宋松泉 唐翠芳 雷華平 費思恬 陳海波
摘?要:種子發(fā)育是一個復(fù)雜的生物學(xué)過程,受各種遺傳和外界因素的調(diào)節(jié),顯著影響農(nóng)作物特別是禾谷類作物的種子活力和產(chǎn)量與質(zhì)量。脫落酸(ABA)是調(diào)控種子發(fā)育和萌發(fā)最重要的植物激素之一,其活性水平、信號轉(zhuǎn)導(dǎo)及其LAFL網(wǎng)絡(luò)在種子發(fā)育包括胚胎發(fā)生和成熟過程的調(diào)控中起關(guān)鍵作用。該文主要綜述了近年來ABA調(diào)控種子發(fā)育的研究取得的重要進展,包括ABA代謝和信號轉(zhuǎn)導(dǎo)對種子發(fā)育的調(diào)控,ABA與種子成熟轉(zhuǎn)錄因子(AFL-B3、FUS3、ABI3、LEC2等)的作用,以及ABA在種子發(fā)育中的作用機制,并提出了需要進一步研究的科學(xué)問題, 為深入理解種子發(fā)育的分子機制提供參考,從而提高種子的活力、產(chǎn)量和質(zhì)量。
關(guān)鍵詞: ABA代謝, 脫落酸, 轉(zhuǎn)錄因子網(wǎng)絡(luò), 種子發(fā)育, 信號轉(zhuǎn)導(dǎo)
中圖分類號:Q944
文獻標(biāo)識碼:A
文章編號:1000-3142(2023)09-1553-15
收稿日期:2023-05-20
基金項目:國家科技支撐計劃項目(2012BAC01B05); 郴州國家可持續(xù)發(fā)展議程創(chuàng)新示范區(qū)建設(shè)省級專項(2022sfq06)。
第一作者: 宋松泉(1957-), 博士, 研究員, 研究方向為種子生理與生物技術(shù), (E-mail) sqsong2019@163.com
*通信作者
Research progress on seed development regulated by ABA
SONG Songquan 1,2*, TANG Cuifang 1,3, LEI Huaping 1, FEI Sitian 1, CHEN Haibo 1
( 1. Nanling Research Institute for Modern Seed Industry, Xiangnan University, Chenzhou 423099, Hunan, China; 2. Institute of Botany, Chinese
Academy of Sciences, Beijing 100093, China; 3. College of Life Sciences, Hunan Normal University, Changsha 410081, China )
Abstract:Seed development is a complex biological process that is controlled by various genetic and external factors, and significantly affects the seed vigor, yield and quality of crops, especially cereal plant crops. Abscisic acid (ABA) is one of the most important phytohormones that regulate seed development and germination, and plays a key role in regulation of seed development through its activity level, signaling, and LAFL network, including embryogenesis and maturation process. In recent years, important progresses have been acquired in the research of seed development regulated by ABA. In the present paper, we have mainly reviewed the research achievements in this field, including the regulation of ABA metabolism and signaling on seed development, the action between ABA and transcription factors of seed maturation (AFL-B3, FUS3, ABI3, LEC2, etc.), and the action mechanism of ABA in seed development. In addition, we also propose some scientific questions that need to be further investigated in this field to provide some information for deeplyunderstanding the molecular mechanism of seed development, so as to improve seed vigor and increasing yield and quality.
Key words: abscisic acid (ABA) metabolism, abscisic acid, network of transcription factor, seed development, signaling
在大多數(shù)被子植物中,種子是雙受精(double fertilization)過程的產(chǎn)物,其中一個精核與卵細胞融合產(chǎn)生二倍體的合子,另一個精核與雙核中央細胞融合形成三倍體的初生胚乳核(Baroux & Grossniklaus, 2019)。隨后,單細胞合子經(jīng)過細胞分裂和分化發(fā)育成為胚(Verma et al., 2021);而初生胚乳核通過一系列有絲分裂發(fā)育成為多核細胞后,細胞化成為胚乳(Li & Berger, 2012; Batista et al., 2019)。種皮由胚珠的珠被發(fā)育而成,外珠被形成外種皮,內(nèi)珠被形成內(nèi)種皮。種子發(fā)育(seed development)過程可分為胚胎發(fā)生(embryogenesis)和成熟(maturation)兩個主要階段 (Ali et al., 2022; Kozaki & Aoyanagi, 2022)。胚胎發(fā)生包括胚、胚乳和種皮(母體來源)的形成與結(jié)構(gòu)發(fā)育,其特征是高度協(xié)調(diào)的細胞分裂與分化(Kozaki & Aoyanagi, 2022)。種子成熟從胚胎發(fā)生結(jié)束時開始,當(dāng)種子在生理上獨立于親本植物時結(jié)束(Ali et al., 2022)。種子成熟顯著地影響農(nóng)作物特別是禾谷類作物種子的活力和產(chǎn)量與質(zhì)量。
種子發(fā)育是一個復(fù)雜的生物學(xué)過程,包括儲藏物(如碳水化合物、蛋白和脂類)的積累、耐脫水性(desiccation tolerance)的獲得、生長停滯和進入休眠(dormancy) (Bewley et al., 2013; Jo et al., 2019)。研究表明,種子發(fā)育受各種遺傳和外界因素的調(diào)節(jié),其中植物激素在種子發(fā)育調(diào)控中起關(guān)鍵作用(Shu et al., 2016; Kozaki & Aoyanagi, 2022)。在胚胎發(fā)生早期,生長素(auxin)通過影響頂端-基底端極性(apical-basal polarity)的形成和維管發(fā)育在擬胚體(embryonic body)建立中起重要作用。細胞分裂素(cytokinin)與生長素一起通過細胞分裂、發(fā)育和分化促進生長。油菜素內(nèi)酯(brassinosteroid)調(diào)節(jié)胚珠的數(shù)量、種子的大小和形狀,拮抗ABA的抑制作用也參與種子的萌發(fā)(Kozaki & Aoyanagi, 2022)。脫落酸(abscisic acid, ABA)和赤霉素(gibberellin, GA)被認為是拮抗調(diào)節(jié)種子發(fā)育的主要激素(Shu et al., 2016; Sano & Marion-Poll, 2021)。研究表明,GA在種子的正常發(fā)育中起重要作用。豌豆(Pisum sativum) GA缺陷突變體不能產(chǎn)生正常的種子(Swain et al., 1997)。豌豆GA 2-氧化酶(GA 2-oxidase, GA2ox)基因在擬南芥(Arabidopsis thaliana)種子中的過表達引起種子敗育(seed abortion) (Singh et al., 2010)。番茄(Solanum lycopersicu)果實中GA2ox的過表達導(dǎo)致果實重量、種子數(shù)量和萌發(fā)率降低(Chen et al., 2016)。核心GA信號轉(zhuǎn)導(dǎo)途徑主要由GA受體GID1 (GA INSENSITIVE DWARF1)、DELLA (Asp-Glu-Leu-Leu-Ala)蛋白、F-box蛋白和DELLA調(diào)控的靶因子組成(Nelson & Steber, 2016)。當(dāng)GA缺乏時,DELLA蛋白比較穩(wěn)定,可抑制GA的反應(yīng);當(dāng)GA存在時,GID1與GA的結(jié)合促進GID1-GA-DELLA復(fù)合物的形成, 從而促進其與SLY1 (SLEEPY 1)/GID2 F-box蛋白結(jié)合和多泛素化DELLA, 并通過26S蛋白酶體靶向降解DELLA。這樣就解除了GA反應(yīng)的DELLA抑制(Nelson & Steber, 2016; 宋松泉等, 2020; Sohn et al., 2021)。在擬南芥DELLA因子中,RGL2 (REPRESSOR OF GA-LIKE2)在抑制種子萌發(fā)中起主要作用(Sohn et al., 2021)。
近年來,植物激素ABA在調(diào)控種子發(fā)育中的研究取得了重要進展(Sano & Marion-Poll, 2021; Smolikova et al., 2021; Ali et al., 2022; Verma et al., 2022)。本文主要綜述了本領(lǐng)域的研究成果,包括ABA代謝和信號轉(zhuǎn)導(dǎo)對種子發(fā)育的調(diào)控,ABA與種子成熟轉(zhuǎn)錄因子的作用,以及ABA在種子發(fā)育中的作用機制,并提出了在本領(lǐng)域需要進一步研究的科學(xué)問題, 為深入理解種子發(fā)育的分子機制提供參考,從而提高種子活力和增加產(chǎn)量與質(zhì)量。
1?ABA代謝與信號轉(zhuǎn)導(dǎo)對種子發(fā)育的調(diào)控
1.1 種子發(fā)育過程中ABA水平的變化
在擬南芥種子發(fā)育過程中,整個果實(長角果)和種子中的ABA水平在發(fā)育中期(約開花后9 d)達到峰值,隨后下降;但果實中的ABA水平在開花后12 d又開始增加直到發(fā)育后期(約開花后21 d) (Kanno et al., 2010; Kozaki & Aoyanagi, 2022)。然而,當(dāng)合子組織缺乏ABA時,母體組織中合成的ABA會被轉(zhuǎn)移到合子組織的胚中(Kanno et al., 2010)。合子組織中合成的ABA的主要作用是誘導(dǎo)和/或維持種子休眠;母體來源的ABA影響擬南芥成熟種子吸脹時釋放的黏液層厚度(Kanno et al., 2010)。
在小麥(Triticum aestivum)種子發(fā)育過程中,ABA的水平有2個峰值,其中發(fā)育后期(授粉后35~40 d)合成的ABA與種子的休眠水平相關(guān)(Tuan et al., 2018)。水稻(Oryza sativa)和小黑麥(triticale)種子發(fā)育過程中的ABA水平只有一個峰值。在水稻種子中,與休眠誘導(dǎo)有關(guān)的ABA積累發(fā)生在種子發(fā)育的早期和中期(授粉后10~20 d),比小麥種子早(Gu et al., 2011; Liu et al., 2014)。在小黑麥種子中,ABA積累的峰值約為授粉后35 d,在種子水分大量喪失之前(Fidler et al., 2016)。
1.2 ABA代謝對種子發(fā)育的調(diào)控
活性ABA通過一條間接的途徑從葉黃素(xanthophyll) [例如玉米黃質(zhì)(zeaxanthin)、紫黃質(zhì)(violaxanthin)和新黃質(zhì)(neoxanthin)]合成(Marion-Poll & Leung, 2006)。3個關(guān)鍵酶負責(zé)ABA生物合成的連續(xù)步驟,如玉米黃質(zhì)環(huán)氧化酶(zeaxanthin epoxidase, ZEP)、9-順式-環(huán)氧類胡蘿卜素雙加氧酶(9-cis-epoxycarotenoid dioxygenase, NCED)和脫落醛氧化酶(abscisic aldehyde oxidase, ABAO) (Dejonghe et al., 2018)。
ZEP基因最初在擬南芥和皺葉煙草(Nicotiana plumbaginifolia)中被鑒定出來。其ABA缺陷突變體(aba1/aba2)在玉米黃質(zhì)氧化為環(huán)氧玉米黃質(zhì)(antheraxanthin)和紫黃質(zhì)中受損,這被認為是ABA生物合成的初始步驟(Sano & Marion-Poll, 2021)。在水稻中,在ABA合成過程中玉米黃質(zhì)的氧化存在缺陷,發(fā)現(xiàn)了一個具有胎萌的突變體Tos17(Ali et al., 2022)。通過遺傳篩選在玉米(Zea mays)中鑒定的其他ABA營養(yǎng)缺陷型突變體(vp2、vp5、vp7和vp9)存在ZEP活性缺陷,阻礙了類胡蘿卜素生物合成的早期步驟(Ali et al., 2022)。綜上表明,玉米黃質(zhì)氧化是植物中ABA合成的一個重要且保守的階段。目前,從全反式紫黃質(zhì)(all-trans-violaxanthin)和全反式新黃質(zhì)(all-trans-neoxanthin)到9-順式紫黃質(zhì)(9-cis-?violaxanthin)和9-順式新黃質(zhì)(9-cis-neoxanthin)的轉(zhuǎn)化還不清楚。然而,North等(2007)發(fā)現(xiàn)ABA4負責(zé)從全反式紫黃質(zhì)轉(zhuǎn)化為全反式新黃質(zhì),為這些轉(zhuǎn)化的研究提供了一些線索。
ABA生物合成的第二個關(guān)鍵基因NCED最初在玉米胎生突變體vp14 (viviparous 14)中被克隆。vp14突變體在ABA生物合成的步驟中存在9-順式-環(huán)氧類胡蘿卜素的氧化缺陷,并在干種子中表現(xiàn)出ABA含量降低(Tan et al., 1997)。在擬南芥中,NCED2、NCED3、NCED5、NCED6和NCED9被認為是VP14的同源基因,參與ABA生物合成的限速步驟(Nambara & Marion-Poll, 2005)。此外,分別從大豆(Glycine max)、番茄和二穗短柄草(Brachypodium distachyon)中鑒定出的PvNCED1、LeNCED1和BdNCED1也在ABA生物合成和種子發(fā)育過程中具有重要作用(Barrero et al., 2012)。綜上表明,葉黃素的氧化裂解是ABA生物合成的主要步驟,可調(diào)節(jié)種子的發(fā)育。
脫落醛(abscisic aldehyde)的氧化是ABA生物合成的最后步驟,其中脫落醛被氧化成為ABA (Dejonghe et al., 2018)。在番茄中鑒定的脫落醛氧化為ABA的缺陷突變體是flacca和sitiens (Taylor et al., 1988)。在擬南芥中鑒定的脫落醛氧化酶3 (abscisic aldehyde oxidase 3, AAO3),在種子中的ABA生物合成的最后兩個步驟中起作用,其表達也在種子成熟中后期的胚維管組織中被觀察到(Seo et al., 2004)。
1.3 ABA信號轉(zhuǎn)導(dǎo)對種子發(fā)育的調(diào)控
核心ABA信號轉(zhuǎn)導(dǎo)組分包括ABA受體PYR/PYL/RCAR (pyrabactin resistance 1/pyrabactin resistance 1-like/regulatory components of ABA receptor)家族、A組2C型蛋白磷酸酶(Group A Type 2C protein phosphatase, PP2C)和蔗糖非發(fā)酵-1-相關(guān)的蛋白激酶2 (sucrose non-fermenting-1-related protein kinase 2, SnRK2) (Nonogaki, 2019a, b; Lim et al., 2022) (圖1)。
在擬南芥中,PYR/PYL/RCAR蛋白家族的14個成員被證明在種子中具有重要作用,例如pyr1/prl1/prl2/prl4四重突變體和pyl十二重突變體表現(xiàn)出種子休眠變?nèi)?,對ABA不敏感(Ma et al., 2009; Zhao et al., 2018)。此外,水稻中ospyl七重突變體在種子萌發(fā)過程中對ABA不敏感(Miao et al., 2018)。
在ABA缺乏時,PYL蛋白釋放PP2C,并激活其磷酸酶功能(Ma et al., 2009)。PP2C蛋白包括ABA不敏感1/2 (ABA-INSENSITIVE 1/2, ABI1/2)和ABA過敏感萌發(fā)1/3 (ABA-HYPERSENSITIVE GERMINATION 1/3, AHG1/3),通過蛋白磷酸化抑制下游ABA信號轉(zhuǎn)導(dǎo)蛋白的活性,從而阻斷下游ABA信號轉(zhuǎn)導(dǎo)網(wǎng)絡(luò)的功能(Park et al., 2009)。因此,PP2C在ABA信號轉(zhuǎn)導(dǎo)系統(tǒng)中起負調(diào)控因子的作用,而在敲除突變體時則表現(xiàn)出對ABA過敏感和種子休眠減弱(Yoshida et al., 2006)。研究表明,EAR1 (ENHANCER OF ABA CO-RECEPTOR 1)能與PP2C蛋白(即ABI1/2、HAB1/2 (Hypersensitive to ABA 1/2) 和AHG1/3)一起作用來增加PP2C的活性(Wang et al., 2018)。與EAR1一樣,PR5K2 (PR5 receptor-like kinase 2)通過增加ABI1/2的磷酸化來抑制ABA信號轉(zhuǎn)導(dǎo)(Baek et al., 2019)。此外,DOG1 (DELAY OF GERMINATION 1)與血紅素結(jié)合,并與AHG1相互作用以阻止其磷酸酶功能,并增加種子休眠程度(Nishimura et al., 2018)。綜上表明,PP2C能夠被PYL受體或被其他蛋白調(diào)節(jié),但在種子發(fā)育過程中PP2C、PYL與其他調(diào)控因子(DOG1、PR5K2和EAR1)之間的相互關(guān)系尚不清楚。
在ABA存在時,PYR/PYL/RCAR蛋白與ABA和PP2C蛋白結(jié)合,以抑制PP2C的磷酸酶活性,從而釋放SnRK2并使其發(fā)揮功能。研究表明,擬南芥PYL蛋白家族的所有成員都能與PP2C家族成員相互作用,并在ABA介導(dǎo)的反應(yīng)中起作用(Zhao et al., 2013)。在擬南芥中,總共3種SnRK2 (SnRK2.2、SnRK2.3和SnRK2.6)被發(fā)現(xiàn)作為ABA信號轉(zhuǎn)導(dǎo)網(wǎng)絡(luò)的正調(diào)控因子參與種子發(fā)育的許多過程,如脫綠(de-greening)、種子儲藏產(chǎn)物的積累、耐脫水性的獲得和萌發(fā)(Finkelstein et al., 2008)。ABA信號轉(zhuǎn)導(dǎo)終止子(ABA signaling terminator, ABT)是一種WD40蛋白,能夠有效地阻斷ABA信號轉(zhuǎn)導(dǎo),在種子萌發(fā)和幼苗建立中起重要作用。ABT以PYR1/PYL/RCAR-PP2C依賴的方式被ABA誘導(dǎo),并與PYR1/PYPL/RCAR和PP2C蛋白相互作用,干擾PYR1/4和ABI1/2之間的相互作用,從而阻斷ABA信號轉(zhuǎn)導(dǎo)(Wang et al., 2020)。
此外,SnRK2的主要靶點是ABF [ABRE (ABA RESPONSIVE ELEMENT) binding factor]。ABF家族由9個成員組成,包括ABF1、ABF2/AREB1 (ABRE BINDING PROTEIN 1)、ABF3、ABF4/AREB2、AREB3、ABI5、bZIP15、bZIP67和bZIP亞家族EEL,主要參與ABA介導(dǎo)的轉(zhuǎn)錄調(diào)控(Nakashima et al., 2009)。ABI5的轉(zhuǎn)錄能夠被SnRK2通過與ABI5啟動子中的ABRE順式元件專一地結(jié)合來激活,進而在擬南芥種子成熟后期和吸脹的種子中激活A(yù)BA介導(dǎo)的轉(zhuǎn)錄活性。此外,另一個關(guān)鍵因子ABI3與ABI5轉(zhuǎn)錄因子相互作用,并與ABI5共同作用以促進下游ABA反應(yīng)基因的轉(zhuǎn)錄,這兩個基因均能被RAV1 (RELATED TO ABI3/VP1)通過與其啟動子結(jié)合進行調(diào)控(Ali et al., 2022)。有趣的是,ABI5也通過與PYL11和PYL12的啟動子結(jié)合來調(diào)節(jié)ABA的反應(yīng),從而直接調(diào)控萌發(fā)過程中的轉(zhuǎn)錄。當(dāng)ABI5突變時,由PYL11和PYL12過表達所引起的ABA過敏感反應(yīng)被完全或部分受損(Zhao et al., 2020)。
2?ABA與種子成熟轉(zhuǎn)錄因子
通過遺傳篩選發(fā)現(xiàn),LAFL基因在ABA介導(dǎo)的種子發(fā)育中起重要作用。LAFL基因包括AFL-B3 (AFL clade of B3 domain plant-specific transcription factor)、FUS3 (FUSCA3)、ABI3、LEC2 (LEAFY COTYLEDON 2),以及CBF (CCAAT-binding transcription factor)或NF-Y (nuclear factor Y)的HAP3亞基、LEC1和L1L (LEC1-LIKE) (Smolikova et al., 2021; Kozaki & Aoyanagi, 2022) (圖2)。LAFL基因的突變影響種子發(fā)育的許多方面,如種子成熟時儲藏物含量下降,耐脫水性和ABA水平降低以及休眠變?nèi)酰℉oldsworth et al., 2008; Jia et al., 2014)。除種子發(fā)育外,LAFL網(wǎng)絡(luò)還調(diào)控一些與植物發(fā)育有關(guān)的基因,如鋅指因子(zinc finger factor) PEI1、AP2 (APETALA2)家族因子BBM (BABY BOOM)、NAC因子CUC1 (CUP-SHAPED COTYLEDON 1)和MADS box因子FLC (FLOWERING LOCUS C)的基因(Jia et al., 2014)。
AFL因子通過RY順式元件(RY cis-element)激活靶基因,RY順式元件被B3-DNA結(jié)合結(jié)構(gòu)域識別(Braybrook et al., 2006)。LEC1和L1L作為NF-Y復(fù)合物的一個亞基,與CCAAT DNA基序結(jié)合(Miller, 2016)。對擬南芥和大豆靶基因上游區(qū)域LEC1結(jié)合位點的全基因組分析表明,LEC1除了調(diào)控CCAAT基序外,還在種子成熟過程中調(diào)控基因的啟動子中富含G-box、ABRE-like、RY和BPC1順式元件,表明LEC1通過與一些其他種類的轉(zhuǎn)錄因子相互作用來調(diào)節(jié)靶基因(Jo et al., 2019)。
遺傳分析表明,在LAFL基因之間的相互作用比較復(fù)雜(圖2)。LEC1能夠激活A(yù)BI3、FUS3和LEC2的表達,而LEC2的異位表達能夠上調(diào)LEC1、ABI3和FUS3 (To et al., 2006; Stone et al., 2008)。ABI3和FUS3相互正向調(diào)控,并調(diào)控自身的表達(To et al., 2006; Mnke et al., 2012)。此外,L1L被FUS3調(diào)控(Yamamoto et al., 2010)。ChIP (chromatin immunoprecipitation)分析表明,LEC1調(diào)控L1L (Junker et al., 2012),而FUS3調(diào)控LEC1、FUS3和ABI3 (Wang & Perry, 2013)。
除了LAFL基因外,ABI5及其相關(guān)的bZIP轉(zhuǎn)錄因子也與ABRE結(jié)合,參與種子成熟的調(diào)控。ABI5是ABA信號轉(zhuǎn)導(dǎo)的關(guān)鍵參與者(Collin et al., 2021)。種子成熟過程中一組LAFL調(diào)控的重要基因包括胚胎發(fā)生晚期豐富(LATE EMBRYOGENESIS ABUNDANT, LEA)基因,其啟動子中具有RY和ABRE基序,并被ABI3和ABI5相關(guān)的bZIP轉(zhuǎn)錄因子的組合調(diào)控(Alonso et al., 2009)。因此,ABA信號轉(zhuǎn)導(dǎo)被ABI5及其相關(guān)的bZIP因子通過與ABI3的N-端COAR (co-activator/co-represso)結(jié)構(gòu)域物理相互作用整合到LAFL網(wǎng)絡(luò)中(Alonso et al., 2009)。在其他LAFL因子的靶基因啟動子中也發(fā)現(xiàn)了ABRE,表明LAFL的其他組分可能被ABA共同調(diào)控(Junker et al., 2012; Wang & Perry, 2013)。
在擬南芥中,外源ABA增加FUS3的表達(Kagaya et al., 2005),以及FUS3誘導(dǎo)ABA的增加(Gazzarrini et al., 2004)。因此,F(xiàn)US3和ABA是相互的正調(diào)控因子(Braybrook & Harada, 2008)。此外,F(xiàn)US3的表達也能夠被生長素正向調(diào)控(Gazzarrini et al., 2004)。
3?ABA在種子發(fā)育中的功能
3.1 儲藏物的積累
在種子成熟過程中,儲藏化合物如種子儲藏蛋白(seed storage protein, SSP)、脂質(zhì)和碳水化合物的積累與ABA的水平和信號轉(zhuǎn)導(dǎo)密切相關(guān)(Finkelstein, 2013) (表1)。ABA信號轉(zhuǎn)導(dǎo)組分如PYL和SnRK2的突變通常表現(xiàn)為種子儲藏物減少(Nakashima et al., 2009; Zheng et al., 2010; Zhao et al., 2018)。SnRK2.6失活導(dǎo)致種子的含油量降低,而SnRK2.6過表達則增加整個種子的重量(Zheng et al., 2010)。SnRK2三重突變體(snrk2.2/3/6)和pyl十二重突變體通常表現(xiàn)出種子儲藏物減少,如12S球蛋白(Nakashima et al., 2009; Zhao et al., 2018)。玉米和水稻中的淀粉生物合成受蔗糖和ABA的協(xié)同調(diào)控(Huang et al., 2016; Chen et al., 2019)。
LAFL基因參與儲藏物積累的調(diào)控。LEC1和FUS3在成熟過程中以ABA依賴的方式控制ABI3的積累,并相互作用調(diào)控儲藏蛋白[包括擬南芥儲藏蛋白3 (At2S3)和菜籽蛋白C (cruciferin C, CRC)]的積累、花青素的合成以及葉綠素和脂質(zhì)的積累(Mu et al., 2008; Zhang et al., 2016)。LEC1通過與bZIP67的直接相互作用激活CRC (Yamamoto et al., 2010)。
FUS3負調(diào)控TTG1 (TRANSPARENT TESTA GLABRA1)的表達,TTG1編碼一種抑制擬南芥中SSP和油積累的轉(zhuǎn)錄因子(Chen et al., 2015)。ttg1突變體的特征是儲藏物顯著增加,如SSP和油 (Baud et al., 2008)。FUS3可能通過抑制TTG1導(dǎo)致儲藏物的積累(Chen et al., 2015)。FUS3與LEC2結(jié)合也誘導(dǎo)WRI1 (WRINKLED 1)的表達;WRI1編碼AP2轉(zhuǎn)錄因子,并通過增加脂肪酸合成和糖降解基因的表達來調(diào)控種子中的含糖量和含油量(Yamamoto et al., 2010)。FUS3與抑制TTG1表達和增加WRI1表達一起促進儲藏油的積累。這種儲藏油的積累通過激活WRI1被LEC1和AFL基因調(diào)控(Mu et al., 2008)。此外,LEC2通過激活編碼油體蛋白(oleosin)的基因OLE1和編碼2S和12S儲藏蛋白的基因表達來調(diào)控油和蛋白的積累(Braybrook et al., 2006)。
在種子成熟過程中,除了LAFL基因外,其他因子也參與儲藏物的積累。bZIP67與L1L和NF-YC2 (NUCLEAR FACTOR-YC2)一起調(diào)控FAD3 (FATTY ACID DESATURASE 3),該酶在種子成熟期間對ω-3脂肪酸的儲藏具有一定作用(Mendes et al., 2013)。DOGL4 (DOG1-LIKE4)基因的表達被ABA誘導(dǎo),在種子成熟過程中調(diào)控一些種子儲藏蛋白的表達,包括CRC、白蛋白和油體蛋白(Sall et al., 2019)。
3.2 耐脫水性的獲得
種子的耐脫水性是植物在長期進化過程中保證物種生存和繁衍的適應(yīng)性機制,在農(nóng)作物種子保存和植物種質(zhì)資源長期保存中起關(guān)鍵作用(Smolikova et al., 2021; 宋松泉等, 2022)。種子的耐脫水性機制在種子成熟后期被激活,以及與LEA蛋白、小分子量熱休克蛋白(small heat shock protein, sHSP)、非還原性寡糖和不同化學(xué)性質(zhì)的抗氧化物的積累有關(guān)(Smolikova et al., 2021; 宋松泉等, 2022)。成熟和耐脫水性的主要調(diào)控因子是ABA和DOG1蛋白,它們控制轉(zhuǎn)錄因子網(wǎng)絡(luò),包括LEC1、LEC2、FUS3、ABI3、ABI5、AGL67、PLATZ1、PLATZ2 (Smolikova et al., 2021) (圖2)。
LEA基因的表達被ABI3和ABI5調(diào)控(Bies-Ethève et al., 2008)。ABI3也調(diào)控種子專一的熱休克因子(heat shock factor) HSFA9的表達(Kotak et al., 2007)。LEA和HSP基因的表達被DOG1通過ABI5/ABI3增加;以及它們的表達增加種子中含N化合物的儲藏,從而促進種子休眠和提高種子生活力(Dekkers et al., 2016)。研究表明,在種子成熟過程中DOG1的表達分別被bZIP67和ERF12 (ETHYLENE RESPONSE FACTOR 12)負調(diào)控或正調(diào)控(Bryant et al., 2019; Li et al., 2019)。在蒺藜苜蓿(Medicago truncatula)和豌豆中,ABI3、ABI4和ABI5被認為是調(diào)控種子耐脫水性獲得的主要中樞,以調(diào)控與棉子糖家族寡糖(raffinose family oligosaccharide, RFO)代謝和LEA蛋白合成有關(guān)的基因(Zinsmeister et al., 2016) (表1)。
LEC1、ABI3或FUS3的突變顯著地影響種子的耐脫水性,表明激活種子的耐脫水性都需要這3種轉(zhuǎn)錄因子的(Roscoe et al., 2015)。LEC2通過誘導(dǎo)EEL (ENHANCED EM LEVEL) bZIP轉(zhuǎn)錄因子的基因表達來影響LEA、EM1 (THE EARLY METHIONINE 1)和EM6基因的表達,從而參與耐脫水性的建立(Bentsink et al., 2006)。EEL bZIP轉(zhuǎn)錄因子是擬南芥中EM蛋白的負調(diào)控因子(Braybrook et al., 2006)。
3.3 種子初生休眠的誘導(dǎo)與維持
休眠是一種暫時的靜止?fàn)顟B(tài),是野生植物種子在不利環(huán)境條件下避免萌發(fā)和確保下一代繁衍的重要特征;而對于栽培作物,具有迅速和整齊萌發(fā)的種子被選擇以獲得作物高產(chǎn)與優(yōu)質(zhì)。此外,種子休眠特別是收獲休眠(harvest dormancy)的缺乏是不理想的農(nóng)藝性狀,因為它可能導(dǎo)致收獲前萌發(fā)(preharvest sprouting, PHS),這是禾谷類作物栽培中所面臨的嚴重問題,以及非休眠突變體可能降低種子的壽命 (Finkelstein et al., 2008; Tuanet al., 2018)。種子在儲藏物合成后和成熟結(jié)束時開始脫水,并儲存新合成的ABA,進入休眠。一些證據(jù)表明,ABA是這些過程的關(guān)鍵調(diào)控因子(Finkelstein et al., 2008; Nambara et al., 2010)。ABA生物合成、感知和信號轉(zhuǎn)導(dǎo)的突變影響種子休眠(Nakashima et al., 2009; Zhao et al., 2018) (表1)。
擬南芥AtNCED6和AtNCED9突變體的成熟干燥種子表現(xiàn)出ABA水平和休眠程度降低(Lefebvre et al., 2006),其他的ABA缺陷突變體,如aba1和aba2/3,也顯示出休眠水平降低(Kozaki & Aoyanagi, 2022)。擬南芥ODR1 [suppressor of RDO5 (REDUCED DORMANCY 5)]與bHLH57一起作用,并在NCED6和NCED9的上游起作用,控制ABA合成與種子休眠(Liu et al., 2020)。大豆PvNCED1基因在吸脹的煙草(Nicotiana tabacum)種子中異位表達和過表達提高了ABA水平,并引起種子萌發(fā)延遲。在番茄中,LeNCED1的過表達也通過提高種子中的ABA水平來增加休眠(Ali et al., 2022)。在小麥中,2個TaABA8′OH1同源基因(TaABA8′OH1A和TaABA8′-OH1D;AtCYP707的同源基因)的突變導(dǎo)致ABA含量和休眠程度的增加(Chono et al., 2013)。TsNCED1也與較高的ABA含量和PHS抗性增加有關(guān)(Fidler et al., 2016)。ABA信號轉(zhuǎn)導(dǎo)組分的突變,如水稻ospyl七重突變體和snrk2.2/3/6三重突變體,也導(dǎo)致水稻和擬南芥種子的成熟前萌發(fā)(Nakashima et al., 2009; Miao et al., 2018)。
在擬南芥中,AtMYB96直接激活A(yù)BA合成基因(NCED2、NCED5、NCED6和NCED9)和失活GA生物合成基因(AtGA3ox1和AtGA20ox1)來誘導(dǎo)種子的初生休眠(Lee et al., 2015)。AtABI4通過直接與AtNECD6的啟動子區(qū)域相互作用增加ABA的生物合成,與GA失活基因AtGA2ox7的啟動區(qū)域相互作用抑制GA的積累來增加種子休眠(Shu et al., 2013, 2016)。
LAFL基因的成員也參與休眠的獲得。成熟種子中胚的生長停滯由FUS3、LEC1和LEC2控制,它們的突變體都不能完全使胚的生長停止,并表現(xiàn)出成熟前萌發(fā)(Gubler et al., 2005)。玉米VP1基因是擬南芥ABI3的同源基因,是最早鑒定和表征的一種ABA信號轉(zhuǎn)導(dǎo)的關(guān)鍵組分。VP1突變導(dǎo)致玉米收獲前萌發(fā)和胚的成熟中斷。小麥、水稻和高粱(Sorghum bicolor)的VP1基因也與休眠的水平以及對ABA和收獲前萌發(fā)的敏感性有關(guān)(Kozaki & Aoyanagi, 2022)。在玉米中,LAFL基因的成員被VP8 (編碼一種假定的肽酶)調(diào)控(Suzuki et al., 2008)。水稻中VP8同源基因PLA3 (PLATOCHRON 3/GO (COLIATH))和擬南芥中AMP1 (ALTERDMERISTEM PROGRAM 1)的突變表現(xiàn)出休眠變?nèi)酰℅riffifiths et al., 2011)。ABI5在小麥和豌豆種子成熟過程中也具有重要的休眠誘導(dǎo)作用(Zinsmeister et al., 2016; Yamasaki et al., 2017; Utsugi et al., 2020)。在高粱中,SbABI4和SbABI1通過直接與SbGA2ox3的啟動子結(jié)合增強其轉(zhuǎn)錄,從而延長種子休眠(Cantoro et al., 2013)。
DOG1和RDO5已經(jīng)被鑒定是兩個主要的休眠基因,似乎獨立于植物激素包括ABA起作用 (Bentsink et al., 2006; Xiang et al., 2014; Carrillo-Barral et al., 2020)。RDO5是PP2C蛋白磷酸酶家族的一個成員,但不表現(xiàn)出磷酸酶活性(Xiang et al., 2014),而DOG1是一個功能未知的蛋白(Carrillo-Barral et al., 2020)。DOG1和RDO5的突變分別完全解除或減少種子休眠(Bentsink et al., 2006; Xiang et al., 2014)。遺傳分析表明,DOG1和ABA對于正常的種子休眠都是必需的(Bentsink et al., 2006; Nakabayashi et al., 2012)。
DOG1與4種磷酸酶相互作用,其中2種屬于A分支2C型蛋白磷酸酶,即AHG1和AHG3(圖1)。ABA途徑和DOG1途徑在PP2C磷酸酶水平上匯合:DOG1抑制AHG1和AHG3,而ABA抑制其他的PP2C磷酸酶和AHG3。通過抑制PP2C磷酸酶,ABA和DOG1促進和維持種子休眠(Antoni et al., 2012; Née et al., 2017)。DOG1也是種子成熟的許多過程所必需的,部分是通過干擾ABA信號轉(zhuǎn)導(dǎo)組分(Dekkers et al., 2016)。
OsSDR4 (SEED DORMANCY 4)被認為是一種與種子休眠有關(guān)的調(diào)控因子,在水稻中具有未知的功能(Sugimoto et al., 2010)。在擬南芥中,AtSDR4L (SDR4-LIKE)通過調(diào)節(jié)DOG1和GA途徑中的RGA-LIKE2 (編碼DELLA蛋白RGL2)來調(diào)控休眠釋放和萌發(fā)(Cao et al., 2019)。Liu等(2020)推測,AtODR1 (用于逆轉(zhuǎn)rdo5)是OsSDR4的一個直系同源基因,與bHLH57一起在AtNCED6和AtNCED9的上游起作用,以控制擬南芥中的ABA合成和種子休眠。
3.4 種子脫綠
在種子成熟過程中,SnRK2和ABI3基因被鑒定為脫綠過程的重要組分(Delmas et al., 2013)。snrk2.2/snrk2.3/snrk2.6三重突變體在種子發(fā)育過程中表現(xiàn)為對ABA不敏感,并產(chǎn)生綠色種子(Nakashima et al., 2009; Zhao et al., 2018)。研究發(fā)現(xiàn),擬南芥abi3-6突變體表現(xiàn)出缺乏脫綠,ABI3通過調(diào)控SGR (STAY GREEN, AtSGR1和AtSGR)基因的表達來控制胚的脫綠,這些基因是由Mendel I位點編碼的SGR基因的同源基因(Armstead et al., 2007; Delmas et al., 2013)。ABI5也調(diào)控豆科植物種子的脫綠和種子壽命(Verdier et al., 2013; Zinsmeister et al., 2016)。
4?結(jié)束語
種子發(fā)育是一個復(fù)雜的過程,包括胚胎發(fā)生和成熟階段,主要特征是儲藏物的積累、耐脫水性的獲得、生長停滯和獲得休眠,并顯著地影響種子活力和產(chǎn)量與質(zhì)量(Kozaki & Aoyanagi, 2022)。植物激素ABA對種子發(fā)育的調(diào)控主要是通過ABA代謝、信號轉(zhuǎn)導(dǎo)及其LAFL網(wǎng)絡(luò)實現(xiàn)的(Sano & Marion-Poll, 2021; Ali et al., 2022)。盡管近年來ABA調(diào)控種子發(fā)育的研究已取得了重要進展,但是仍然有一些重要的科學(xué)問題尚不清楚。例如,內(nèi)源ABA水平的調(diào)節(jié)通過類胡蘿卜素途徑合成,通過8′-羥基化作用(8′-hydroxylation)失活;ABA葡糖基轉(zhuǎn)移酶(ABA glucosyltransferase)能將ABA轉(zhuǎn)化成為ABA-葡糖酯(ABA-glucose ester, ABA-GE),作為ABA的儲存池;ABA-GE又能被β-葡糖苷酶(β-glucosidase)水解成為ABA和葡萄糖(Sano & Marion-Poll, 2021)。這些酶及其基因如何響應(yīng)發(fā)育或者環(huán)境變化以維持種子發(fā)育所需的正常ABA水平尚不清楚。
種子成熟和耐脫水性的主要調(diào)控因子是ABA和DOG1蛋白,它們控制轉(zhuǎn)錄因子網(wǎng)絡(luò),如LEC1、LEC2、FUS3、ABI3、ABI5、AGL67、PLATZ1、PLATZ2 (Smolikova et al., 2021)。核心ABA途徑和DOG1途徑在PP2C匯合。值得注意的是,在整合發(fā)育條件或者環(huán)境信號時PP2C優(yōu)先響應(yīng)哪一條途徑,以及這兩條途徑怎樣協(xié)調(diào)也還不夠清楚。雖然DOG1是種子休眠的主要調(diào)控因子之一,但其分子功能仍然沒有被確定(Nonogaki, 2019a; Sano & Marion-Poll, 2021)。
在種子成熟過程中,GA的水平被FUS3和LEC2下調(diào),從而抑制與生物活性GA合成有關(guān)的酶(Kozaki & Aoyanagi, 2022)。在擬南芥中,GA信號轉(zhuǎn)導(dǎo)通過激活LEC1以增加胚胎發(fā)生晚期生長素的積累來促進胚的發(fā)育。GA信號轉(zhuǎn)導(dǎo)抑制因子DELLA與LEC1相互作用,從而促進YUC (YUCCA)基因的表達,并通過增加生長素的積累來促進胚胎發(fā)生。GA觸發(fā)DELLA的降解,以解除其對LEC1的抑制,導(dǎo)致激活胚胎發(fā)生所必需的基因(Hu et al., 2018)。然而,GA在胚胎發(fā)生中的詳細功能尚不清楚(Kozaki & Aoyanagi, 2022)。生長素促進ABI3的表達,ABI3通過激活A(yù)RF (AUXIN RESPONSE FACTOR)基因誘導(dǎo)胚胎同一性基因(Kozak & Aoyanagi, 2022)。同樣,生長素通過誘導(dǎo)ABI3表達來刺激ABA信號轉(zhuǎn)導(dǎo),從而控制種子休眠(Liu et al., 2013)。因此,其他植物激素及其與ABA的相互作用對種子發(fā)育的調(diào)控值得進一步研究。
目前,雖然許多參與種子成熟的轉(zhuǎn)錄因子已經(jīng)在分子和遺傳水平上被鑒定和表征,但對早期胚胎發(fā)生的轉(zhuǎn)錄調(diào)控研究仍然很少。此外,轉(zhuǎn)錄因子的活性被一些遺傳和表觀遺傳因素的嚴格控制,然而對這些因素的了解也不完整(Verma et al., 2022)。這些問題的深入研究將有助于理解種子發(fā)育的分子機制,從而為提高種子活力和增加產(chǎn)量與質(zhì)量提供新知識和新技術(shù)。
參考文獻:
ALI F, QANMBER G, LI F, et al., 2022. Updated role of ABA in seed maturation, dormancy, and germination[J]. J Adv Res, 35: 199-214.
ALONSO R, OATR-SNCHEZ L, WELTMEIER F, et al., 2009. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation[J]. Plant Cell, 21(6): 1747-1761.
ANTONI R, GONZALEZ-GUZMAN M, RODRIGUEZ L, et al., 2012. Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors[J]. Plant Physiol, 158(2): 970-980.
ARMSTEAD I, DONNISON I, AUBRY S, et al., 2007. Cross-species identification of Mendel’s I locus[J]. Science, 315(5808): 73.
BAEK D, KIM MC, KUMAR D, et al., 2019. AtPR5K2, a PR5-like receptor kinase, modulates plant responses to drought stress by phosphorylating protein phosphatase 2Cs[J]. Front Plant Sci, 10: 1146.
BAROUX C, GROSSNIKLAUS U, 2019. Seeds — An evolutionary innovation underlying reproductive success in flowering plants[M]. Curr Top Dev Biol, 131: 605-642.
BARRERO JM, JACOBSEN JV, TALBOT MJ, et al., 2012. Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon[J]. New Phytol, 193(2): 376-86.
BATISTA RA, MORENO-ROMERO J, QIU Y, et al., 2019. The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons[J]. eLife, 8: e50541.
BAUD S, DUBREUCQ B, MIQUEL M, et al., 2008. Storage reserve accumulation in Arabidopsis: Metabolic and developmental control of seed filling[J]. Arab Book Am Soc Plant Biol, 6: e0113.
BENTSINK L, JOWETT J, HANHART CJ, et al., 2006. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proc Natl Acad Sci USA, 103(45): 17042-17047.
BEWLEY JD, BRADFORD KJ, HILHORST HWM, et al., 2013. Seed: physiology of development, germination and dormancy[M]. 3rd ed. New York: Springer.
BIES-ETHVE N, GAUBIER-COMELLA P, DEBURES A, et al., 2008. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana[J]. Plant Mol Biol, 67(1/2): 107-124.
BRAYBROOK SA, HARADA JJ, 2008. LECs go crazy in embryo development[J]. Trends Plant Sci, 13(12): 624-630.
BRAYBROOK SA, STONE SL, PARK S, et al., 2006. Genes directly regulated by Leafy Cotyledon 2 provide insight into the control of embryo maturation and somatic embryogenesis[J]. Proc Natl Acad Sci USA, 103(9): 3468-3473.
BRYANT FM, HUGHES D, HASSANI-PAK K, et al., 2019. Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR 67 transactivates DELAY OF GERMINATION1 to establish primary seed dormancy in Arabidopsis[J]. Plant Cell, 31(6): 1276-1288.
CANTORO R, CROCCO CD, BENECH-ARNOLD RL, et al., 2013. In vitro binding of Sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: Possible role of this interaction in the expression of seed dormancy[J]. J Exp Bot, 64(18): 5721-5735.
CAO H, HAN Y, LI J, et al., 2019. Arabidopsis thaliana SEED DORMANCY 4-LIKE regulates dormancy and germination by mediating the gibberellin pathway[J]. J Exp Bot, 71(3): 919-933.
CARRILLO-BARRAL N, DEL CARMEN RODRGUEZ-GACIO M, MATILLA AJ, 2020. Delay of germination 1 (DOG1): A key to understanding seed dormancy[J]. Plants, 9(4): 480.
CHEN T, LI G, ISLAM MR, et al., 2019. Abscisic acid synergizes with sucrose to enhance grain yield and quality of rice by improving the source-sink relationship[J]. BMC Plant Biol, 19(1): 525.
CHEN S, WANG X, ZHANG L, et al., 2016. Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development[J]. Hortic Res, 3: 16059.
CHEN M, ZHANG B, LI C, et al., 2015. TRANSPARENT TESTA GLABRA 1 regulates the accumulation of seed storage reserves in Arabidopsis[J]. Plant Physiol, 169(1): 391-402.
CHONO M, MATSUNAKA H, SEKI M, et al., 2013. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8′-hydroxylase gene: Effect of reduced ABA catabolism on germination inhibition under field condition[J]. Breed Sci, 63(1): 104-115.
COLLIN A, DASZKOWSKA-GOLEC A, SZAREJKO I, 2021. Updates on the role of ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTORs (ABFs) in ABA signaling in different developmental stages in plants[J]. Cells, 10(8): 1996.
DEJONGHE W, OKAMOTO M, CUTLER SR, 2018. Small molecule probes of ABA biosynthesis and signaling[J]. Plant Cell Physiol, 59(8): 1490-1499.
DEKKERS BJ, HE H, HANSON J, et al., 2016. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development[J]. Plant J, 85(4): 451-465.
DELMAS F, SANKARANARAYANAN S, DEB S, et al., 2013. ABI3 controls embryo degreening through Mendel’s I locus[J]. Proc Natl Acad Sci USA, 110(40): E3888-E3894.
FIDLER J, ZDUNEK-ZASTOCKA E, PRABUCKA B, et al., 2016. Abscisic acid content and the expression of genes related to its metabolism during maturation of triticale grains of cultivars differing in pre-harvest sprouting susceptibility[J]. J Plant Physiol, 207: 1-9.
FINKELSTEIN R, 2013. Abscisic acid synthesis and response[J]. Arab Book, 11: e0166.
FINKELSTEIN R, REEVES W, ARIIZUMI T, et al., 2008. Molecular aspects of seed dormancy[J]. Ann Rev Plant Biol, 59: 387-415.
GAZZARRINI S, TSUCHIYA Y, LUMBA S, et al., 2004. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid[J]. Dev Cell, 7(3): 373-385.
GRIFFIFITHS J, BARRERO JM, TAYLOR J, et al., 2011. ALTERED MERISTEM PROGRAM 1 is involved in development of seed dormancy in Arabidopsis[J]. PLoS ONE, 6: e20408.
GU XY, FOLEY ME, HORVATH DP, et al., 2011. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice[J]. Genetics, 189(4): 1515-1524.
GUBLER F, MILLAR AA, JACOBSEN JV, 2005. Dormancy release, ABA and pre-harvest sprouting[J]. Curr Opin Plant Biol, 8(2): 183-187.
HOLDSWORTH MJ, BENTSINK L, SOPPE WJ, 2008. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination[J]. New Phytol, 179(1): 33-54.
HU Y, ZHOU L, HUANG M, et al., 2018. Gibberellins play an essential role in late embryogenesis of Arabidopsis[J]. Nat Plants, 4(5): 289-298.
HUANG H, XIE S, XIAO Q, et al., 2016. Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156[J]. Sci Rep, 6: 27590.
JIA H, SUZUKI M, MCCARTY DR, 2014. Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks[J]. Wiley Interdiscipl Rev Dev Biol, 3(1): 135-145.
JO L, PELLETIER JM, HARADA JJ, 2019. Central role of the LEAFY COTYLEDON 1 transcription factor in seed development[J]. J Integr Plant Biol, 61(5): 564-580.
JUNKER A, MNKE G, RUTTEN T, et al., 2012. Elongation-related functions of LEAFY COTYLEDON 1 during the development of Arabidopsis thaliana[J]. Plant J, 71(3): 427-442.
KAGAYA Y, OKUDA R, BAN A, et al., 2005. Indirect ABA-dependent regulation of seed storage protein genes by FUSCA3 transcription factor in Arabidopsis[J]. Plant Cell Physiol, 46(2): 300-311.
KANNO Y, JIKUMARU Y, HANADA A, et al., 2010. Comprehensive hormone profiling in developing Arabidopsis seeds: Examination of the site of ABA biosynthesis, ABA transport and hormone interactions[J]. Plant Cell Physiol, 51(12): 1988-2001.
KOTAK S, VIERLING E, BAUMLEIN H, et al., 2007. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis[J]. Plant Cell, 19(1): 182-195.
KOZAKI A, AOYANAGI T, 2022. Molecular aspects of seed development controlled by gibberellins and abscisic acids[J]. Int J Mol Sci, 23(3): 1876.
LEE HG, LEE K, SEO PJ, 2015. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy[J]. Plant Mol Biol, 87(4/5): 371-381.
LEFEBVRE V, NORTH H, FREY A, et al., 2006. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy[J]. Plant J, 45(3): 309-319.
LI J, BERGER F, 2012. Endosperm: Food for humankind and fodder for scientific discoveries[J]. New Phytol, 195(2): 290-305.
LI XY, CHEN TT, LI Y, et al., 2019. ETR1/RDO3 regulates seed dormancy by relieving the inhibitory effect of the ERF12-TPL complex on DELAY OF GERMINATION 1 expression[J]. Plant Cell, 31(4): 832-847.
LIM J, LIM CW, LEE SC, 2022. Core components of abscisic acid signaling and their post-translation modification[J]. Front Plant Sci, 13: 895698.
LIU Y, FANG J, XU F, et al., 2014. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: A comparison of dormant and non-dormant rice cultivars[J]. J Genet Genom, 41(6): 327-338.
LIU F, ZHANG H, DING L, et al., 2020. REVERSAL OF RDO5 1, a homolog of rice seed dormancy 4, interacts with bHLH57 and controls ABA biosynthesis and seed dormancy in Arabidopsis[J]. Plant Cell, 32(6): 1933-1948.
LIU X, ZHANG H, ZHAO Y et al., 2013. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis[J]. Proc Natl Acad Sci USA, 110(38): 15485-15490.
MA Y, SZOSTKIEWICZ I, KORTE A, et al., 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 324(5930): 1064-1068.
MARION-POLL A, LEUNG J, 2006. Abscisic acid synthesis, metabolism and signal transduction[M]//HEDDEN P, THOMAS SG. Plant hormone signalling. Ann Plant Rev, 24: 1-35.
MENDES A, KELLY AA, VAN ERP H, et al., 2013. bZIP67 regulates the omega-3 fatty acid content of Arabidopsis seed oil by activating fatty acid desaturase 3[J]. Plant Cell, 25(8): 3104-3116.
MIAO C, XIAO L, HUA K, et al., 2018. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity[J]. Proc Natl Acad Sci USA, 115(23): 6058-6063.
MILLER M, 2016. Interactions of CCAAT/enhancer-binding protein β with transcriptional co-regulators[J]. Postepy Biochem, 62: 343-348.
MNKE G, SEIFERT M, KEILWAGEN J, et al., 2012. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon[J]. Nucl Acids Res, 40(17): 8240-8254.
MU J, TAN H, ZHENG Q, et al., 2008. LEAFY COTYLEDON 1 is a key regulator of fatty acid biosynthesis in Arabidopsis[J]. Plant Physiol, 148(2): 1042-1054.
NAKABAYASHI K, BARTSCH M, XIANG Y, et al., 2012. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION 1 protein levels in freshly harvested seeds[J]. Plant Cell, 24(7): 2826-2838.
NAKASHIMA K, FUJITA Y, KANAMORI N, et al., 2009. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy[J]. Plant Cell Physiol, 50(7): 1345-1363.
NAMBARA E, MARION-POLL A, 2005. Abscisic acid biosynthesis and catabolism[J]. Ann Rev Plant Biol, 56: 165-185.
NAMBARA E, OKAMOTO M, TATEMATSU K, et al., 2010. Abscisic acid and the control of seed dormancy and germination[J]. Seed Sci Res, 20(2): 55-67.
NE G, KRAMER K, NAKABAYASHI K, et al., 2017. DELAY OF GERMINATION 1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy[J]. Nat Commun, 8: 72.
NELSON SK, STEBER CM, 2016. Gibberellin hormone signal perception: Down-regulating DELLA repressors of plant growth and development[M]//HEDDEN P, THOMAS SG. The gibberellins. Ann Plant Rev, 49: 153-187.
NISHIMURA N, TSUCHIYA W, MORESCO JJ, et al., 2018. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme[J]. Nat Commun, 9: 2132.
NONOGAKI H, 2019a. Seed germination and dormancy: The classic story, new puzzles, and evolution[J]. J Integr Plant Biol, 61(5): 541-563.
NONOGAKI H, 2019b. ABA responses during seed development and germination[J]. Adv Bot Res, 92: 171-217.
NORTH HM, DE ALMEIDA A, BOUTIN JP, et al., 2007. The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers[J]. Plant J Cell Mol Biol, 50(5): 810-824.
PARK SY, FUNG P, NISHIMURA N, et al., 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 324(5930): 1068-1071.
ROSCOE TT, GUILLEMIINOT J, BESSOULE JJ, et al., 2015. Complementation of seed maturation phenotypes by ectopic expression of ABSCISIC ACID INSENSITIVE 3, FUSCA3 and LEAFY COTYLEDON 2 in Arabidopsis[J]. Plant Cell Physiol, 56(6): 1215-1228.
SALL K, DEKKERS BJW, NONOGAKI M, et al., 2019. DELAY OF GERMINATION 1-LIKE 4 acts as an inducer of seed reserve accumulation[J]. Plant J, 100(1): 7-19.
SANO N, MARION-POLL A, 2021. ABA metabolism and homeostasis in seed dormancy and germination[J]. Int J Mol Sci, 22(10): 5069.
SEO M, AOKI H, KOIWAI H, et al., 2004. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds[J]. Plant Cell Physiol, 45(11): 1694-1703.
SHU K, CHEN Q, WU Y, et al., 2016. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels[J]. Plant J, 85(3): 348-361.
SHU K, ZHANG H, WANG S, et al., 2013. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis[J]. PLoS Genet, 9(6): e1003577.
SINGH DP, FILARDO FF, STOREY R, et al., 2010. Overexpression of a gibberellin inactivation gene alters seed development, KNOX gene expression, and plant development in Arabidopsis[J]. Physiol Plant, 138(1): 74-90.
SMOLIKOVA G, LEONOVA T, VASHURINA N, et al., 2021. Desiccation tolerance as the basis of long-term seed viability[J]. Int J Mol Sci, 22(1): 101.
SOHN SI, PANDIAN S, KUMAR TS, et al., 2021. Seed dormancy and pre-harvest sprouting in rice — An updated overview[J]. Int J Mol Sci, 22(21): 11804.
SONG SQ, LIU J, HUANG H, et al., 2020. Gibberellin metabolism and signaling and its molecular mechanism in regulating seed germination and dormancy[J]. Sci Sin Vitae, 50(6): 599-615.[宋松泉, 劉軍, 黃薈, 等, 2020. 赤霉素代謝與信號轉(zhuǎn)導(dǎo)及其調(diào)控種子萌發(fā)與休眠的分子機制[J]. 中國科學(xué): 生命科學(xué), 50(6): 599-615.]
SONG SQ, LIU J, TANG CF, et al., 2022. Research progress on the physiology and its molecular mechanism of seed desiccation tolerance[J]. Sci Agric Sin, 55(6): 1047-1063.[宋松泉, 劉軍, 唐翠芳, 等, 2022. 種子耐脫水性的生理及分子機制研究進展[J]. 中國農(nóng)業(yè)科學(xué), 55(6): 1047-1063.]
STONE SL, BRAYBROOK SA, PAULA SL, et al., 2008. Arabidopsis LEAFY COTYLEDON 2 induces maturation traits and auxin activity: Implications for somatic embryogenesis[J]. Proc Natl Acad Sci USA, 105(8): 3151-3156.
SUGIMOTO K, TAKEUCHI Y, EBANA K, et al., 2010. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice[J]. Proc Natl Acad Sci USA, 107(13): 5792-5797.
SUZUKI M, LATSHAW S, SATO Y, et al., 2008. The maize Viviparous 8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development[J]. Plant Physiol, 146(3): 1193-1206.
SWAIN SM, REID JB, KAMIYA Y, 1997. Gibberellins are required for embryo growth and seed development in pea[J]. Plant J, 12(6): 1329-1338.
TAN BC, SCHWARTZ SH, ZEEVAART JA, et al., 1997. Genetic control of abscisic acid biosynthesis in maize[J]. Proc Natl Acad Sci USA, 94(22): 12235-12240.
TAYLOR IB, LINFORTH RST, AL-NAIEB RJ, et al., 2010. The wilty tomato mutants flacca and sitiens are impaired in the oxidation of ABA aldehyde to ABA[J]. Plant Cell Environ, 11(8): 739-745.
TO A, VALON C, SAVION G, et al., 2006. A network of local and redundant gene regulation governs Arabidopsis seed maturation[J]. Plant Cell, 18(7): 1642-1651.
TUAN PA, KUMAR R, REHAL PK, et al., 2018. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals[J]. Front Plant Sci, 9: 668.
UTSUGI S, ASHIKAWA I, NAKAMURA S, et al., 2020. TaABI5, a wheat homolog of Arabidopsis thaliana ABA insensitive 5, controls seed germination[J]. J Plant Res, 133(2): 245-256.
VERDIER J, LALANNE D, PELLETIER S, et al., 2013. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds[J]. Plant Physiol, 163(2): 757-774.
VERMA S, ATTULURI VPS, ROBERT HS, 2021. An essential function for auxin in embryo development[J]. Cold Spring Harbor Perspect Biol, 13(4): a039966.
VERMA S, ATTULURI VPS, ROBERT HS, 2022. Transcriptional control of Arabidopsis seed development[J]. Planta, 255(4): 90.
WANG K, HE J, ZHAO Y, et al., 2018. EAR1 negatively regulates ABA signaling by enhancing 2C protein phosphatase activity[J]. Plant Cell, 30(4): 815-834.
WANG F, PERRY SE, 2013. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development[J]. Plant Physiol, 161(3): 1251-1264.
WANG Z, REN Z, CHENG C, et al., 2020. Counteraction of ABA mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in Arabidopsis[J]. Mol Plant, 13(9): 1284-1297.
XIANG Y, NAKABAYASHI K, DING J, et al., 2014. REDUCED DORMANCY 5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis[J]. Plant Cell, 26(11): 4362-4375.
YAMAMOTO A, KAGAYA Y, USUI H, et al., 2010. Diverse roles and mechanisms of gene regulation by the Arabidopsis seed maturation master regulator FUS3 revealed by microarray analysis[J]. Plant Cell Physiol, 51(12): 2031-2046.
YAMASAKI Y, GAO F, JORDAN MC, et al., 2017. Seed maturation associated transcriptional programs and regulatory networks underlying genotypic difference in seed dormancy and size/weight in wheat (Triticum aestivum L.)[J]. BMC Plant Biol, 17: 154.
YOSHIDA T, NISHIMURA N, KITAHATA N, et al., 2006. ABA hypersensitive germination 3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs[J]. Plant Physiol, 140(1): 115-126.
ZHANG YQ, LU X, ZHAO FY, et al., 2016. Soybean GmDREBL increases lipid content in seeds of transgenic Arabidopsis[J]. Sci Rep, 6: 34307.
ZHAO Y, CHAN Z, XING L, et al., 2013. The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling[J]. Cell Res, 23(12): 1380-1395.
ZHAO H, NIE K, ZHOU H, et al., 2020. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes[J]. New Phytol, 228(2): 596-608.
ZHAO Y, ZHANG Z, GAO J, et al., 2018. Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 activity[J]. Cell Rep, 23(11): 3340-3351.
ZHENG Z, XU X, CROSLEY RA, et al., 2010. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis[J]. Plant Physiol, 153(1): 99-113.
ZINSMEISTER J, LALANNE D, TERRASSON E, et al., 2016. ABI5 is a regulator of seed maturation and longevity in legumes[J]. Plant Cell, 28(11): 2735-2754.
(責(zé)任編輯?李?莉?王登惠)