国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

TA1鈦合金的表面復(fù)合強(qiáng)化與磨損行為研究

2023-11-06 06:37:18劉港劉靜代燕楊峰陳麗
表面技術(shù) 2023年10期
關(guān)鍵詞:磨粒因數(shù)鈦合金

劉港,劉靜,代燕,楊峰,陳麗

TA1鈦合金的表面復(fù)合強(qiáng)化與磨損行為研究

劉港,劉靜,代燕,楊峰,陳麗*

(貴州師范大學(xué) 材料與建筑工程學(xué)院,貴陽 550025)

針對(duì)鈦合金硬度低、耐磨性差的問題,利用機(jī)械球磨技術(shù)在TA1鈦合金表面獲得復(fù)合強(qiáng)化層,研究強(qiáng)化層的組織結(jié)構(gòu)對(duì)合金磨損行為的影響。采用行星式機(jī)械球磨裝置,以WC粉末為增強(qiáng)介質(zhì),在0.05 MPa氮?dú)鈿夥?、轉(zhuǎn)速為350 r/min、時(shí)間為8 h的條件下,對(duì)TA1鈦合金進(jìn)行表面機(jī)械變形+固相涂層復(fù)合強(qiáng)化處理,利用光學(xué)3D輪廓儀、XRD、SEM-EDS、往復(fù)式磨損機(jī)等對(duì)復(fù)合強(qiáng)化層的組織結(jié)構(gòu)和耐磨性能進(jìn)行測(cè)試。當(dāng)表層機(jī)械復(fù)合強(qiáng)化后,TA1鈦合金表面的復(fù)合強(qiáng)化層由WC涂層+形變細(xì)晶區(qū)組成,硬化區(qū)厚度為20~40 μm,形變細(xì)晶區(qū)厚度約為30 μm。涂層區(qū)硬度達(dá)到1 100HV0.25,為基材硬度的5倍。在5 N載荷下,摩擦因數(shù)為0.2~0.3,并可保持近4 000 s,在10 N載荷下,摩擦因數(shù)接近0.2并可保持1 200 s??蓪⒛p過程分為低摩擦因數(shù)區(qū)、過渡區(qū)和高摩擦因數(shù)區(qū)3個(gè)階段,且每階段的磨痕深度、磨損量與摩擦因數(shù)具有正相關(guān)性。表層機(jī)械復(fù)合強(qiáng)化可大幅提升TA1鈦合金表層的硬度和耐磨性,WC顆粒增強(qiáng)涂層具有較強(qiáng)的減摩效果,其磨損機(jī)制主要是磨粒磨損與氧化磨損。這種一步法表面強(qiáng)化技術(shù)具有工藝簡單、能耗少、涂層選材靈活的優(yōu)勢(shì)。

TA1鈦合金;機(jī)械形變;WC顆粒增強(qiáng);復(fù)合強(qiáng)化層;摩擦磨損

TA1是α鈦合金,組織穩(wěn)定且伸長率大,具有良好的塑性、熱穩(wěn)定性、疲勞強(qiáng)度和沖壓性能,是除TC4鈦合金以外的一種應(yīng)用較多的鈦合金材料[1-2]。TA1具有比強(qiáng)度高、耐疲勞、熱膨脹系數(shù)低、生物相容性優(yōu)異等優(yōu)良特征,在多種領(lǐng)域都有廣泛應(yīng)用[3-4],尤其在航空、航天、醫(yī)療等領(lǐng)域,其優(yōu)勢(shì)更為突出[5-8]。但鈦合金也存在一定的缺陷,如表面硬度低、耐磨性能差。為了滿足對(duì)鈦合金性能的更高要求,對(duì)TA1進(jìn)行表面強(qiáng)化處理等相關(guān)研究工作刻不容緩。

表面機(jī)械研磨處理(Surface Mechanical Attrition Treatment,SMAT)是一種表面強(qiáng)化技術(shù),其原理為通過鋼球高頻撞擊試樣而使表面產(chǎn)生劇烈的塑性變形。該技術(shù)可以在金屬表面形成與基體結(jié)合良好的梯度納米結(jié)構(gòu),達(dá)到提高硬度、強(qiáng)度和抗摩擦磨損性能的目的[9-11]。在SMAT過程中,表面發(fā)生的劇烈塑性變形會(huì)使表面晶粒逐漸細(xì)化形成納米結(jié)構(gòu),從而提升材料表面性能[12-13]。SMAT與噴丸處理類似,噴丸處理大多需長時(shí)間處理來獲得較好的強(qiáng)化效果,導(dǎo)致強(qiáng)化效率較低[14-17],而本文所采用的SMAT可控制氣氛,能夠避免處理過程中的氧化損耗且強(qiáng)化效率高。萬云等[18]研究表明,經(jīng)SMAT處理后,材料表面晶粒得到細(xì)化,材料的屈服應(yīng)力得到提高,但延展性有一定的降低。王榮華等[19]研究發(fā)現(xiàn),經(jīng)SMAT處理后,鋁表面的晶粒細(xì)化到納米級(jí),但其SMAT時(shí)間局限性較大。Chen等[20]研究發(fā)現(xiàn),經(jīng)過SMAT處理的AZ31B合金的耐疲勞性能得到了提高,但其耐腐蝕性能下降。Wen等[21]研究了SMAT處理前后純鈦的摩擦學(xué)行為,結(jié)果表明,與未處理的粗晶相比,SMAT處理的試樣具有更低的摩擦因數(shù)和更少的磨損量,即其耐磨性得到了增強(qiáng),但材料損失明顯,且延性有限。

本文基于SMAT技術(shù)提出了一種新的復(fù)合改性方法,一方面通過高速運(yùn)動(dòng)的磨球?qū)A1試樣表面反復(fù)撞擊、摩擦,使其表層發(fā)生塑性變形,并使材料本身逐漸發(fā)生加工硬化,在進(jìn)一步的SMAT機(jī)械作用下,誘導(dǎo)表層晶粒中的位錯(cuò)通過塞積及纏結(jié)的方式逐漸形成亞晶界甚至產(chǎn)生非晶化,導(dǎo)致組織細(xì)化和強(qiáng)化,形成一定厚度的強(qiáng)化層[22-24]。另一方面,通過加入少量WC粉末,使粉末在磨球高速?zèng)_擊時(shí)反復(fù)擠壓變形,并在TA1鈦合金表面產(chǎn)生冷焊和機(jī)械涂覆作用,從而形成涂層,產(chǎn)生進(jìn)一步的強(qiáng)化效果[25],使耐磨性能得到顯著提高。本文的研究工作可豐富鈦合金在復(fù)合強(qiáng)化領(lǐng)域的技術(shù)手段,為鈦合金的強(qiáng)韌化和抗磨性研究提供一定理論參考。

1 實(shí)驗(yàn)

1.1 樣品及預(yù)處理

實(shí)驗(yàn)用材為TA1鈦合金,樣品為15 mm×8 mm的柱狀材料。首先,使用碳化硅砂紙對(duì)試樣進(jìn)行打磨。其次,使用氧化鋁拋光粉末懸浮液對(duì)樣品進(jìn)行拋光。最后,用無水乙醇清洗前處理完成后的試樣,再用蒸餾水清洗并吹干。

1.2 表面機(jī)械復(fù)合強(qiáng)化

采用配有氧化鋯材球磨罐的行星式球磨機(jī)(南京南大儀器廠,QM3SP4)進(jìn)行表面機(jī)械復(fù)合強(qiáng)化實(shí)驗(yàn)。為提高磨球沖撞頻率,采用較高的球料比[26],在每個(gè)罐中放入φ10型號(hào)的鎢鋼球20顆、φ8型號(hào)的鎢鋼球15顆、φ5型號(hào)的鎢鋼球30顆以及2個(gè)試樣。先用N2對(duì)罐子進(jìn)行至少3次洗氣,后向罐中充入0.05 MPa的N2,使罐中氧濃度盡可能的低,球和試樣處于N2氣氛環(huán)境中,在350 r/min轉(zhuǎn)速下,進(jìn)行8 h表面機(jī)械形變球磨強(qiáng)化處理,實(shí)驗(yàn)工藝方法示意圖如圖1所示。待球磨強(qiáng)化完成后,放掉剩余氣體取出試樣,先在酒精中用超聲清洗30 min,后用蒸餾水清洗并吹干,獲得經(jīng)過表面機(jī)械復(fù)合強(qiáng)化處理的TA1試樣。

圖1 表面機(jī)械形變球磨強(qiáng)化方法示意圖

1.3 組織結(jié)構(gòu)表征

對(duì)經(jīng)表面機(jī)械強(qiáng)化處理的TA1試樣進(jìn)行切割,截面經(jīng)磨拋處理后,采用Kroll溶液(100 mL蒸餾水+ 1~3 mL HF+2~6 mL硝酸)進(jìn)行腐蝕,通過光學(xué)顯微鏡(卡爾蔡司Axio Scope.A1)觀察試樣截面微觀形貌,放大倍數(shù)為500。采用X射線衍射(日本Rigaku Smartlab)對(duì)強(qiáng)化前后樣品表面進(jìn)行物相結(jié)構(gòu)分析,掃描速度為2(°)/min,掃描范圍為10°~80°。采用掃描電子顯微鏡(Zeiss Merlin Compact)觀察強(qiáng)化后的橫斷面微觀形貌,放大倍數(shù)為500。采用維氏硬度計(jì)(MHV-2.0)在0.245 N壓力參數(shù)下測(cè)量表面機(jī)械強(qiáng)化樣品切片的截面硬度梯度。

1.4 摩擦磨損實(shí)驗(yàn)

采用自制的往復(fù)磨損實(shí)驗(yàn)裝置進(jìn)行摩擦磨損實(shí)驗(yàn),以直徑為7 mm的氧化鋁球?yàn)槟Σ翆?duì),設(shè)置與試樣的接觸方式為點(diǎn)面接觸,滿足接觸應(yīng)力為載荷與接觸面積比值的關(guān)系[27]。分別在5 N和10 N載荷下[28-29],對(duì)原始樣和強(qiáng)化樣進(jìn)行往復(fù)式干摩擦實(shí)驗(yàn),磨損位移為12 mm,磨損頻率為625 Hz。在工作過程中,利用傳感器將數(shù)據(jù)傳輸?shù)诫娔X中,每秒鐘記錄3個(gè)摩擦值,通過計(jì)算得到摩擦因數(shù),實(shí)現(xiàn)在線監(jiān)測(cè)摩擦因數(shù)。采用光學(xué)3D輪廓儀(Super View W1)和SEM(Zeiss Merlin Compact)觀察不同磨損TA1樣品在不同載荷下的磨痕形態(tài),通過使用3D輪廓儀測(cè)量劃痕面積來計(jì)算磨損體積。

2 結(jié)果與分析

2.1 硬化層表面及內(nèi)部形貌

TA1原樣與強(qiáng)化后的宏觀形貌如圖2所示??擅黠@觀察到,經(jīng)砂紙打磨后,未經(jīng)機(jī)械強(qiáng)化處理的TA1鈦合金原樣表面非常光滑,具有金屬光澤,而經(jīng)過機(jī)械形變復(fù)合強(qiáng)化后的TA1試樣表面黑且粗糙,不具有金屬光澤及光滑的物理屬性。

圖2 宏觀形貌

TA1原樣與強(qiáng)化后的3D表面形貌如圖3所示。TA1原樣與強(qiáng)化樣的平均粗糙度a如表1所示??梢钥吹?,經(jīng)過強(qiáng)化處理后的TA1表面粗糙度大幅度增大。

表1 TA1原樣與強(qiáng)化樣粗糙度

Tab.1 Roughness of TA1 raw sample and strengthened sample

為了進(jìn)一步觀察TA1鈦合金經(jīng)過機(jī)械形變復(fù)合強(qiáng)化后的組織結(jié)構(gòu)變化,對(duì)強(qiáng)化后TA1截面進(jìn)行金相觀察。在轉(zhuǎn)速為350 r/min、時(shí)間為8 h、0.05 MPa N2氣氛下的機(jī)械形變復(fù)合強(qiáng)化樣截面金相組織如圖4所示。可知,經(jīng)過機(jī)械形變復(fù)合強(qiáng)化后,隨著深度的增大,在樣品截面可以清晰地觀察到涂層區(qū)、形變細(xì)晶區(qū)、過渡區(qū)、基體4個(gè)區(qū)域,整個(gè)組織呈現(xiàn)梯度變化的特征。涂層區(qū)厚度為30~40 μm,其結(jié)構(gòu)致密且均勻,在明場(chǎng)和暗場(chǎng)下均呈現(xiàn)出比TA1基材更深的顏色,與TA1的接合面凹凸不平,說明在機(jī)械處理過程中TA1表面經(jīng)受了較大的塑性變形,可推測(cè)這種結(jié)構(gòu)加強(qiáng)了WC涂層與基體的力學(xué)結(jié)合強(qiáng)度。形變細(xì)晶區(qū)厚度大約為30 μm,存在較為細(xì)小的等軸狀晶粒,晶界在光鏡下難以分辨,形成納米結(jié)構(gòu)層,并且具有一些孿晶及位錯(cuò)[30-31]。過渡區(qū)厚度為30~ 40 μm,存在大量的形變孿晶狀組織,組織明顯比細(xì)晶區(qū)組織粗大,并逐漸向基體過渡。

為了觀察復(fù)合強(qiáng)化層的元素分布情況,進(jìn)行SEM+EDS線掃描檢測(cè),在500倍鏡下可見,在截面邊緣有一層強(qiáng)化層,厚度為20~40 μm。截面EDS線掃結(jié)果如圖5所示,可以觀察到涂層區(qū)的主要元素為W元素,從強(qiáng)化層到TA1基材,W的含量驟減,而鈦的分布情況則恰好相反。

圖3 3D表面形貌

圖4 TA1機(jī)械形變復(fù)合強(qiáng)化后截面金相顯微組織

圖5 TA1強(qiáng)化后截面EDS(線掃)結(jié)果

2.2 XRD

在轉(zhuǎn)速為350 r/min、時(shí)間為8 h、0.05 MPa N2氣氛下的機(jī)械形變復(fù)合強(qiáng)化樣XRD結(jié)果如圖6所示。為了定性了解不同深度強(qiáng)化層的相結(jié)構(gòu),分別將試樣表層經(jīng)過10 μm、40 μm 2種不同深度處理并與未經(jīng)深度處理的強(qiáng)化樣品進(jìn)行對(duì)比。通過XRD分析可知,強(qiáng)化層中WC涂層的最大分布深度超過40 μm。復(fù)合強(qiáng)化層表面主要成分為WC,且其特征峰寬化,說明晶格變形較為嚴(yán)重。其主要原因?yàn)椋烘u鋼球在機(jī)械復(fù)合強(qiáng)化過程中發(fā)生無規(guī)則撞擊,一方面使TA1試樣表面產(chǎn)生強(qiáng)烈的塑性變形,產(chǎn)生的應(yīng)變硬化效應(yīng)使變形量較大區(qū)域的硬度增大,從而使表面各區(qū)域的變形量相當(dāng),但整體粗糙度仍大幅增大(見表1);另一方面,預(yù)先加入的WC粉在鎢鋼磨球的強(qiáng)烈沖擊下進(jìn)一步細(xì)化,再經(jīng)過鎢鋼球黏附而撞擊嵌入TA1試樣表面,由于TA1表層粗糙度較高,其硬度又遠(yuǎn)低于WC的硬度,在冷焊后機(jī)械包裹和黏附的作用下表層逐漸形成WC涂層。隨著表面機(jī)械沖擊的不斷進(jìn)行,涂層厚度逐漸增大,可理解為涂層的生長過程。但因TA1試樣在機(jī)械變形后表面凹凸不平,WC涂層的形成和生長具有一定隨機(jī)性,凹陷部分更有利于形成涂層,而凸起部分形成的涂層可能較薄,甚至沒有涂層。因此,即使在表層,仍然可通過XRD檢測(cè)出一定量的α-Ti。

圖6 強(qiáng)化后TA1表面強(qiáng)化層磨不同深度后的XRD

2.3 顯微硬度

在轉(zhuǎn)速為350 r/min、時(shí)間為8 h、0.05 MPa N2氣氛下的機(jī)械形變復(fù)合強(qiáng)化樣與原樣的截面硬度分布情況如圖7所示。可知,經(jīng)強(qiáng)化處理后的TA1試樣截面維氏硬度得到明顯提升,在靠近強(qiáng)化層表面的位置,強(qiáng)化層具有較大的硬度值,隨著強(qiáng)化層深度的增大,硬度逐漸降低,具有明顯的梯度特性。距離表面20 μm處的平均硬度值達(dá)到約1 000HV0.25,即使在距表面40 μm處,其平均硬度仍然達(dá)到700HV0.25。對(duì)照前面的分析可知,WC涂層能明顯提高TA1鈦合金表層的強(qiáng)度和硬度。強(qiáng)化層外層主要由均勻硬質(zhì)WC顆粒黏附而形成,因此具有相對(duì)較高的硬度。在距離表面60~100 μm處,其平均硬度值接近300HV0.25,雖然比WC涂層區(qū)的硬度低,但也明顯高于TA1基材硬度(200HV0.25),在該區(qū)域,硬度值也隨深度的增大而降低,只是變化幅度較小。對(duì)照前面的分析可知,該區(qū)域?qū)?yīng)復(fù)合強(qiáng)化層的細(xì)晶區(qū)和過渡區(qū)(形變孿晶區(qū)),因此存在一定細(xì)晶強(qiáng)化和形變孿晶強(qiáng)化效應(yīng),而相近的硬度說明納米等軸細(xì)晶和形變孿晶對(duì)TA1合金的硬度改善作用相當(dāng)。在距離表面120 μm處,其平均硬度值基本接近基體硬度??傊?,利用本文提出的復(fù)合強(qiáng)化技術(shù)制備的強(qiáng)化層綜合性能較為優(yōu)異。

圖7 TA1機(jī)械形變復(fù)合強(qiáng)化后截面硬度梯度

2.4 磨損性能

經(jīng)過球磨裝置機(jī)械形變復(fù)合強(qiáng)化后的摩擦因數(shù)/時(shí)間變化曲線如圖8所示。相較于基體,球磨后TA1合金的摩擦因數(shù)均有大幅度降低,特別是在初始階段,摩擦因數(shù)明顯低于未處理樣的摩擦因數(shù)。由圖8可知,未經(jīng)處理的TA1原樣在載荷為5 N和10 N下的摩擦因數(shù)均保持在0.5附近,而經(jīng)過沖擊,球磨后TA1合金表面形成了強(qiáng)化層,摩擦因數(shù)比原樣的小,在最開始球磨后,TA1試樣的摩擦因數(shù)為0.2~0.3。在5 N載荷下,在前4 000 s,摩擦因數(shù)位于低摩擦因數(shù)穩(wěn)定階段的數(shù)值,摩擦因數(shù)為0.2~0.3且趨于穩(wěn)定;在4 000~6 000 s區(qū)間時(shí),摩擦因數(shù)處于一個(gè)過渡上升階段;在6 000~10 000 s,摩擦因數(shù)保持在一個(gè)相對(duì)較高且穩(wěn)定的狀態(tài)。在10 N載荷下,在前1 200 s內(nèi),摩擦因數(shù)處于一個(gè)相對(duì)穩(wěn)定的狀態(tài),在0.2左右;當(dāng)時(shí)間處于1 200~2 500 s時(shí),摩擦因數(shù)處于一個(gè)上升過渡階段;在2 500~4 300 s時(shí),摩擦因數(shù)同樣保持在一個(gè)相對(duì)較高且穩(wěn)定的狀態(tài)。經(jīng)過3~5次測(cè)試所得的摩擦因數(shù)誤差如表2所示。

在低摩擦因數(shù)區(qū)、過渡區(qū)、高摩擦因數(shù)區(qū),分別對(duì)轉(zhuǎn)速為350 r/min、時(shí)間為8 h、0.05 MPa N2氣氛下的機(jī)械形變復(fù)合強(qiáng)化樣進(jìn)行磨損實(shí)驗(yàn),載荷選擇為5 N,探究3個(gè)區(qū)間的磨損機(jī)制。5 N載荷下經(jīng)過表面機(jī)械形變復(fù)合強(qiáng)化的TA1試樣的區(qū)間-磨損量關(guān)系如圖9所示。

從圖9a可以看出,在5 N載荷下,經(jīng)過強(qiáng)化后TA1合金的磨損程度隨摩擦因數(shù)的增大而逐漸增大,TA1基體在5 N載荷下的最終磨痕圖及輪廓圖如圖10所示。磨痕3D形貌以及磨痕輪廓曲線如圖11所示。從圖11可知,從低摩擦因數(shù)區(qū)到過渡區(qū),磨損量的增長速率很慢,其主要原因有兩點(diǎn):第一,表面存在高硬度且較厚的WC顆粒強(qiáng)化涂層,如圖4和圖7所示,造成磨損過程中涂層抗變形能力大幅度提升;第二,凹凸不平的WC涂層在磨損過程中的接觸面積較小,同時(shí)逐漸產(chǎn)生的細(xì)小磨粒發(fā)揮了潤滑作用,使此區(qū)間保持著較低的摩擦因數(shù),耐磨性能得以提高。從過渡區(qū)到高摩擦因數(shù)區(qū),磨損量迅速增大,此時(shí)TA1試樣表面的WC涂層正在逐漸被磨損掉,當(dāng)較軟的TA1基體顯露后,其抗塑性變形能力大幅減弱。此外,隨著磨損的進(jìn)行,磨槽深度增大,與對(duì)磨球接觸的接觸面逐漸增大,導(dǎo)致摩擦阻力增大,摩擦因數(shù)大幅提高。在5 N載荷下,3個(gè)階段的磨損率如圖9b所示??芍?,強(qiáng)化后試樣的磨損率遠(yuǎn)小于基材的。

圖8 350 r/min轉(zhuǎn)速-8 h-球磨后的摩擦因數(shù)-時(shí)間曲線

表2 摩擦因數(shù)誤差范圍

Tab.2 Error range of friction coefficient

圖9 TA1復(fù)合強(qiáng)化層的磨損量(a)和磨損率(b)

式中:為磨損率;d為磨損量,mm3;d為磨損時(shí)間,h;d為載荷,N。

經(jīng)過表面機(jī)械形變復(fù)合強(qiáng)化后的強(qiáng)化層表面磨痕如圖11所示,可以看到,其主要表現(xiàn)為磨粒磨損特征。與TA1基體相比,TA1的表面強(qiáng)化層具有較窄的“溝槽”,這是由于強(qiáng)化層表面具有極細(xì)小的增強(qiáng)顆粒,這些顆粒在摩擦過程中逐漸剝落并在接下來的摩擦中起到磨粒的作用。這些細(xì)小的脆硬磨粒與TA1強(qiáng)化層相磨產(chǎn)生了較窄的“溝槽”。

從磨痕中可以觀察到由磨粒切削作用而產(chǎn)生的“犁溝”,還能觀察到磨損引起的剝落,過渡區(qū)存在由原始粗糙表面引起的未被完全磨平的凹坑。強(qiáng)化后的TA1表面在低摩擦因數(shù)區(qū)的磨損程度較小,具有較窄的“溝槽”。強(qiáng)化層表面細(xì)小的增強(qiáng)顆粒在摩擦過程中逐漸剝落并在接下來的摩擦中起到磨粒的作用,產(chǎn)生“三體”磨損。由于WC顆粒在機(jī)械磨損過程中被研磨得很細(xì),因此其磨粒磨損程度較輕,加上其本身的固體潤滑效應(yīng),導(dǎo)致產(chǎn)生了較窄的“溝槽”。隨著磨損程度的增大,磨粒逐漸增加,溝槽逐漸變寬,摩擦因數(shù)和磨損量同步增大。同時(shí),隨著WC強(qiáng)化涂層的消耗,TA1表層無法承受硬質(zhì)WC顆粒的磨損,最后在高摩擦因數(shù)區(qū)產(chǎn)生較深較寬的溝槽。由圖11d可見,隨時(shí)間的延長和摩擦因數(shù)的增大,磨痕的深度和寬度逐漸增大。

圖10 TA1基體5N載荷下最終磨痕圖(a)和輪廓圖(b)

圖11 磨痕3D形貌以及磨痕輪廓曲線

為了進(jìn)一步分析磨損機(jī)制,對(duì)5 N載荷下、3個(gè)不同磨損階段強(qiáng)化后的TA1合金樣品分別進(jìn)行SEM-EDS檢測(cè),結(jié)果如圖12所示。從磨痕表面的氧含量變化可知,表面強(qiáng)化層在摩擦過程中發(fā)生了明顯氧化,可推測(cè)氧化磨損是其磨損機(jī)制之一。從低摩擦因數(shù)區(qū)到高摩擦因數(shù)區(qū),磨痕中的W和C元素含量逐漸降低,表明磨損過程中WC涂層逐漸被破壞;而Ti元素逐漸增加,證明磨痕正逐漸深入到TA1基體中,值得一提的是,樣品未磨損區(qū)域也有零星的Ti元素分布,說明涂層并非完整分布于TA1表面,這也是該技術(shù)亟待改進(jìn)之處。另外,在3個(gè)階段中,磨痕區(qū)都具有相似的“犁溝”形貌,證明磨粒磨損也是其磨損機(jī)制。由于強(qiáng)化層表面受到磨球反復(fù)摩擦作用,一方面強(qiáng)化層的表面被氧化,促進(jìn)涂層顆粒剝落;另一方面,剝離的顆粒產(chǎn)生磨粒磨損,加劇了材料的損耗。

圖12 TA1機(jī)械形變復(fù)合強(qiáng)化后掃描電鏡圖

3 結(jié)論

采用機(jī)械形變復(fù)合強(qiáng)化技術(shù)對(duì)TA1鈦合金表面進(jìn)行了強(qiáng)化,研究了復(fù)合強(qiáng)化層的微觀形貌、成分、硬度、磨損性能以及強(qiáng)化機(jī)制,主要結(jié)論如下:

1)經(jīng)過機(jī)械形變復(fù)合強(qiáng)化后,復(fù)合強(qiáng)化層組織由WC涂層+形變細(xì)晶區(qū)組成。TA1鈦合金硬度得到大幅度提升,是基材硬度的5倍。強(qiáng)化層可以有效改善TA1合金表面的力學(xué)性能。

2)在5 N、10 N載荷下,經(jīng)機(jī)械形變復(fù)合強(qiáng)化處理的TA1合金摩擦因數(shù)比原樣的摩擦因數(shù)大幅降低。在5 N載荷下,摩擦因數(shù)可穩(wěn)定在0.2~0.3長達(dá)4 000 s,隨著涂層區(qū)磨損過程的加劇,摩擦因數(shù)逐漸增大并趨于穩(wěn)定,可將其分低摩擦因數(shù)區(qū)、過渡區(qū)和高摩擦因數(shù)區(qū)。

3)復(fù)合強(qiáng)化后的合金磨損機(jī)制主要是磨粒磨損和氧化磨損。

[1] 何俊華. TA1鈦合金自沖鉚接接頭機(jī)械性能研究[D]. 南昌: 華東交通大學(xué), 2018: 11. HE Jun-hua. Study on Mechanical Properties of TA1 Tita-n-ium Alloy Self-Piercing Riveted Joints[D]. Nanchang: East China Jiaotong University, 2018: 11.

[2] 黃志超, 宋天賜, 賴家美. TA1鈦合金自沖鉚接接頭疲勞性能及失效機(jī)理分析[J]. 焊接學(xué)報(bào), 2019, 40(3): 41-46. HUANG Zhi-chao, SONG Tian-ci, LAI Jia-mei. Fatigue Property and Failure Mechanism of Self Piercing Riveted Joints of TA1 Titanium Alloy[J]. Transactions of the China Welding Institution, 2019, 40(3): 41-46.

[3] 王月美. Si和GNP添加及燒結(jié)工藝對(duì)高能球磨Ti-18Mo合金的組織和性能影響[D]. 鎮(zhèn)江: 江蘇大學(xué), 2019: 12.WANG Yue-mei. Effect of Si and GNP Addition and Sintering Process on Microstructure and Properties of Ti-18Mo Alloy Prepared by High-Energy Ball Milling[D]. Zhenjiang: Jiangsu university, 2019: 12.

[4] 楊峰, 趙馴峰, 鄭紀(jì)豹, 等. 38CrMoAl鋼真空電磁感應(yīng)快速滲氮?jiǎng)恿W(xué)研究[J]. 貴州師范大學(xué)學(xué)報(bào), 2021, 39(3): 85-91. YANG Feng, ZHAO Xun-feng, ZHENG Ji-bao, et al. Investigation on the Kinetics of Rapid Nitriding of 38CrMoAl Steel under Vacuum Electromagnetic Indu-ction[J]. Journal of Guizhou Normal University, 2021, 39(3): 85-91.

[5] VRANCKEN B, THIJS L, KRUTH J P, et al. Micro-structure and Mechanical Properties of a Novel β Titani-ummetallic Composite by Selective Laser Melting[J]. Acta Materials, 2014, 68(15): 150-158.

[6] IH A, FY A, AE B. The Effects of Build Orientation and Hatch Spacing on Mechanical Properties of Medical Ti-6Al-4V Alloy Manufactured by Selective Laser Mel-ting[J]. Materials Science and Engineering: A, 2020: 802.

[7] YANG Z T, XU Y Z, SISSON R D, et al. Factors Influencing the Corrosion Behavior of Direct Metal Laser Sintered Ti-6Al-4V for Biomedical Applications[J]. Journal of Materials Engineering and Performance, 2020, 29: 3831.

[8] 趙倫, 何曉聰, 張先煉, 等. TA1鈦合金自沖鉚接頭力學(xué)性能及微動(dòng)行為[J]. 材料導(dǎo)報(bào), 2018, 32(20): 3579-3583. ZHAO Lun, HE Xiao-cong, ZHANG Xian-lian, et al. Mechanical Performance and Fretting Behavior of Self- Piercing Riveted Joint of TA1 Titanium Alloy[J]. Mate-rials Reports, 2018, 32(20): 3579-3583.

[9] 陳婷婷, 武曉雷, 韓培德. SMAT技術(shù)制備梯度納米孿晶結(jié)構(gòu)及其腐蝕行為研究[J]. 中國腐蝕與防護(hù)學(xué)報(bào), 2022, 42(6): 973-978. CHEN Ting-ting, WU Xiao-lei, HAN Pei-de. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10% Nacl Solution[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(6): 973-978.

[10] 鄒途祥, 衛(wèi)英慧, 侯利鋒, 等. 純鋁表面機(jī)械研磨納米化后的顯微組織和硬度[J]. 機(jī)械工程材料, 2009, 33(1): 40-43. ZOU Tu-xiang, WEI Ying-hui, HOU Li-feng, et al. Microstructure and Hardness of Pure Aluminum Surface Nanocrystallization after Smat[J]. Materials for Mechani-cal Engineering, 2009, 33(1): 40-43.

[11] 寧江利, 苑瀟逸, 吳蒙, 等. 表面機(jī)械研磨處理對(duì)熱軋態(tài)Mg-Gd-Y合金微觀組織和力學(xué)性能的影響[J]. 稀有金屬材料與工程, 2022, 51(2): 566-572. NING Jiang-li, YUAN Xiao-yi, WU Meng, et al. Effect of Surface Mechanical Attrition Treatment on the Micro-structure and Mechanical Properties of Hot-Rolled Mg- Gd-Y Alloy[J]. Rare Metal Materials and Engineering, 2022, 51(2): 566-572.

[12] CHEN J, LU L, LU K. Hardness and Strain Rate Sen-sitivity of Nanocrystalline Cu[J]. Scripta Materialia, 2006, 54(11): 1913-1918.

[13] 何柏林, 熊磊. 金屬表面納米化及其對(duì)材料性能影響的研究進(jìn)展[J]. 兵器材料科學(xué)與工程, 2016, 39(2): 116-120. HE Bo-lin, XIONG Lei. Research Progress in Effect of Metal Surface Nanocrystallization on Material Proper-ties[J]. Ordnance Material Science and Engineering, 2016, 39(2): 116-120.

[14] 潘向南, 韓靖, 韓月嬌, 等. 表面納米化對(duì)304奧氏體不銹鋼滲氮的影響[J]. 熱加工工藝, 2018, 47(10): 124-126. PAN Xiang-nan, HAN Jing, HAN Yue-jiao, et al. Effect of Surface Nano Crystallization on Nitriding of 304 Austenitic Stainless Steel[J]. Hot Working Technology, 2018, 47(10): 124-126.

[15] 孟憲凱, 趙曜民, 周建忠, 等. 激光-超聲復(fù)合噴丸強(qiáng)化2024鋁合金表面性能研究[J]. 中國激光, 2022, 49(16): 53-61. MENG Xian-kai, ZHAO Yao-min, ZHOU Jian-zhong, et al. Surface Properties of 2024 Aluminum Alloy Streng-thened by Laser Ultrasonic Composite Shock Peening[J].Chinese Journal of Lasers, 2022, 49(16): 53-61.

[16] 朱鵬飛, 嚴(yán)宏志, 陳志, 等. 滲碳齒輪齒根噴丸強(qiáng)化研究現(xiàn)狀與展望[J]. 表面技術(shù), 2021, 50(1): 10-27. ZHU Peng-fei, YAN Hong-zhi, CHEN Zhi, et al. Rese-arch Status and Prospect of Shot Peening for Carburized Gear Roots[J]. Surface technology, 2021, 50(1): 10-27.

[17] 胡英俊, 黃小波, 高玉魁. 噴丸處理對(duì)鋯合金微動(dòng)磨損及抗腐蝕性能的影響[J]. 表面技術(shù), 2020, 49(7): 238-244. HU Ying-jun, HUANG Xiao-bo, GAO Yu-kui. Effect of Shot Peening on Fretting Wear and Corrosion Resistance of Zirconium Alloy[J]. Surface Technology, 2020, 49(7): 238-244.

[18] 萬云, 王振清, 周利民, 等. 表面機(jī)械研磨(SMAT)技術(shù)對(duì)玻璃纖維增強(qiáng)鋁金屬層板(GLARE)拉伸性能的影響[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2014, 35(10): 1107-1114. WAN Yun, WANG Zhen-qing, ZHOU Li-min, et al. Effect of Surface Mechanical Attrition Treatment (SMAT) on the Tensile Performance of Fibre Reinforced Alumi-nium Laminates[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1107-1114.

[19] 王榮華, 劉振奇. 表面機(jī)械研磨對(duì)5052鋁合金表面納米化與性能的影響[J]. 鍛壓技術(shù), 2022(1): 217-223. WANG Rong-hua, LIU Zhen-qi. Influence of Surface Mechanical Attrition on Surface Nanocrystallization and Properties for 5052 Aluminum Alloy[J]. Forging & Stamping Technology, 2022(1): 217-223.

[20] CHEN G, FU Y, CUI Y, et al. Effect of Surface Mechanical Attrition Treatment on Corrosion Fatigue Behavior of AZ31B Magnesium Alloy[J]. International Journal of Fatigue, 2019, 127: 461-469.

[21] WEN M, WEN C, HODGSON P D, et al. Tribological Behaviour of Pure Ti with a Nanocrystalline Surface Layer under Different Loads[J]. Tribology Letters, 2012, 45(1): 59-66.

[22] 王韜. 高能球磨-放電等離子燒結(jié)制備雙尺度鈦合金的拉伸及耐磨性能研究[D]. 廣州: 華南理工大學(xué), 2014: 31-32.WANG Tao. Tensile and Wear-Resisting Properties of Bimodal Ti-6Al-4V Alloy Prepared by High Energy Ball Milling and Spark Plasma Sintering[D]. Guangzhou: South China University of Technology, 2014: 31-32.

[23] FANG T H, LI W L, TAO N R, et al. Revealing Extraor-dinary Intrinsic Tensile Plasticity in Gradient Nano- Grained Copper[J]. Science, 2011, 331(6024): 1587-1590.

[24] 張曉瑩. 表面機(jī)械研磨處理對(duì)鎂合金AZ80組織和性能的影響[J]. 熱加工工藝, 2018, 47(8): 111-113. ZHANG Xiao-ying. Effects of Surface Mechanical Attrition Treatment on Microstructure and Properties of AZ80 Magnesium Alloy[J]. Hot Working Technology, 2018, 47(8): 111-113.

[25] ROMANKOV S, SHCHETININ I V, PARK Y C, et al. Formation or Nanolaminaea Amorphous/Crystalline Stru-c-ture in the Multicomponent System under Severe Plasti-cdeformation[J]. Materials Letters, 2012, 85: 109-112.

[26] ECKERT J, JOST J, SCHULTZ L. Synthesis and Pro-perties of Mechanically Alloyed Y-Ni-B-C[J]. Materials Letters, 1997, 31(3/4/5/6): 329-333.

[27] JIANG X, DAI Y, XIANG Q, et al. Microstructure and Wear Behavior of Inductive Nitriding Layer in Ti-25Nb- 3Zr-2Sn-3Mo Alloys[J]. Surface and Coatings Techno-logy, 2021, 427: 127835.

[28] JAIN U, SAIRAM K, SINGH K. et al. Wear Behavior of Vanadium and V-Ti-Ta Alloys under Reciprocating Sli-ding Conditions[J]. Journal of Materials Engineering and Performance, 2019, 28(6): 3372-3380.

[29] 曾群鋒, 許雅婷, 林乃明. 304不銹鋼在人工海水環(huán)境中的腐蝕磨損行為研究[J]. 表面技術(shù), 2020, 49(1): 194-202. ZENG Qun-feng, XU Ya-ting, LIN Nai-ming. Tribocor-rosion Behaviors of 304 Stainless Steel in Artificial Seawater[J]. Surface Technology, 2020, 49(1): 194-202.

[30] JIN G. New Application of Smat in Improving Fatigue Strength of 3D Laser-Printed Ti6Al4V[J]. Materials Reports, 2020, 34(10): 10001-10002.

[31] 閆辰侃, 曲壽江, 馮艾寒, 等. 鈦及鈦合金形變孿晶的研究進(jìn)展[J]. 稀有金屬, 2019, 43(5): 449-460. YAN Chen-kan, QU Shou-jiang, FENG Ai-han, et al. Recent Advances of Deformation Twins in Titanium and Titanium Alloys[J]. Chinese Journal of Rare Metals, 2019, 43(5): 449-460.

Surface Composite Strengthening and Wear Behavior of TA1 Titanium Alloy

,,,,*

(School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China)

Surface mechanical composite strengthening is a one-step surface modification technology with simple process, low energy consumption and flexible coating material selection. It can improve the surface properties of TA1 titanium alloy, such as hardness and wear resistance. Through high-speed movement of the grinding ball on the surface of the TA1 specimen, the impact and friction was repeated, which caused plastic deformation and gradual work hardening of the surface layer of the TA1 titanium alloy substrate. With the action of grinding ball, the surface grain size of dislocation was further mechanically induced by product and even tangles, which gradually lead to the formation of sub-grain boundaries and even amorphization, and thus lead to elaboration and strengthening, and the formation of a reinforcement layer of certain thickness. In addition, a small amount of added WC powder made the powder be repeatedly extruded and deformed at high speed impact of the grinding ball, and produced cold welding and mechanical coating on the surface of TA1 titanium alloy, thus forming the coating and further strengthening the effect. The material used in this experiment was TA1 titanium alloy, and the sample was15 mm×8 mm columnar material. A planetary mechanical ball milling device, zirconia ball milling tank and stainless steel ball were used to strengthen the TA1 titanium alloy surface by mechanical deformation and solid-phase coating at 0.05 MPa nitrogen atmosphere and 350 r/min speed for 8 h with WC powder as the reinforcing medium. Testing methods, such as Vickers hardness tester, optical 3D profilometer, XRD, SEM-EDS, and reciprocating wear machine were used to test and characterize the structure and wear resistance of the composite reinforced layer. The surface roughness of TA1 increased obviously. After mechanical strengthening, the composite strengthening layer of TA1 titanium alloy was composed of WC coating+deformed fine grain region. The thickness of the hardened layer was about 20-40 μm, and the structure was compact and uniform. The thickness of the deformation fine grain zone was about 30 μm, which was composed of relatively small equiaxed grain. The nano structure layer also had some twins and dislocations. The hardness of the coating zone reached 1 000HV0.25, and the outer layer of the reinforced layer was mainly formed by the adhesion of uniform hard WC particles, which significantly improved the hardness of TA1 titanium alloy. XRD analysis showed that the maximum distribution depth of WC coating in the strengthened layer exceeded 40 μm. The main surface component of the composite reinforced layer was WC. The WC particle-reinforced coating had a strong anti-friction effect. TA1 titanium alloy had a stable low friction coefficient in the wear process after strengthening, and the low friction coefficient was stable around 0.2, and the interval of low friction coefficient lasted for a long time. The presence of high hardness and thick WC particles reinforced coating strengthens the coating resistance to deformation during the wear process, and uneven WC coating in the process of wear contact area is lesser. At the same time, it gradually produces small grits, gives play to the role of the lubrication, keeps the friction coefficient in a low range, and improves the wear resistance. When the WC coating on the surface of TA1 sample is gradually worn away, and the soft TA1 matrix is exposed, its anti-plastic deformation ability is greatly weakened, and its wear mechanism is mainly abrasive wear and oxidation wear.

TA1 titanium alloy; mechanical deformation; WC particle strengthening; composite strengthening coating; friction and wear

2022-09-30;

2023-04-12

TG17

A

1001-3660(2023)10-0171-10

10.16490/j.cnki.issn.1001-3660.2023.10.013

2022-09-30;

2023-04-12

黔科合基礎(chǔ)(ZK[2023]-250);貴州省教育廳滾動(dòng)支持省屬高??蒲衅脚_(tái)項(xiàng)目黔教技([2022]012);貴州省研究生科研基金立項(xiàng)課題項(xiàng)目黔教合(YJSKYJJ[2021]100)

Fundamentals of Guizhou Science and Technology Cooperation(ZK[2023]-250); The Education Department of Guizhou Province Supports the Scientific Research Platform Project of Provincial Universities ([2022]012); The Graduate Research Fund of Guizhou Province (YJSKYJJ [2021]100)

劉港, 劉靜, 代燕,等. TA1鈦合金的表面復(fù)合強(qiáng)化與磨損行為研究[J]. 表面技術(shù), 2023, 52(10): 171-180.

LIU Gang, LIU Jing, DAI Yan, et al. Surface Composite Strengthening and Wear Behavior of TA1 Titanium Alloy[J]. Surface Technology, 2023, 52(10): 171-180.

通信作者(Corresponding author)

責(zé)任編輯:蔣紅晨

猜你喜歡
磨粒因數(shù)鈦合金
借助因數(shù)巧妙拆分
基于凸多面體碰撞檢測(cè)的虛擬砂輪建模研究
超精密表面研拋磨粒的研究進(jìn)展
因數(shù)是11的巧算
“積”和“因數(shù)”的關(guān)系
單個(gè)鐵氧體磨粒尺寸檢測(cè)電磁仿真
“神的金屬”鈦合金SHINE YOUR LIFE
中國自行車(2018年8期)2018-09-26 06:53:32
鈦合金板鍛造的工藝實(shí)踐
四川冶金(2017年6期)2017-09-21 00:52:30
微晶剛玉磨粒磨削20CrMnTi鋼的數(shù)值模擬研究
找因數(shù)與倍數(shù)有絕招
龙岩市| 黑河市| 河池市| 托克逊县| 梅河口市| 孟州市| 息烽县| 凭祥市| 仙居县| 濮阳市| 如东县| 白银市| 罗江县| 依安县| 沙湾县| 慈溪市| 沙洋县| 洪江市| 伽师县| 乌兰察布市| 巴南区| 海南省| 来宾市| 仁布县| 布拖县| 米脂县| 美姑县| 中方县| 随州市| 辉南县| 循化| 涪陵区| 衡山县| 鄂尔多斯市| 洮南市| 酒泉市| 四川省| 安国市| 岳西县| 乳山市| 项城市|