anhui Normal University( Natural Science),2018,41(1):50-54
[18]陳茂霖.面向多測站地面三維激光掃描數(shù)據(jù)的建筑物提取與幾何重構[D].武漢:武漢大學,2018
Chen M L. Building extraction and 3D reconstruction of multi-scan terrestrial laser scanning data[D]. Wuhan:Wuhan University,2018
[19]Saraf N,HamidJ,Halim M, etal. Accuracy assessment of 3-dimensional liDAR building extraction[C]//2018 IEEE 14thInter-national Colloquium on Signal Processing & Its Applications( CSPA). Penang,Malaysia:IEEE,2018:261-266
[20]趙傳,張保明,郭海濤,等.基于法向量密度聚類的 LiDAR點云屋頂面提取[J].測繪科學技術學報,2017,34(4):393-398
Zhao C,Zhang B M,Guo H T,et al. Roof extraction using LiDAR point clouds based on normal vector density-based clustering[J]. Journal of Geomatics Science and Technology,2017,34(4):393-398
[21]陳朋,譚曄汶,李亮.地面三維激光掃描建筑物點云特征線提取[J].激光雜志,2016,37(3):9-11
Chen P,Tan Y W,Li L. Extraction of buildings feature lines based on 3-D terrestrial laser scanning[J]. Laser Journal,2016,37(3):9-11
[22]Shao Z F,Yang N,Xiao X W,et al. A multi-view dense point cloud generation algorithm based on low-altitude remote sensing images[J]. Remote Sensing,2016,8(5):381
[23]Olsen M J,Kuester F,Chang B,et al. Terrestrial laser scanning-based structural damage assessment[J]. Journal of Computing in Civil Engineering,2010,24(3):264-272
[24]Zió?kowskiP. Remotesensinginlaboratorydiagnosticsof reinforcedconcreteelements-currentdevelopmentandvisionforthefuture[C]//The IRES 8th International Conference on Engineering and Natural Science,30th Aug.2015,London,United Kingdom,2015:978-93-85465-83-3
[25]LiD S,Liu JP,F(xiàn)eng L,et al. Terrestrial laser scanning assisted flatness quality assessment for two different types of concrete surfaces[J]. Measurement,2020,154(3):107436
[26]劉興奇.地面三維激光掃描儀在建筑物檢測中的應用研究[D].北京:北京建筑大學,2021
Liu X Q. Application of ground 3D laser scanner in building inspection[D]. Beijing: Beijing University of Civil Engineering and Architecture,2021
[27]趙興友.三維激光掃描儀在建筑立面測繪中的應用[J].測繪與空間地理信息,2021,44(增刊1):206-212
Zhao XY. Application of 3D laser scanner in building elevation surveying and mapping[J]. Geomatics &Spatital Information Technology,2021,44(S1):206-212
[28]羅奎,王云川,段平,等.基于地面三維激光掃描儀的塔式建筑物變形監(jiān)測研究[J].測繪與空間地理信息,2021,44(6):76-78,83
Luo K,Wang Y C,Duan P,et al. Research on deformation monitoring of tower building based on ground 3D laser scanner[J]. Geomatics &Spatital Information Technology,2021,44(6):76-78,83
[29]中國建筑科學研究院.混凝土結構工程施工質量驗收規(guī)范:GB 50204—2015[S].北京:中國建筑工業(yè)出版社,2015
China Academy of Building Research. Code for acceptance of constructional quality of concrete structures: GB 50204—2015[S]. Beijing:China Architecture & Building Press,2015
[30]陜西省住房和城鄉(xiāng)建設廳.砌體結構工程施工質量驗收規(guī)范:GB 50203—2011[S].北京:中國建筑工業(yè)出版社,2011
Shaanxi Department of Housing and Urban-Rural Development. Code for acceptance of constructional quality of masonry structures: GB 50203—2011[S]. Beijing:China Architecture & Building Press,2011
[31]Kim M,Wang Q,Yoon S,et al. A mirror-aided laser scanning system for geometric quality inspection of side surfaces of precast concrete elements[J]. Measurement,2019,141:420-428
[32]Sun W,Wang J,Jin F,et al. Datum feature extraction and deformation analysis method based on normal vector of point cloud[J]. ISPRS-International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-3:1601-1606
[33]Tang P,Huber D,Akinci B,et al. Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques[J]. Automation in Construction,2010,19(7):829-843
[34]P?tr?ucean V,Armeni I,Nahangi M,et al. State of research in automatic as-built modelling[J]. Advanced Engineering Informatics,2015,29(2):162-171
[35]LuQ, LeeS. Image-basedtechnologiesforconstructingas-isbuildinginformationmodelsforexistingbuildings[J]. Journalof Computing in Civil Engineering,2017,31(4):04017005
[36]Son H,Bosché F,Kim C. As-built data acquisition and its use in production monitoring and automated layout of civil infrastructure:A survey[J]. Advanced Engineering Informatics,2015,29(2):172-183
[37]MaZ,Liu S. A review of 3D reconstruction techniques in civil engineering and their applications[J]. Advanced Engineering Informatics,2018,37:163-174
[38]Ray S J,Teizer J. Computing 3D blind spots of construction equipment:Implementation and evaluation of an automated measurement and visualization method utilizing range point cloud data[J]. Automation in Construction,2013,36:95-107
[39]Cheng T,TeizerJ. Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications[J]. Automation in Construction,2013,34:3-15
[40]Fang Y,Cho Y K,Chen J. A framework for real-time pro-active safety assistance for mobile crane lifting operations[J]. Automation in Construction,2016,72:367-379
[41]Nowak R,Or?owicz R,Rutkowski R. Use of tls( LiDAR)for building diagnostics with the example of a historic building in karlino[J]. Buildings,2020,10(2):24
[42]Dong P L,Guo H D. A framework for automated assessment of post-earthquake building damage using geospatial data[J]. Internation- al Journal of Remote Sensing,2012,33(1):81-100
[43]XuW,Xu XY,Yang H,et al. Optimized finite element analysis model based on terrestrial laser scanning data[J]. Composite Structures,2019,207:62-71
[44]Antón D,Pineda P,Medjdoub B,et al. As-built 3D heritage city modelling to support numerical structural analysis:Application to the assessment of an archaeological remain[J]. Remote Sensing,2019,11:1276
[45]Russhakim N A S,Ariff M F M,Darwin N,et al. The suitability of terrestrial laser scanning for strata building[J]. ISPRS-International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-4/W9:67-76
[46]Antón D,Medjdoub B,Shrahily R,et al. Accuracy evaluation of the semi-automatic 3D modeling for historical building information models[J]. International Journal of Architectural Heritage,2018,12(5):790-805
[47]Yang H,Omidalizarandi M,Xu X Y,et al. Terrestrial laser scanning technology for deformation monitoring and surface modeling of arch structures[J]. Composite Structures,2016,169(5):173-179
[48]李敏珍,劉春,周源.激光掃描歷史建筑精細化重建與部件化管理[J].遙感信息,2015,30(6):18-23
Li M Z,Liu C,Zhou Y. Historical accurate 3D reconstruction and hierarchical componentize management using terrestrial laser scanning[J]. Remote Sensing Information,2015,30(6):18-23
[49]Jiao Q S,Jiang H B,Li Q. Building earthquake damage analysis using terrestrial laser scanning data[J]. Advances in Civil Engineering,2019:8308104
[50]Jiang H B,Li Q,Jiao Q S,et al. Extraction of wall cracks on earthquake-damaged buildings based on tls point clouds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(9):3088-3096
[51]崔驛寧.基于3D 深度學習的 LiDAR 建筑物震害信息提取[D].北京:中國地震局地震預測研究所,2021
Cui Y N. Seismic damage information extraction of LiDAR building based on 3D deep learning[D]. Beijing:Institute of Earthquake Forecasting,China Earthquake Administration,2021
[52]Zhang J M,Lu C Q,Wang J,et al. Concrete cracks detection based on fcn with dilated convolution[J]. Applied Sciences,2019,9(13):2686
[53]Liao Y J,Wood R,Mohammadi M E,et al. Damage assessment of a sixteen story building following the 2017 central mexico earth- quake[J]. Civil Engineering Faculty Publications,2019:157
[54]TurkanY, HongJ, LaflammeS, etal. Adaptivewaveletneuralnetworkforterrestriallaserscanner-basedcrackdetection[J]. Automation in Construction,2018,94:191-202
[55]Rastiveis H,Khodaverdi N,Jouybari A. Object-oriented classification of lidardata for post-earthquake damage detection[J]. ISPRS- International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-3/W4:421-427
[56]Puente I,Lindenbergh R,Van Natijne A, et al. Monitoring of progressivedamage in buildings using laser scan data[J]. ISPRS- International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-2:923-929
[57]Janalipour M,Mohammadzadeh A. Evaluation of effectiveness of three fuzzy systems and three texture extraction methods for building damage detection from post-event LiDAR data[J]. International Journal of Digital Earth,2018,11(12):1241-1268
[58]He M Z,Zhu Q,Du Z Q,et al. A 3D shape descriptor based on contour clusters for damaged roof detection using airborne LiDAR point clouds[J]. Remote Sensing,2016,8(3):189
[59]Pellegrinelli A,F(xiàn)urini A,Russo P. Earthquakes and ancient leaning towers:Geodetic monitoring of the bell tower of San Benedetto Church in Ferrara( Italy)[J]. Journal of Cultural Heritage,2014,15(6):687-691