曾鴻運(yùn) 吳元立 黃秉智
摘? ? 要:近幾十年來,中國香蕉產(chǎn)業(yè)快速發(fā)展。目前,中國是世界香蕉第二大生產(chǎn)國和消費(fèi)國。然而,我國香蕉主產(chǎn)區(qū)香蕉枯萎病等病害肆虐;同時(shí),這些地方多山地,土質(zhì)貧瘠,夏季臺(tái)風(fēng)和洪澇頻發(fā),冬季霜凍嚴(yán)重。這些問題限制香蕉產(chǎn)業(yè)的進(jìn)一步發(fā)展。培育高產(chǎn)、優(yōu)質(zhì)兼具高抗逆性和適應(yīng)性的香蕉品種是突破我國香蕉產(chǎn)業(yè)發(fā)展瓶頸的關(guān)鍵,也是我國香蕉育種工作者面臨的難題和挑戰(zhàn)。通過總結(jié)近年來香蕉育種的研究成果,論述香蕉育種方法、新品種選育目標(biāo)以及主要面臨的問題,展望今后研究重點(diǎn)與方向,以期為我國香蕉育種工作提供參考。
關(guān)鍵詞:香蕉;育種;種質(zhì)資源
中圖分類號(hào):S668.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)11-2446-20
Research and utilization progress in banana germplasm resources in China
ZENG Hongyun, WU Yuanli, HUANG Bingzhi*
(Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, Guangdong, China)
Abstract: Banana is one of the main fruit crops and important food crops in the world, and it is also an important economic fruit in southern China. China is the border area of the origin of modern bananas, and one of the secondary origin centers as well. China has a history of banana cultivation for more than 2000 years and is the second largest country in banana production and consumption. Banana producing areas in China are mainly concentrated in Guangdong, Guangxi, Hainan, Yunnan, Fujian and Taiwan, with a small amount of cultivation in the south of Sichuan, Guizhou and Tibet. Most cultivated bananas are evolved from two wild species, Musa acuminate and Musa balbisiana, and their interspecific hybridization. The genome of Musa acuminata is called “genome A”, while the genome of Musa balbisiana is called “genome B”. According to the classification value of characteristics, banana cultivars can be divided into genotypes such as AA, AAA, AB, AAB, ABB, AAAA, AAAB, AABB, BB and BBB. Bananas cultivated in China are simply divided into four categories: Cavendish (AAA), Pisang Awak (ABB), Silk (AAB) and Dajiao (ABB). Cavendish banana is planted mostly in China (more than 80%), followed by Pisang Awak (more than 10%). Notably, in China, few people plant and consume Plantain (AAB), which is an important staple food in some area. Banana breeding mainly includes introduction (like Brazil and Williams banana), vegetative line selection (like GCTCV bananas), artificial mutation breeding (like Jiali banana), cross breeding (like Fenza No. 1 and Zhongjiao No. 9 banana), chromosome ploidy breeding, transgenic breeding and gene editing breeding. The introduction method is simple and direct. Our group took the lead in establishing the National Banana Germplasm Resource Garden in 1989. In the future, we should introduce not only high-quality varieties, but also multifunctional and diverse banana varieties to enrich Chinas banana market. After introduction, people often get better lines that adapt to Chinese geographical and climatic conditions and planting habits, and then popularize them. Mutation breeding is easy, but the ideal excellent lines can only be obtained through a large number of screening and evaluation. The female flowers of some bananas, like Dajiao and Pisang Awak, have strong fertility, so they are often used as female parents to cross with wild bananas or cultivated varieties with certain fertility. Although sexual hybridization of banana needs a long period and is easy to fail, this method can often create new germplasm with diverse genetic background and relatively controllable traits, which is the most potential and promising method in traditional banana breeding at present. In recent years, researchers in China have created many new hybrid banana germplasm, and it can be predicted that a large number of new hybrid banana varieties will emerge in China in the near future. Banana transgenic and gene editing breeding have strong pertinence. China has made good achievements in the fields of banana transgenic and gene editing. However, as in many other parts of the world, these methods cannot be applied to business at present. At last, other breeding methods like somatic hybridization, rapid breeding and molecular-assisted breeding are rarely used at present. Banana Fusarium wilt and other diseases seriously threaten banana industry in China. At the same time, frequent typhoons and floods, severe frost and poor soil in the main banana producing areas in China also limit the further development of banana industry. Breeding new banana varieties with high yield, high quality and high stress resistance and adaptability is the key to break the bottleneck of banana industry development in China, and it is also a challenge for banana breeders in China. In addition, it is also an important direction to cultivate bananas with high nutrition and health care function, which are suitable for industrial processing or feed. During the last decades, China has made great achievements in banana breeding, but there are still many problems. First of all, banana biodiversity is relatively lacking, with few wild banana resources. Moreover, the careful evaluation of banana germplasm resources is not enough, limiting the utilization of them. Secondly, the main banana varieties in China were bred by introduction and mutation breeding, and only a few were bred by hybridization or other means. Moreover, due to many reasons, there is a lack of varieties with good comprehensive characteristics. Finally, it is difficult to study genes in banana through the forward or reverse genetic means, limiting the molecular research on banana. In the future, we should: (1) Continue to strengthen the collection, evaluation and utilization of global banana germplasm resources, and especially promote banana cross breeding vigorously; (2) Pay attention to the basic research on banana, dig out the key genes related to important economic traits, and analyze their regulatory networks, so as to lay the foundation for creating new banana varieties without transgene through gene editing technology in the future; (3) Continuously develop and upgrade new breeding techniques, promote the integration of various means, and breed efficiently and scientificly; (4) Breed new varieties that are resistant to various diseases and have good comprehensive properties, so as to win the banana defense war. In a word, we have summarized the research results of banana breeding in China in recent years, discussed the methods of banana breeding, the direction of new variety breeding and the main problems, in order to provide reference for banana breeding in China.
Key words: Musa; Breeding; Germplasm resources
收稿日期:2023-04-14 接受日期:2023-08-28
基金項(xiàng)目:廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金聯(lián)合基金—青年基金(2022A1515110492);廣東省自然科學(xué)基金—面上項(xiàng)目(2023A1515012955);廣州市科技計(jì)劃項(xiàng)目(2023A04J0795)
作者簡介:曾鴻運(yùn),男,助理研究員,博士,研究方向?yàn)橄憬犊共∮N。Tel:13725491759,E-mail:zenghongyung@163.com
*通信作者Author for correspondence. Tel:13802538103,E-mail:huangbingzhi@gdaas.cn
香蕉是世界上主要水果作物和重要糧食作物之一。香蕉是芭蕉目(Scitamineae)芭蕉科(Musaceae)芭蕉屬(Musa)的常綠多年生熱帶亞熱帶單子葉大型草本植物,果肉可食,其作為栽培果迄今已有三四千年的歷史,是世界最古老的栽培果樹之一[1]。大部分栽培種香蕉是由尖苞片蕉(M. acuminata)和長梗蕉(M. balbisiana)兩個(gè)野生種及其種間雜交演化而成的[1]。香蕉主要起源于東南亞的印度尼西亞、馬來西亞、印度和泰國等地[1]??墒秤玫臒o籽香蕉在這些地方產(chǎn)生后,被人類以吸芽的形式傳播到世界各地,通過自然突變、人工選育等逐步演化為今天的香蕉[1]。Simmonds[1]將貢獻(xiàn)尖苞片蕉性狀的基因組稱為“A基因組”,將貢獻(xiàn)長梗蕉性狀的基因組稱為“B基因組”。根據(jù)多個(gè)性狀分類值可將香蕉栽培種分為AA、AAA、AB、AAB、ABB、AAAA、AAAB、AABB、BB和BBB等基因組型[1]。香蕉的栽培種先分基因組(group),后分栽培品種,有的基因組下再分亞組(subgroup)。例如,香牙蕉(卡文迪許香蕉,Cavendish)是AAA基因組型的亞組,粉蕉(Pisang awak)是ABB基因組型的亞組。一般地,栽培香蕉的命名規(guī)范為“屬名+基因組型+亞組名+品種名”,如廣粉1號(hào)香蕉的學(xué)名可寫成“Musa ABB Pisang Awak ‘Guangfen No. 1”。
香蕉喜溫?zé)?、忌霜凍、怕旱、怕澇,主要分布于南北?0°以內(nèi)的熱帶和亞熱帶地區(qū)。全世界有130多個(gè)國家和地區(qū)種植香蕉,每年約生產(chǎn)1.55億t,主產(chǎn)區(qū)為南美洲、亞洲、中美洲及加勒比海沿岸國家和非洲等地,主產(chǎn)國有巴西、厄瓜多爾、印度、中國、哥斯達(dá)黎加、洪都拉斯、菲律賓、墨西哥、泰國、委內(nèi)瑞拉、巴拿馬和哥倫比亞等(FAO,2020)。香蕉是鮮食消費(fèi)量最大的水果,而大蕉(Plantain,AAB)和其他煮食蕉則是部分地區(qū)人民的主要糧食來源,也是世界第四大糧食作物。因此,國際上也將香蕉作物統(tǒng)稱為“香(大)蕉”。需要注意的是,這里指的“大蕉”與我國俗稱的“大蕉”(Dajiao,ABB)完全不同,屬于同名異物,故下文將前者稱為“國際大蕉”,后者稱為 “中國大蕉”,以免混淆。
中國毗鄰香蕉的原生起源中心[1]。在中國云南、廣東、海南等地,有AA基因組型及BB基因組型野生蕉分布[2]。我國有2000年以上的香蕉栽培歷史,是香蕉生產(chǎn)第二大國,其產(chǎn)區(qū)主要集中在廣東、廣西、海南、云南、福建和臺(tái)灣等,四川、貴州和西藏等省區(qū)的南部也有少量栽培。與國外多個(gè)香蕉主產(chǎn)區(qū)不同,我國很少種植國際大蕉,也沒有以國際大蕉為主食的飲食習(xí)慣。由于以前我國香蕉品種較少,一般把國內(nèi)栽培種香蕉簡單地分為四大類:香牙蕉(Cavendish,AAA)、粉蕉(Pisang Awak,ABB)、龍牙蕉(Silk,AAB)和中國大蕉(Dajiao,ABB)。我國香蕉種植以香牙蕉類型為主,約占香蕉種植面積的80%[3]。除香牙蕉外,近年來一些其他種類的香蕉(即特色蕉)也受到關(guān)注,如貢蕉(AA)、海貢蕉(AA)、佳麗蕉(AA)、佛手蕉(AA)、玫瑰蕉(AA)、美食蕉系列(AAB)、中蕉9號(hào)(AAA)、粉雜1號(hào)(ABBB)、金手指(AAAB)和廣東四倍體蕉(ABBB)等。
我國乃至世界多個(gè)香蕉主產(chǎn)區(qū)遭受香蕉枯萎病的威脅,同時(shí)伴隨著多種其他病害的侵?jǐn)_。在枯萎病嚴(yán)重的地方,蕉農(nóng)往往血本無歸。而且,由于枯萎病屬于土傳病害并且能在土壤中潛伏長達(dá)10 a(年)以上,染病的香蕉種植園只能改種其他作物,嚴(yán)重干擾了香蕉的正常生產(chǎn)。目前,以栽培優(yōu)良的抗病香蕉品種為主,綜合多種防治方法(如農(nóng)藥、輪作、間種其他植物以及生物防治等)為輔,可以相對(duì)有效地防控枯萎病[4]。另外,我國香蕉主產(chǎn)區(qū)多處沿海地帶,臺(tái)風(fēng)洪澇頻發(fā);同時(shí),這些地方山區(qū)丘陵較多,冬季霜凍嚴(yán)重,土質(zhì)相對(duì)貧瘠。這些特點(diǎn)制約了我國香蕉產(chǎn)業(yè)的發(fā)展。因此,培育高產(chǎn)、優(yōu)質(zhì)兼具強(qiáng)抗逆性和適應(yīng)性的香蕉品種非常重要。
1 香蕉育種的方法
香蕉育種的方法包括引種、營養(yǎng)系選種、人工誘變育種、雜交育種、倍性育種、轉(zhuǎn)基因和基因編輯育種等。
1.1 引種及資源利用
引種法簡單、直接,是香蕉育種的重要途徑,同時(shí)也為后續(xù)用其他方法進(jìn)行品種選育提供起始材料。在引種后,人們往往會(huì)通過營養(yǎng)系選種等手段,對(duì)品種進(jìn)行“本土化”,得到適應(yīng)我國地理氣候條件和種植習(xí)慣的性狀更佳、更穩(wěn)定的植株,再將其推廣。目前,我國的香蕉主栽品種多從境外引入。其中,以20世紀(jì)80年代引入我國的巴西蕉、威廉斯(8818)最為知名[5](表1)。另外,其他引進(jìn)的品種如新北蕉[6]、貢蕉[7]和海貢蕉[8]等目前都在我國多地有種植(表1)。引種時(shí),不僅要考慮當(dāng)前市場(chǎng)需求引入國外大面積種植的優(yōu)質(zhì)品種,也要兼顧產(chǎn)業(yè)結(jié)構(gòu)布局,引入多功能、多樣性的特色香蕉品種,豐富我國香蕉市場(chǎng)。比如,在國際大蕉基礎(chǔ)上選育出的美食蕉1號(hào)(AAB)、美食蕉2號(hào)(AAB)、粵蕉1號(hào)(AAB)以及在東非高原蕉(AAA)基礎(chǔ)上選育出的粵蕉2號(hào)(AAA)等品種填補(bǔ)了我國香蕉糧食和加工用途品種的空白[11](表1)。
引種離不開種質(zhì)資源的收集、鑒定、分類和評(píng)價(jià)。種質(zhì)資源,即遺傳資源,是育種的物質(zhì)基礎(chǔ),一般包括野生資源、地方品種、選育品種、品系、特殊遺傳材料以及野生近緣種等。與香蕉原生起源中心相比,我國香蕉野生種質(zhì)資源匱乏。因此,我國需要通過從起源中心及世界各地引種,豐富我國香蕉種質(zhì)資源庫。廣東省農(nóng)業(yè)科學(xué)院果樹研究所于1989年率先建立了國家級(jí)香蕉種質(zhì)資源圃,隨后建立了農(nóng)業(yè)部廣州香蕉種質(zhì)資源圃。此外,中國熱帶農(nóng)業(yè)科學(xué)院熱帶作物品種資源研究所、東莞市農(nóng)業(yè)科學(xué)研究中心、云南熱帶作物研究所、福建省熱帶作物科學(xué)研究所、廣西壯族自治區(qū)農(nóng)業(yè)科學(xué)院生物技術(shù)研究所和云南省農(nóng)業(yè)科學(xué)院等單位陸續(xù)建成一定規(guī)模的香蕉資源圃(庫)。這些資源圃(庫)為我國香蕉育種研究奠定了豐富的物質(zhì)基礎(chǔ),促進(jìn)了香蕉產(chǎn)業(yè)的可持續(xù)發(fā)展。
1.2 營養(yǎng)系選種
營養(yǎng)系選種是利用香蕉無性繁殖過程中發(fā)生的突變,包括吸芽苗、組培苗和胚性懸浮細(xì)胞(embryogenic cell suspension,ECS)等發(fā)生的變異,是主要的香蕉育種方法之一。營養(yǎng)系選種具有在保持母本優(yōu)良性狀的基礎(chǔ)上優(yōu)中選優(yōu)、萬里挑一的突出特點(diǎn),是最基礎(chǔ)的香蕉品種改良方法。營養(yǎng)系選種操作簡單、門檻低,不需要專門的誘變過程,但是該方法必須通過大量群體篩選、觀察、評(píng)價(jià)(或蕉農(nóng)反饋)才能獲得理想的優(yōu)異株系[9,12](表1)。
一般來說,在沒有經(jīng)過組織培養(yǎng)的情況下,香蕉芽變的頻率極低,約為百萬分之二。在組織培養(yǎng)過程中,香蕉體細(xì)胞有大量變異,如香牙蕉在組織培養(yǎng)中有約3%的植株在大小、假莖和假葉的顏色以及葉和果的形狀上發(fā)生明顯的變化[13]。基于這個(gè)原理,人們?cè)谙憬督M培技術(shù)廣泛應(yīng)用于農(nóng)業(yè)生產(chǎn)中的這30多年中,通過組培苗選育了大量的新優(yōu)系、新品種。
臺(tái)灣香蕉的發(fā)展歷程就是一個(gè)經(jīng)典的營養(yǎng)系選種案例。20世紀(jì)在臺(tái)灣省大面積種植的北蕉(Giant Cavendish,AAA)是200多年前從廣東引進(jìn)的品種,隨著臺(tái)灣香蕉產(chǎn)業(yè)的發(fā)展銷往世界各地[13]。20世紀(jì)80年代開始,由于不抗枯萎病,北蕉種植面積不斷縮減。北蕉的一個(gè)自然芽變種仙人蕉被選育出來,其抗枯萎病,對(duì)山地瘠土的適應(yīng)能力強(qiáng),多在臺(tái)灣的中部山區(qū)種植。人們從仙人蕉中篩選出一些新優(yōu)系,如臺(tái)灣8號(hào)等。臺(tái)灣省香蕉研究所通過對(duì)北蕉的體細(xì)胞無性系變異株進(jìn)行系統(tǒng)篩選評(píng)價(jià),得到一系列抗枯萎病的GCTCV株系[13](表1),如GCTCV215-1(臺(tái)蕉1號(hào))和GCTCV218(新北蕉、Formosana、寶島蕉)(表1)。2000年,他們從臺(tái)蕉1號(hào)組培苗中選育出矮化品種臺(tái)蕉3號(hào)[40],隨后在臺(tái)蕉3號(hào)基礎(chǔ)上選育出臺(tái)蕉5號(hào)(玉山)。廣東省農(nóng)業(yè)科學(xué)院果樹研究所于2002年從臺(tái)灣省香蕉研究所引進(jìn)GCTCV218,通過多代的性狀評(píng)價(jià)和選育培育出高產(chǎn)優(yōu)質(zhì)的抗枯萎病新品種南天黃[16],并在南天黃的基礎(chǔ)上選育出南天紅[17]。這兩個(gè)品種在我國有較大種植面積(表1)。與此類似,熱蕉11號(hào)是從北蕉田間芽變株中選育出的[41],高抗香蕉枯萎病品系的抗枯1號(hào)[42]、抗枯5號(hào)[43]和粵優(yōu)抗1號(hào)[44]則是由GCTCV119的自然突變株選育而成的(表1)。除了利用臺(tái)灣香蕉為材料育成的品種以外,目前還有一大部分品種是在巴西蕉和威廉斯的組培變異苗中選育而來的。比如,中蕉2號(hào)、桂蕉9號(hào)[21]、農(nóng)科1號(hào)[45]、紅研3號(hào)和東蕉1號(hào)[24]等為巴西蕉變異株系,桂蕉1號(hào)[19]和桂蕉6號(hào)[20]等為威廉斯變異株系(表1)。另外,大豐1號(hào)和大豐2號(hào)是筆者團(tuán)隊(duì)從粵香2號(hào)組培苗中選育獲得的[14-15](表1)。
1.3 人工誘變選育
人工誘變技術(shù)一般包括物理誘變和化學(xué)誘變。香蕉的物理誘變主要采用γ射線輻射法[46],其他方法如太空育種等目前尚未有成功的例子報(bào)道。香蕉的化學(xué)誘變主要采用甲磺酸乙酯[47-49]、疊氮化鈉[50-52]、硫酸二乙酯[50]和高水平的細(xì)胞分裂素等[53]。物理誘變對(duì)遺傳物質(zhì)的破壞性較大,較容易造成原優(yōu)良性狀的丟失[54]。比如,輻射誘變得到的香蕉新品種中存在幾十萬到幾百萬堿基對(duì)大小不一的多片段缺失[54]。與物理誘變相比,化學(xué)誘變引起的核酸分子變化細(xì)微,多是基因點(diǎn)突變。誘變的對(duì)象主要為香蕉吸芽、組培苗不定芽、多芽體和ECS等。與其他材料相比,ECS誘變后通過體細(xì)胞胚胎發(fā)生可獲得單細(xì)胞起源的變異株[55],避免嵌合體的產(chǎn)生。人工誘變與自然變異相比,獲得的種質(zhì)突變率大大提高,更容易獲得目的性狀,但是有害性狀的出現(xiàn)頻率也顯著增加。因此,人工誘變選育需要有足夠大的群體用于準(zhǔn)確、持續(xù)的性狀評(píng)價(jià)和篩選。對(duì)于香蕉育種而言,較難通過回交等手段純化優(yōu)良性狀,育種人員往往將人工誘變和自然系選種相結(jié)合,通過單株擴(kuò)繁、多代的評(píng)價(jià)和優(yōu)中選優(yōu)得到綜合性狀優(yōu)異的株系[32]。人工誘變選育簡單、有效,廣泛應(yīng)用于香蕉育種中。
1961年,我國臺(tái)灣省研究人員開始進(jìn)行香蕉輻射誘變育種的研究[56]。1996年,李豐年等[57]在廣東以多個(gè)品種的組培苗為材料進(jìn)行輻射,發(fā)現(xiàn)劑量率35.0~50.2 R·min-1條件下6.0~8.0 kR是香蕉分化芽輻射育種的適宜劑量范圍,有益性狀突變?yōu)?%左右。后續(xù)研究報(bào)道,采用劑量率為60.0 R·m-1以及劑量為3.0~5.0 kR的射線處理,可獲得較好的效果[58-59]。Hu等[55]以巴西蕉未成熟雄花誘導(dǎo)的ECS為材料,發(fā)現(xiàn)2.0 Gy·min-1的劑量率條件下接受80.0 Gy劑量的照射最佳。以香蕉栽培品種Highgate(AAA)的組培苗為材料,研究人員發(fā)現(xiàn)疊氮化鈉、硫酸二乙酯和甲磺酸乙酯的最佳處理濃度和時(shí)間分別為1.1 mmol·L-1,30 min;200.0 mmol·L-1,30 min;20.0 mmol·L-1,60 min[53]。以巴西蕉多芽體為材料,用1.6%甲磺酸乙酯或2.0 g·L-1疊氮化鈉處理3 h,能得到較好的變異效果[52]。以農(nóng)科1號(hào)不定芽為材料,適宜采用0.15 g·L-1 NaN3處理3 h和0.25 g·L-1 NaN3處理2 h的處理組合[51]。據(jù)報(bào)道,利用低覆蓋率全基因組測(cè)序法(low-coverage whole-genome sequencing)[54]和隨機(jī)擴(kuò)增多態(tài)性DNA法(randomly amplified polymorphic DNA)[47]可分析香蕉輻射和EMS處理的誘變效率,輔助育種。如表1所示,我國多個(gè)香蕉品種,如漳蕉8號(hào)(原漳農(nóng)8號(hào))[30-31]、中蕉4號(hào)[34]和中蕉12號(hào)[35]以及佳麗蕉[32]等都為輻射誘變選育而來。
1.4 雜交
有性雜交是香蕉重要的育種手段,原理是利用染色體重組。根據(jù)親本的不同,有性雜交主要分為種間雜交和遠(yuǎn)緣雜交。由于大部分香蕉具有多倍體、單性結(jié)實(shí)、花粉育性低、不同香蕉生命周期各異以及無性繁殖后代的特性,香蕉的雜交育種工作難度較大。然而,即使是曾被認(rèn)為是高度不育的香牙蕉也有一定育性(中等的雄性育性和極低的雌性育性),可用于雜交育種[60]。與香牙蕉相比,Gros Michel的育性更強(qiáng)[60]。部分栽培類型(如粉蕉和中國大蕉)也具有一定育性,常用于與野生香蕉資源雜交。用野生種質(zhì)資源育種的過程中要保證最終的栽培品種果實(shí)絕對(duì)無籽化。香蕉的雜交育種往往需要多輪的雜交,有多種雜交策略[61]。野生香蕉常被作為“中間二倍體”,不僅起遺傳信息交流的“橋梁”作用,也提供自身的遺傳信息,對(duì)雜交育種的成敗起關(guān)鍵作用[61]。
在香蕉雜交育種過程中,通過人工授粉通常能得到少量珍貴但脆弱的可育種子,為最大程度地提高種子成活率,往往需要用到胚挽救技術(shù)[62]。胚挽救是指對(duì)由營養(yǎng)或生理原因造成的難以通過常規(guī)播種的方式成苗或在發(fā)育早期就敗育、退化的胚進(jìn)行離體培養(yǎng),提供胚芽生長的營養(yǎng)以及外在條件。在最佳條件下,胚挽救可以將雜交香蕉種子的萌發(fā)率(一般為0~25%)提高3倍以上[63]。胚挽救技術(shù)不僅可以讓種子避開休眠期從而縮短育種周期,而且同時(shí)還能測(cè)試種子活力、提供微繁殖材料等[64]。
雜交育種雖然周期長,但是該方法是目前最有潛力的香蕉傳統(tǒng)育種手段。洪都拉斯農(nóng)業(yè)研究基金會(huì)(Fundación Hondure?a de Investigación Agrícola,F(xiàn)HIA)以改良的二倍體香蕉SH-3142(AA)為父本、Santa Catarina Prata(AAB,Pome亞組)三倍體香蕉為母本雜交培育出四倍體香蕉FHIA-01(也叫金手指,AAAB)[60](表1)。這是世界上首個(gè)雜交育成的香蕉品種,其抗枯萎病、葉斑病和香蕉穿孔線蟲病等多種病害[65]。然而該品種口感與香牙蕉差別較大,較難被消費(fèi)者接受,盡管引種多年,在我國少有種植[5,66]。FHIA還育有FHIA-02、FHIA-03、FHIA-17、FHIA-18、FHIA-20、FHIA-21、FHIA-23和FHIA-25等[67]。巴西、喀麥隆、科特迪瓦、瓜德羅普島、洪都拉斯、印度、尼日利亞、坦桑尼亞和烏干達(dá)等國家以及國際熱帶農(nóng)業(yè)研究所(International Institute for Tropical Agriculture,IITA)、國際農(nóng)業(yè)研究促進(jìn)發(fā)展合作中心(Centrede Coopération Internationale en Recherche Agronomique pour le Développement,CIRAD)等國際組織都陸續(xù)開展了雜交香蕉項(xiàng)目,并培育了一批新品種[61]。然而,絕大數(shù)品種不能滿足國際消費(fèi)者的需求。相比之下,我國香蕉雜交育種起步相對(duì)較晚、規(guī)模較小,但也取得了不錯(cuò)的成績。20世紀(jì)80年代,筆者團(tuán)隊(duì)選育出我國第一個(gè)雜交香蕉品種廣東四倍體蕉(ABBB,畦頭大蕉×BB野生蕉),該品種果指較短、味清甜,綜合農(nóng)藝性狀一般(表1)。2011年,筆者團(tuán)隊(duì)選育出雜交香蕉品種粉雜1號(hào)粉蕉(ABBB,廣粉1號(hào)×BB野生蕉)[38](表1)。粉雜1號(hào)高抗香蕉枯萎病‘熱帶4號(hào)生理小種,在重病區(qū)株發(fā)病率低于5%,風(fēng)味濃甜微酸,品質(zhì)優(yōu)異,耐貯藏[38]。據(jù)國家香蕉產(chǎn)業(yè)技術(shù)體系統(tǒng)計(jì),粉雜1號(hào)在我國的種植面積每年為1.33~2.00萬hm2,在我國粉蕉市場(chǎng)占有率超60%,在我國總的香蕉市場(chǎng)中占比為5%~8%。粉雜1號(hào)還是開拓北方香蕉市場(chǎng)的重要品種[68]。另一個(gè)雜交香蕉新品種中蕉9號(hào)(AAA,金手指×SH-3142)高抗香蕉枯萎病[39](表1),在廣東有少量種植。除此之外,廣東省農(nóng)業(yè)科學(xué)院果樹研究所用廣粉1號(hào)和中粉1號(hào)粉蕉分別與Calcutta4(AA)雜交[69],中國熱帶農(nóng)業(yè)科學(xué)院南亞熱帶作物研究所用野生近緣種與不同栽培蕉雜交[70],廣西農(nóng)業(yè)科學(xué)院生物技術(shù)研究所以廣西野生蕉為父本進(jìn)行香蕉遠(yuǎn)緣雜交[71],都得到了一些雜交后代。2023年,一些雜交香蕉(如南角系列香蕉)紛紛獲得新品種保護(hù)權(quán)(表1)。可以預(yù)見,接下來一段時(shí)間內(nèi),我國的雜交香蕉新品種會(huì)像雨后春筍般出現(xiàn)。
1.5 倍性育種
香蕉倍性育種技術(shù)也是較為傳統(tǒng)的手段,通過改變?nèi)旧w組的數(shù)量或“質(zhì)量”或二者兼用的辦法進(jìn)行作物育種。香蕉倍性育種可以簡單分為單倍體育種和多倍體育種。通過花藥培養(yǎng)得到的單倍體具有兩種遺傳特性[72-73]。一是單倍體加倍后就成為二倍體純種(即雙單倍體),避開了雜交育種中多代的分離、選擇與穩(wěn)定的過程,因而大大縮短育種周期。香蕉A基因組和B基因組測(cè)序所用的材料DH-Pahang和DH-Pisang Klutuk Wulung即為雙單倍體技術(shù)創(chuàng)制獲得[74-75]。二是單倍體的基因突變,因?yàn)闆]有等位基因的干擾而直接表現(xiàn),因而它的愈傷組織是突變株篩選的理想材料。對(duì)于香蕉而言,多倍體植株往往更高大[76-77],抗逆性更強(qiáng)[77]。倍性育種技術(shù)被廣泛用于香蕉雜交育種中[78-79]。我國有關(guān)倍性育種的研究相對(duì)較少。據(jù)報(bào)道,研究人員用秋水仙素誘導(dǎo)GCTCV-119[80]、抗枯1號(hào)[81-82]、貢蕉[82]、巴西[82]、Mjenga Gros Michel Diploide和新海貢[83]等產(chǎn)生多個(gè)香蕉多倍體。
1.6 轉(zhuǎn)基因和基因編輯育種
轉(zhuǎn)基因和基因編輯育種主要是利用分子遺傳學(xué)的方法,通過導(dǎo)入目標(biāo)基因或者編輯目標(biāo)內(nèi)源基因,從而篩選得到其關(guān)聯(lián)性狀優(yōu)良的種質(zhì)。香蕉的自然突變選育、誘變育種和雜交育種等都需要較長的周期,并且具有一定的盲目性。相比之下,香蕉轉(zhuǎn)基因和基因編輯育種周期短,針對(duì)性強(qiáng),是未來培育優(yōu)質(zhì)抗逆新品種的理想途徑之一。
根據(jù)基因?qū)胧荏w方法的不同,香蕉轉(zhuǎn)基因可分為電擊法、基因槍法和農(nóng)桿菌轉(zhuǎn)化法等[84]。電擊法轉(zhuǎn)化率高,但技術(shù)難度大;基因槍法轉(zhuǎn)化品種廣泛、轉(zhuǎn)化率高,但往往存在外源基因在宿主植物中表達(dá)不穩(wěn)定等問題,同時(shí)基因槍價(jià)格昂貴、運(yùn)轉(zhuǎn)費(fèi)用高[84]。與這兩者相比,農(nóng)桿菌法用得最多,該法具有操作簡單、導(dǎo)入基因多為單拷貝以及外源基因在轉(zhuǎn)基因植株中表達(dá)穩(wěn)定等優(yōu)點(diǎn)[84]。根據(jù)受體不同,香蕉轉(zhuǎn)基因方法可分為ECS法、莖尖分生組織或多芽體橫切薄片法和原生質(zhì)體法等[84]。ECS法高效穩(wěn)定,能得到單細(xì)胞起源的轉(zhuǎn)基因植株,但是建立和維持ECS都需要耗費(fèi)大量的時(shí)間和精力;莖尖分生組織或多芽體橫切薄片法簡單快速,但是成功率不高,并且容易產(chǎn)生嵌合體;原生質(zhì)體法轉(zhuǎn)化方便,但再生難,成功率低,一般需要用ECS提取原生質(zhì)體。目前,ECS的建立方法相對(duì)成熟[85-86],是香蕉轉(zhuǎn)基因的主要受體。根據(jù)導(dǎo)入基因來源和目的的不同,香蕉的轉(zhuǎn)基因育種可分為過表達(dá)外源基因[87]、過表達(dá)內(nèi)源基因[88]、沉默內(nèi)源基因[88]以及沉默病菌基因[89]等幾種類型。我國在香蕉再生系統(tǒng)[90-91]、轉(zhuǎn)基因受體系統(tǒng)[92-94]、轉(zhuǎn)化系統(tǒng)[95-97]的建立方面取得較大的進(jìn)展。
CRISPR/Cas9技術(shù)的出現(xiàn)給香蕉基因功能研究和香蕉育種工作開辟了新的路徑。2017年,胡春華等[98]建立香蕉CRISPR/Cas9基因編輯技術(shù)體系,在巴西蕉ECS中對(duì)香蕉A基因組八氫番茄紅素脫氫酶基因進(jìn)行定點(diǎn)敲除,成功獲得白化表型的突變體株系。這是全世界首例基因編輯香蕉的報(bào)道。該團(tuán)隊(duì)進(jìn)一步優(yōu)化體系[99],創(chuàng)制了一系列基因編輯突變體[100-101]。栽培香蕉高度不育的特點(diǎn)決定無法通過雜交或自交獲得無轉(zhuǎn)基因成分的突變新材料,非轉(zhuǎn)基因的香蕉基因編輯是未來香蕉育種的主賽道。據(jù)報(bào)道,研究人員在香蕉原生質(zhì)體中進(jìn)行瞬時(shí)的基因編輯[102],為無轉(zhuǎn)基因的基因編輯奠定基礎(chǔ)。該團(tuán)隊(duì)還建立了Gene?deletor技術(shù)[103],可一定程度消除外源基因。
經(jīng)過多個(gè)國家(如澳大利亞、比利時(shí)、巴西、中國、法國、印度、肯尼亞、馬來西亞、尼日利亞、南非、烏干達(dá)、英國和美國等)和國際組織(如IITA等)的共同努力,香蕉基因工程技術(shù)取得很大進(jìn)展,并創(chuàng)制出一系列具有高抗逆性、高營養(yǎng)價(jià)值、耐儲(chǔ)存等特性的香蕉新種質(zhì)[61,86]。值得關(guān)注的是,針對(duì)多數(shù)含B基因組香蕉含有香蕉條斑病毒DNA的問題,Tripathi等[104]利用基因編輯手段成功將國際大蕉B基因組中整合的該病毒序列敲除,為B基因組種質(zhì)的利用鋪平道路。該團(tuán)隊(duì)還開發(fā)了全新的香蕉基因編輯工具Cas-CLOVER[105]。與傳統(tǒng)的編輯工具相比,該載體準(zhǔn)確性更高,并且能產(chǎn)生11~31 bp不等的編輯類型,大大豐富了基因型多樣性[105]。此外,澳大利亞研究人員利用類固醇誘導(dǎo)型啟動(dòng)子載體創(chuàng)制無選擇性標(biāo)記基因的香牙蕉[106];印度研究人員通過基因槍轟擊將Cas9載體導(dǎo)入香蕉ECS中進(jìn)行編輯,最后再生并篩選獲得無轉(zhuǎn)基因成分的穩(wěn)定植株[107]。然而,在全世界范圍內(nèi),轉(zhuǎn)基因和基因編輯作物的應(yīng)用和推廣受到嚴(yán)格的限制。目前為止,國內(nèi)仍未有香蕉的轉(zhuǎn)基因或基因編輯品種投放于大規(guī)模農(nóng)業(yè)生產(chǎn)中的報(bào)道。
1.7 其他手段
其他香蕉育種手段還包括體細(xì)胞雜交育種、快速育種、分子輔助育種以及嫁接育種等。
體細(xì)胞雜交即無性雜交-細(xì)胞融合,不僅在一定程度上能克服有性雜交的困難,而且在轉(zhuǎn)移多基因控制的農(nóng)藝性狀、品質(zhì)性狀和抗逆性等方面,該技術(shù)具有明顯的優(yōu)勢(shì)[108]。同時(shí),體細(xì)胞雜交育種不涉及轉(zhuǎn)基因,較容易被公眾接受。香蕉體細(xì)胞雜交依賴于原生質(zhì)體的融合和再生。原生質(zhì)體融合主要有電融合法和聚乙二醇融合法[109]。國內(nèi)有研究人員采用不對(duì)稱融合的方法(基于聚乙二醇融合法),成功獲得了過山香龍牙蕉和貢蕉的融合再生植株[110]。香蕉原生質(zhì)體再生難[111],這是制約香蕉體細(xì)胞雜交育種發(fā)展的主要原因之一[108]。香蕉的原生質(zhì)體融合技術(shù)還處在探索階段,技術(shù)不成熟,目前國內(nèi)外都未取得實(shí)質(zhì)性的進(jìn)展。
快速育種技術(shù)是指通過延長光周期、控制溫度和早收種子等方法加速世代更替周期以達(dá)到加速育種目的的技術(shù),可用于育種的初期階段,包括雜交、群體定位和目的農(nóng)藝性狀的評(píng)估等[112]。該技術(shù)要求植物在受控環(huán)境條件下生長,研究人員操縱晝夜溫度、光譜、光強(qiáng)以及光周期持續(xù)時(shí)間,以縮短開花的起始時(shí)間,加速胚胎發(fā)育和種子成熟[112]。香蕉植株高大,生長周期長。因此,快速育種技術(shù)在香蕉育種(特別是香蕉雜交育種)中有很好的應(yīng)用前景[113]。
分子標(biāo)記技術(shù)是香蕉遺傳多樣性研究的重要工具,可以很方便地進(jìn)行香蕉分類、親緣關(guān)系和演化分析等研究,應(yīng)用于育種中可極大地提高育種效率和縮短育種周期[61]。目前,我國有關(guān)香蕉分子標(biāo)記輔助育種的報(bào)道較少。近期,我國臺(tái)灣研究人員通過轉(zhuǎn)錄組測(cè)序技術(shù)比較臺(tái)蕉5號(hào)、臺(tái)蕉7號(hào)、寶島蕉和北蕉,發(fā)現(xiàn)抗香蕉枯萎病的數(shù)量性狀基因座(quantitative trait locus,QTL)[114]。這些標(biāo)記將有助于臺(tái)灣抗病香蕉品種的鑒定,從而實(shí)現(xiàn)對(duì)組培苗擴(kuò)繁的質(zhì)量控制和品種保護(hù)[114]。國外研究人員鑒定到一些與香蕉枯萎病抗性相關(guān)的QTL[115-116],以及與果實(shí)品質(zhì)性狀相關(guān)的QTL[117],但是有關(guān)這些QTL的應(yīng)用報(bào)道還很少。
香蕉嫁接是最近發(fā)展起來的技術(shù)。2021年,Reeves等[118]開發(fā)了單子葉植物胚根-芽交界處嫁接技術(shù),并應(yīng)用于水稻、大麥、菠蘿、香蕉、洋蔥、龍舌蘭和棗樹等單子葉植物。研究人員以香牙蕉為接穗,野生蕉Pahang(AA)為砧木,成功完成嫁接[118]。然而,香蕉嫁接技術(shù)處于初步發(fā)展階段,還需要更多的試驗(yàn)去證明和完善。
2 新品種選育的方向
香蕉育種的目的是挖掘香蕉優(yōu)良的農(nóng)藝性狀,如產(chǎn)量高、收獲周期短、果實(shí)色香味俱全、貨架期長以及抗或耐逆境脅迫等[119]。從過去一百多年國際香蕉貿(mào)易的發(fā)展歷史來看,香蕉的品質(zhì)和抗病性是育種人員最關(guān)注的兩個(gè)指標(biāo)。另外,臺(tái)風(fēng)、寒害和鹽脅迫等非生物脅迫也制約著香蕉產(chǎn)業(yè)的發(fā)展。為了使香蕉更好地適應(yīng)不斷變化的環(huán)境條件以及擴(kuò)寬其種植范圍,選育出具有高產(chǎn)、優(yōu)質(zhì)、穩(wěn)定、抗病、矮化、抗寒、抗旱和耐鹽脅迫等性狀的新品種是目前最有效、最根本的辦法。
2.1 高產(chǎn)、優(yōu)質(zhì)、穩(wěn)定
高產(chǎn)性是選種、育種的基本要求。香蕉單位面積產(chǎn)量主要由單株產(chǎn)量和單位面積的有效結(jié)果株數(shù)決定。因此,選育的高產(chǎn)品種就有兩種類型,即大果型和密植型。一般來說,密植型品種對(duì)單株栽培技術(shù)要求相對(duì)較低,我國香蕉高產(chǎn)性的選育應(yīng)主攻密植型[120]。密植型株系要求假莖矮化、株型緊湊和葉片著生合理等[120]。另外,香蕉四季皆可掛果,其成熟周期的長短也是影響年產(chǎn)量的關(guān)鍵因素[61]。例如,與香牙蕉(9~12個(gè)月)、粉雜1號(hào)(14~16個(gè)月[38])和廣粉1號(hào)(15~17個(gè)月[12])相比,佳麗蕉(7~9個(gè)月[32])收獲周期較短,宿根栽培一年可收多茬。因此,通過育種方法縮短收獲周期也是提高產(chǎn)量的一個(gè)重要策略。Brisibe等[121]對(duì)國際大蕉的某些性狀(果穗大小和質(zhì)量、果實(shí)總數(shù)、果實(shí)形狀、假莖的周長和高度、從開花到收獲的時(shí)間等)的多態(tài)性進(jìn)行分析,發(fā)現(xiàn)這些性狀可以作為品種產(chǎn)量田間表現(xiàn)的指標(biāo)。我國研究人員開發(fā)了基于地面激光掃描的香蕉植株計(jì)數(shù)、假莖直徑和高度測(cè)量方法,有助于快速評(píng)估香蕉產(chǎn)量[122]。
優(yōu)質(zhì)是香蕉育種的核心追求目標(biāo)。優(yōu)質(zhì)果應(yīng)具有果形美觀飽滿、果指著生緊實(shí)、熟果呈鮮黃色、可食率高、糖度高、香味濃、風(fēng)味佳、耐貯運(yùn)以及不易掉把等優(yōu)良特性。高產(chǎn)和優(yōu)質(zhì)往往難以兼得,在產(chǎn)量控制的可接受范圍內(nèi),優(yōu)質(zhì)更為重要。Biabiany等[117]鑒定到了多個(gè)與香蕉果實(shí)的果肉酸度、硬度和干物質(zhì)含量等性狀相關(guān)的QTL。我國在香蕉的淀粉代謝[123-124]、胡蘿卜素代謝[125]、果實(shí)乙烯調(diào)控[126-128]等方面的研究都取得較大進(jìn)展。
筆者結(jié)合幾十年的香蕉育種經(jīng)驗(yàn),發(fā)現(xiàn)近年來推廣的香蕉套袋技術(shù)雖然起到很好的保果、護(hù)果作用,但是似乎減少了人們發(fā)現(xiàn)高產(chǎn)、優(yōu)質(zhì)香蕉單株的可能性。以前,在沒有套袋的干擾下,育種工作者通過對(duì)田間香蕉植株上果穗的觀察和比較,很容易發(fā)現(xiàn)高產(chǎn)和優(yōu)質(zhì)株系。實(shí)際上,過去很多香蕉優(yōu)良品種都是通過這種方法選育的[9,12]。未來如何采用更先進(jìn)、高效和科學(xué)的方法,在田間發(fā)現(xiàn)優(yōu)良單株也值得思考。
隨著香蕉組培技術(shù)的大規(guī)模應(yīng)用,組培苗變異引起的減產(chǎn)、品質(zhì)下降和抗病性降低等問題愈發(fā)嚴(yán)重[129]。近些年,因?yàn)橄憬睹绮环项A(yù)期,種植戶狀告組培廠的事件常有發(fā)生。一方面,這與組培廠組培苗良莠不齊、某些廠家把控不嚴(yán)有關(guān);另一方面,香蕉組培苗易變異或退化也是客觀事實(shí)。因此,在優(yōu)質(zhì)和高產(chǎn)的基礎(chǔ)上,選育變異率低、相對(duì)穩(wěn)定的組培苗品種也非常重要。
2.2 抗逆性強(qiáng)
抗逆性是影響香蕉穩(wěn)產(chǎn)的關(guān)鍵。香蕉病蟲害種類繁多,特別是枯萎病和細(xì)菌性病害,給我國香蕉生產(chǎn)帶來巨大的損失。我國的香蕉枯萎病主要由尖孢鐮刀菌古巴?;蜔釒?號(hào)(Fusarium oxysporum f. sp. cubense,‘Foc TR1)和熱帶4號(hào)生理小種(Foc TR4)引起。其中,F(xiàn)oc TR1曾在20世紀(jì)中期摧毀以Gros Michel為核心品種的中美洲香蕉產(chǎn)業(yè),直到人們用抗Foc TR1的香牙蕉代替才恢復(fù)[13]。1967年,F(xiàn)oc TR4在中國臺(tái)灣被發(fā)現(xiàn),包括香牙蕉在內(nèi)的大多數(shù)香蕉對(duì)其沒有抵抗力,香蕉枯萎病肆虐全球[13]。盡管近年來我國香蕉枯萎病研究取得較大進(jìn)展[130],但是直到今天,除了選育和推廣抗枯萎病新品種外,還沒有能從根本上解決枯萎病的方法[131]。在抗病性香蕉的選育過程中,抗性評(píng)價(jià)很關(guān)鍵。除了田間抗病性評(píng)價(jià)外[67],往往在前期進(jìn)行初步篩選和評(píng)價(jià),如對(duì)組培苗進(jìn)行活菌接種并評(píng)價(jià)[132],或者用病菌毒素對(duì)組培苗或者ECS進(jìn)行處理并篩選[133-134]。然而不管是田間病情評(píng)價(jià)還是對(duì)小苗進(jìn)行評(píng)價(jià)都費(fèi)時(shí)費(fèi)力,未來利用抗病分子標(biāo)記將有望提高育種效率[135]。目前,我國香蕉產(chǎn)區(qū)感病品種和抗病品種并存,病區(qū)以抗病品種如南天黃、粉雜1號(hào)、中蕉9號(hào)、中蕉4號(hào)、桂蕉9號(hào)和海貢蕉等為主;無病區(qū)和少病區(qū)以易感病品種如巴西蕉、桂蕉1號(hào)、廣粉1號(hào)和金粉1號(hào)等為主。值得注意的是,已有的抗枯萎病香蕉往往不抗軟腐病、鞘腐病等細(xì)菌性病害。因此,培育出多抗品種是未來香蕉選育的重要方向。迄今為止,經(jīng)過遺傳驗(yàn)證的抗枯萎病內(nèi)源基因主要有MaLYK1[88]、MaDAD1[136]、MaBAG1[136]、MaBI1[136]、MaPR10[136]、ICE1-like[137]和MaRGA2[138]等。經(jīng)過遺傳驗(yàn)證的抗軟腐病、鞘腐病的內(nèi)源基因幾乎沒有,這給我國香蕉遺傳改良育種提出了挑戰(zhàn)。非洲研究人員在香蕉抗病育種方面取得了不菲的成績和積累了豐富的經(jīng)驗(yàn),值得我國學(xué)習(xí)、借鑒。針對(duì)香蕉黃單胞菌病、香蕉黑葉斑病、香蕉枯萎病、香蕉束頂病、香蕉條紋病以及線蟲和象鼻蟲引起的香蕉蟲害等,他們利用基因編輯[139-141]以及其他基因工程技術(shù)[142]創(chuàng)制出一大批抗病香蕉,使某些病害(如香蕉枯萎?。┰诋?dāng)?shù)剡€沒有大范圍地傳播。最近,另一種細(xì)菌性病害(香蕉血液?。┰跂|南亞等地迅速蔓延[143],嚴(yán)重危及亞洲地區(qū)香蕉產(chǎn)業(yè)安全。香蕉抗病育種研究任重道遠(yuǎn)。
我國香蕉主產(chǎn)區(qū)多處于臺(tái)風(fēng)、龍卷風(fēng)多發(fā)地帶。香蕉葉大、株高、根淺、假莖質(zhì)脆,容易遭受風(fēng)害[144]。尤其是在臺(tái)風(fēng)天,蕉農(nóng)往往損失慘重。即使現(xiàn)在有成熟的應(yīng)對(duì)措施,如設(shè)置防風(fēng)墻、植株用木樁或拉線固定以及修剪蕉葉等,但是會(huì)耗費(fèi)大量的人力、物力,并且在特大臺(tái)風(fēng)面前作用有限。因此,很多種植戶為了節(jié)約成本選擇冒險(xiǎn),不做或者少做防風(fēng)措施。例如,2023年海南省澄邁縣突然遭遇大風(fēng),大量沒有加固的香蕉樹倒伏。受風(fēng)災(zāi)影響,往往大量香蕉涌入市場(chǎng),香蕉價(jià)格暴跌,這進(jìn)一步損害蕉農(nóng)的收益。有研究人員通過添加多效唑?qū)ο憬哆M(jìn)行矮化處理[145],但是該方法尚未成熟,實(shí)際效果有待評(píng)估。因此,培育具有株矮、根深、假莖粗壯、葉片窄等性狀的抗風(fēng)新品種才是解決香蕉風(fēng)害問題的根本方法。國外典型的矮化香蕉品種有Grand Naine和Drawf Cavendish,它們是當(dāng)前國際香蕉市場(chǎng)主栽品種[119]。Grand Naine也叫大矮蕉,株高180~260 cm,果梳整齊,商品率高。據(jù)筆者觀察,該品種可能不太適應(yīng)我國的氣候和環(huán)境,在我國種植時(shí)春夏蕉稍差,需進(jìn)一步優(yōu)化。Drawf Cavendish假莖高120~160 cm,果穗緊湊,梳距短,果指短,果肉香甜,但是易斷把,且不耐貯運(yùn)。這兩類香蕉在我國未有大面積推廣。我國培育有多個(gè)本土的矮化品種,如粵香1號(hào)[9]、矮粉1號(hào)[33]、華莞矮香蕉、中蕉11號(hào)[18]和中蕉12號(hào)[35]等(表1),但均鮮有大面積種植。例如,矮中干香牙蕉品種粵香1號(hào),原名廣東香蕉1號(hào)或74-1,假莖高190~245 cm,抗風(fēng)性較強(qiáng)[9]。但是,該品種株產(chǎn)低,品質(zhì)中等,果實(shí)外觀較差,抗旱、抗寒性較弱。該品種曾有較大面積的種植,今僅在一些沿海臺(tái)風(fēng)地區(qū)零星種植。我國矮化香蕉種植少,一方面因?yàn)橄憬兜陌誀畈环€(wěn)定,容易恢復(fù)正常高度;另一方面可能因?yàn)榛蜻B鎖等,矮化香蕉的產(chǎn)量和品質(zhì)等往往受到影響。基因編輯技術(shù)可以很好地解決這些問題。例如,Shao等[101]通過使用CRISPR/Cas9系統(tǒng)創(chuàng)制MaGA20ox2基因編輯的半矮化香蕉,這為香蕉矮化提供了新的思路。除了矮化外,其他因素也影響香蕉的抗風(fēng)性。與巴西蕉(假莖高2.5~3.5 m)相比,粉雜1號(hào)(假莖高3~4 m)雖然高大,但是抗風(fēng)性較強(qiáng)[38]。粉雜1號(hào)沒有防風(fēng)樁可抵抗8~9級(jí)強(qiáng)風(fēng),立防風(fēng)樁可抵抗11~12級(jí)臺(tái)風(fēng)[38]。這可能與其假莖粗壯且質(zhì)地韌、根系發(fā)達(dá)以及葉片短窄有關(guān)[38],值得深入研究。另外,有研究報(bào)道,香蕉的抗風(fēng)性可能與木質(zhì)素合成代謝相關(guān)酶4-香豆酸:CoA連接酶有關(guān)[146],過表達(dá)或者敲除該酶是否會(huì)顯著影響香蕉的抗風(fēng)性尚未可知。
香蕉喜溫,怕寒[144]。香蕉植株在10~12 ℃時(shí)生長停止,1~2 ℃時(shí)葉片枯死[147]。我國蕉區(qū)除海南外,常遭遇低溫霜凍或者冬春寒流侵襲,輕則香蕉葉片和果實(shí)受損導(dǎo)致減產(chǎn)、品質(zhì)下降,嚴(yán)重時(shí)整株死亡,每年因此損失巨大。每年春冬之際,本地香蕉產(chǎn)能往往大幅度下降,香蕉價(jià)格顯著上漲。盡管我國香蕉產(chǎn)業(yè)迫切需要解決香蕉抗寒問題,但是有關(guān)香蕉抗寒的研究還很少。香蕉抗寒方法主要有物理方法(如地膜覆蓋、套袋、蓋膜保溫、熏煙防霜驅(qū)寒、加濕等)以及外源藥物誘導(dǎo)方法(如噴施植物生長調(diào)節(jié)劑、無機(jī)鹽、氨基酸等)[148]。這些方法費(fèi)時(shí)費(fèi)力,效果甚微。因此,選育抗寒或受寒害后恢復(fù)生長快的品種是我國香蕉選育的重要方向。相對(duì)于香牙蕉,中國大蕉耐寒并且抗枯萎病[67],同時(shí)具有一定的育性。那么,利用中國大蕉進(jìn)行雜交育種,以期獲得抗寒、抗病的優(yōu)良品種應(yīng)該有較好的前景。另外,有研究人員通過輻射誘變獲得耐低溫的香蕉苗幾十株[149]。香蕉抗寒性與冷脅迫相關(guān)基因、膜脂合成與代謝相關(guān)基因和抗氧化酶基因等有關(guān)[150]。有研究報(bào)道,在香蕉中過表達(dá)MpMYBS3[151]或抗寒相關(guān)轉(zhuǎn)錄因子MaICE1[152]顯著增強(qiáng)植株的抗寒性,而沉默香蕉中的MaMAPK3[152]顯著降低轉(zhuǎn)基因植株的抗寒性。
香蕉既怕旱,又怕澇[144]。為響應(yīng)國家有關(guān)非糧食作物“上山下灘,靠邊站,不與糧食爭耕地”的號(hào)召,擴(kuò)大丘陵、山區(qū)、灘地等地區(qū)的香蕉栽培面積,開發(fā)抗旱、耐漬品種也是重要的育種目標(biāo)。Ravi等[153]認(rèn)為香蕉束的質(zhì)量可以作為香蕉抗旱性狀的指標(biāo)。Eyland等[154]選取覆蓋6個(gè)(亞)種的8個(gè)野生香蕉,在法國蒙彼利埃植物表型分析平臺(tái)進(jìn)行高通量表型試驗(yàn),構(gòu)建出與光照、水汽壓差和土壤水勢(shì)相關(guān)的基因型特異性蒸騰反應(yīng)模型,發(fā)現(xiàn)香蕉野生種含有天然的耐旱基因,具有潛在的育種利用價(jià)值。有關(guān)香蕉耐漬、抗?jié)车难芯繋缀鯖]有。對(duì)于種在海邊、鹽堿地等地區(qū)的香蕉,耐鹽脅迫也很重要[155-156]。已發(fā)現(xiàn)有多個(gè)抗干旱脅迫、鹽脅迫等相關(guān)的基因[157]。全球氣候變暖帶來的干旱、洪澇、鹽漬化、極端天氣等自然現(xiàn)象對(duì)香蕉生產(chǎn)的影響日益嚴(yán)重。這些惡劣的天氣和環(huán)境變化除了直接影響香蕉農(nóng)藝性狀外,還會(huì)影響病原體、害蟲及其與宿主的相互作用,從而影響香蕉產(chǎn)量[158]。因此,有必要利用基因編輯等技術(shù)開發(fā)適應(yīng)氣候變化的“智能型香蕉”,使其具有多重和持久的抗性,以抵御極端溫度和干旱等非生物脅迫,以及病蟲害等生物脅迫[158]。據(jù)報(bào)道,過表達(dá)香蕉質(zhì)膜固有蛋白基因(MusaPIP1;2或MaPIP2-7)顯著增強(qiáng)植株對(duì)冷害、鹽脅迫和干旱等非生物脅迫的抗性[159-160],這說明將來可能可以通過編輯這類基因培育能夠適應(yīng)多種惡劣環(huán)境的香蕉,擴(kuò)大香蕉的種植范圍。
2.3 多功能
我國香蕉市場(chǎng)長期以香牙蕉為主。隨著香蕉產(chǎn)業(yè)結(jié)構(gòu)優(yōu)化,2020年我國特色蕉的種植面積占比從2015年的5%提升至20%[68]。其中,粉蕉占17%、貢蕉占2%、中國大蕉占1%,其他香蕉僅有零星的種植[68]。隨著人民生活水平的日益提高和我國工業(yè)化能力的不斷發(fā)展,培育高營養(yǎng)、具備保健功能以及適合工業(yè)加工(如釀酒[9,161]、食品加工[162])等特性的多功能香蕉是趨勢(shì)所在。某些香蕉果實(shí)富含類胡蘿卜素、維生素、酚類、礦物質(zhì)、蛋白、葉酸、淀粉以及黃酮類化合物等,如粉蕉類(富含蛋白質(zhì))、金手指和紅香蕉(富含類蘿卜素、酚類)、沙巴(富含抗菌活性物質(zhì)、酚類、礦物質(zhì))等[119]。非洲和印度等地區(qū)的研究人員通過雜交、轉(zhuǎn)基因、基因編輯等方法創(chuàng)制富含類胡蘿卜素或鐵元素的營養(yǎng)強(qiáng)化香蕉[163-165],旨在幫助維生素A缺乏癥、鐵元素缺乏癥人群。我國臺(tái)灣大學(xué)研究團(tuán)隊(duì)把豬生殖與呼吸綜合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)抗原基因轉(zhuǎn)入香蕉,研發(fā)出PRRSV口服疫苗轉(zhuǎn)基因香蕉[166]。這些例子對(duì)未來我國香蕉育種工作有很大的啟發(fā)意義。香蕉的葉、假莖、花和果皮等營養(yǎng)豐富[167],值得進(jìn)一步加工和利用,特別是在我國主糧作物嚴(yán)重緊缺的背景下。最后,開發(fā)和推廣有觀賞性的盆栽香蕉(如極矮化香蕉中蕉12號(hào),假莖82~95 cm[35])也有一定前景。
3 香蕉育種主要存在的問題
3.1 香蕉種質(zhì)資源收集利用不足
我國的香蕉生物多樣性較為貧乏,地方品種和育成品種居多,香蕉野生種質(zhì)資源較少[168]。相對(duì)于地方品種等邊緣種質(zhì),香蕉野生種質(zhì)資源基因庫中蘊(yùn)含著應(yīng)對(duì)病蟲害及不斷變化的環(huán)境條件所必需的基因以及對(duì)人類健康有利的一些次生代謝產(chǎn)物合成相關(guān)的編碼基因等。目前,我國國家香蕉資源圃保存有約400份香蕉種質(zhì)資源,與國際香大蕉網(wǎng)絡(luò)(The International Network for the Improvement of Banana and Plantain,INIBAP)在比利時(shí)魯汶大學(xué)國際香蕉種質(zhì)交換中心(International Musa Germplasm Transit Center,ITC)保存的超過1600份香蕉種質(zhì)資源還有較大距離。因此,我國還需要從INIBAP等機(jī)構(gòu)以及東南亞、非洲和中南美洲等地引進(jìn)更多的種質(zhì)資源,包括優(yōu)良的、有特色的主栽品種[119]及野生種質(zhì)資源(尤其是極端生態(tài)條件下的種質(zhì)資源),并進(jìn)行鑒定、保存和利用。
香蕉種質(zhì)資源的精細(xì)評(píng)價(jià)不夠,造成資源利用不足。針對(duì)全國香蕉產(chǎn)業(yè)重大問題,如病害、冷害和風(fēng)害等,利用高通量表型分析[154]等技術(shù)多維度、系統(tǒng)性地評(píng)價(jià)和篩選特異種質(zhì)的研究較少。除此之外,未來研究人員還應(yīng)在充分結(jié)合田間評(píng)價(jià)數(shù)據(jù)的基礎(chǔ)上,采用大規(guī)模的室內(nèi)處理方式進(jìn)行更加穩(wěn)定的評(píng)價(jià)。例如,通過利用某些特異種質(zhì)進(jìn)行基因組、轉(zhuǎn)錄組、蛋白組、次生產(chǎn)物代謝組等分析手段,挖掘相關(guān)基因和分子標(biāo)記,并應(yīng)用于后續(xù)育種中,實(shí)現(xiàn)資源圃觀察-實(shí)驗(yàn)室研究-田間應(yīng)用的深度結(jié)合,促進(jìn)香蕉基礎(chǔ)理論研究以及香蕉種業(yè)協(xié)同發(fā)展。
3.2 育種手段單一
目前,我國主要的香蕉品種都是通過引種、營養(yǎng)系選種和人工誘變選育的,通過雜交育種選育出的只有少數(shù)幾個(gè),通過倍數(shù)性育種出的幾乎沒有,轉(zhuǎn)基因和基因編輯雖然研究較多,但是距離商業(yè)化還很遠(yuǎn)。通過香蕉有性雜交往往可以創(chuàng)制出傳統(tǒng)變異育種無法獲得的遺傳背景多樣、性狀相對(duì)可控的新種質(zhì)。香蕉雜交育種較難取得進(jìn)展,主要與香蕉育性差有關(guān)。香蕉倍數(shù)性育種相對(duì)簡單,技術(shù)成熟[73,77]。我國香蕉育種工作未來應(yīng)充分利用該技術(shù)并與雜交育種聯(lián)合使用。香蕉的轉(zhuǎn)基因和基因編輯育種技術(shù)的發(fā)展,除了受輿論和政策等因素的影響外,還受制于香蕉的分子生物學(xué)研究。類似地,分子標(biāo)記輔助育種等技術(shù)也依賴于分子生物學(xué)的發(fā)展成果,只有對(duì)香蕉基因功能解析達(dá)到較大的規(guī)模和較高的水平,這些技術(shù)才能得以在香蕉育種中廣泛利用。
總體而言,我國應(yīng)該立足現(xiàn)實(shí),在保持引種、營養(yǎng)系選種和人工誘變等常規(guī)育種方法繼續(xù)發(fā)展的基礎(chǔ)上,大力推進(jìn)香蕉雜交育種及倍數(shù)性育種等周期較長但前景明朗的傳統(tǒng)育種方法的應(yīng)用;同時(shí),還應(yīng)該放眼未來,鼓勵(lì)突破香蕉體細(xì)胞雜交育種、分子標(biāo)記輔助育種和嫁接育種等技術(shù)壁壘,加大力度支持香蕉分子生物學(xué)的基礎(chǔ)研究以及基因工程等現(xiàn)代生物技術(shù)育種方法的研究和應(yīng)用,特別是開發(fā)原創(chuàng)性、具有自主知識(shí)產(chǎn)權(quán)的、高效的香蕉基因編輯工具,從而搶占香蕉大規(guī)模現(xiàn)代化育種的先機(jī)。
3.3 缺少綜合性狀俱佳的品種
在過去幾十年間,枯萎病的肆虐激發(fā)了很多育種家對(duì)抗枯萎病香蕉品種的選育熱情。對(duì)于我國,乃至全世界,如何選育出抗枯萎病的優(yōu)良品種是目前香蕉育種的首要問題。但是,單方面的優(yōu)良性狀很難滿足整個(gè)產(chǎn)業(yè)需求。例如,粉雜1號(hào)抗枯萎病、高產(chǎn)、優(yōu)質(zhì)、外形獨(dú)特,但易感細(xì)菌性病害,且該品種對(duì)栽培技術(shù)要求高,其產(chǎn)量和品質(zhì)受季節(jié)影響明顯[38]。缺少綜合性狀俱佳的香蕉品種有多方面的原因。首先,香蕉高大,占地廣,育種工作者很難在實(shí)驗(yàn)室中對(duì)香蕉進(jìn)行各種性狀的精細(xì)評(píng)價(jià);其次,對(duì)高抗香蕉枯萎病性狀的緊迫需求減少了人們對(duì)其他優(yōu)良性狀的關(guān)注;最后,基于香蕉體細(xì)胞變異的育種方法具有隨機(jī)性,用這些方法選育出“完美”香蕉品種的難度極大。如何解決這些問題并培育綜合性狀俱佳的品種是未來育種工作的長期目標(biāo)。
3.4 內(nèi)源基因研究太少
香蕉基因組大小約為500 Mb[74-75,169],約為擬南芥的4倍。A基因組[74]、B基因組[75]和T基因組[169]已分別完成測(cè)序。國內(nèi)外已經(jīng)鑒定到了與抗病、抗寒、抗旱以及品質(zhì)和保鮮等性狀相關(guān)的多個(gè)內(nèi)源基因[86]。但是,這還遠(yuǎn)遠(yuǎn)不夠,現(xiàn)有的對(duì)香蕉分子生物學(xué)的基礎(chǔ)研究很難滿足后續(xù)通過基因編輯方法改造新品種的需求。香蕉內(nèi)源基因研究少有兩個(gè)主要的原因。一方面,香蕉的遺傳轉(zhuǎn)化較難,技術(shù)門檻高。目前,最高效的轉(zhuǎn)基因方法依賴于ECS,而ECS的創(chuàng)制和維持不僅需要嚴(yán)苛的組培條件和技術(shù)要求,還需要投入大量的時(shí)間、人力和物力,并且只有部分品種可應(yīng)用該方法實(shí)現(xiàn)轉(zhuǎn)化。研究人員應(yīng)該加速對(duì)香蕉的轉(zhuǎn)基因方法和基因編輯方法的升級(jí),這將有利于人們通過反向遺傳手段大規(guī)模、高效率地研究香蕉內(nèi)源基因的功能。另一方面,香蕉正向遺傳的研究難以進(jìn)行。香蕉的基因定位難,主要體現(xiàn)在很難通過雜交構(gòu)建群體定位栽培種的優(yōu)良基因。針對(duì)這個(gè)難題,可以用可育的香蕉野生種質(zhì)資源等作為研究對(duì)象。例如,通過雜交或者構(gòu)建野生香蕉突變體庫等方法定位相關(guān)性狀的基因,或者對(duì)多種野生香蕉進(jìn)行全基因組關(guān)聯(lián)分析,在解析野生香蕉的基因功能后再利用反向遺傳手段在栽培種香蕉中進(jìn)行驗(yàn)證。
4 展 望
經(jīng)過幾十年的發(fā)展,我國香蕉育種取得較大的成績,但是與世界先進(jìn)水平還有一定的差距,今后一段時(shí)間要在以下方向繼續(xù)努力。(1)繼續(xù)加強(qiáng)全球香蕉種質(zhì)資源的收集、評(píng)價(jià)和利用,特別要大力推進(jìn)香蕉雜交育種。(2)重視香蕉的基礎(chǔ)研究,挖掘與重要經(jīng)濟(jì)性狀關(guān)聯(lián)的關(guān)鍵基因,解析其調(diào)控網(wǎng)絡(luò),為將來通過基因編輯技術(shù)創(chuàng)制無轉(zhuǎn)基因的香蕉新品種奠定基礎(chǔ)。(3)不斷開發(fā)和升級(jí)新的育種技術(shù),促進(jìn)多種手段相互融合,達(dá)到高效、科學(xué)育種目的。(4)努力攻堅(jiān)抗病香蕉育種,培育抗多種病蟲害同時(shí)各項(xiàng)綜合性狀俱佳的新品種,打贏香蕉保衛(wèi)戰(zhàn)。
參考文獻(xiàn) References:
[1] SIMMONDS N W. The evolution of the bananas[M]. London:Longmans Green,1962:170.
[2] 曾惜冰,李豐年,許林兵,楊護(hù),林志雄,黃炳智. 廣東野生蕉的初步調(diào)查研究[J]. 園藝學(xué)報(bào),1989,16(2):95-100.
ZENG Xibing,LI Fengnian,XU Linbing,YANG Hu,LIN Zhixiong,HUANG Bingzhi. A preliminary investigation on wild bananas in Guangdong Province[J]. Acta Horticulturae Sinica,1989,16(2):95-100.
[3] 王芳,謝江輝. 我國香蕉產(chǎn)業(yè)“十三五”回顧與“十四五”展望[J]. 中國熱帶農(nóng)業(yè),2022(3):15-22.
WANG Fang,XIE Jianghui. Review of Chinese banana industry during the 13th five-year plan period and outlook of this industry during the 14th five-year plan period[J]. China Tropical Agriculture,2022(3):15-22.
[4] 李華平,李云鋒,聶燕芳. 香蕉枯萎病的發(fā)生及防控研究現(xiàn)狀[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,40(5):128-136.
LI Huaping,LI Yunfeng,NIE Yanfang. Research status of occurrence and control of Fusarium wilt of banana[J]. Journal of South China Agricultural University,2019,40(5):128-136.
[5] 李寶榮,張向平. 目前國內(nèi)主栽香蕉品種的引種過程及存在的問題[J]. 中國南方果樹,2002,31(4):30-31.
LI Baorong,ZHANG Xiangping. Introduction process and existing problems of main banana varieties in China at present[J]. South China Fruits,2002,31(4):30-31.
[6] 黃秉智,楊護(hù),許林兵,唐小浪,魏岳榮,邱繼水. 抗枯萎病香蕉品種新北蕉引種試驗(yàn)初報(bào)[J]. 廣東農(nóng)業(yè)科學(xué),2005,32(5):33-34.
HUANG Bingzhi,YANG Hu,XU Linbing,TANG Xiaolang,WEI Yuerong,QIU Jishui. Preliminary report on introduction experiment of banana variety Xinbeijiao with resistance to Fusarium wilt[J]. Guangdong Agricultural Sciences,2005,32(5):33-34.
[7] 黃秉智,楊護(hù),許林兵,李豐年,吳元立,魏岳榮,邱繼水. 貢蕉在南亞熱帶的適應(yīng)性試驗(yàn)及栽培技術(shù)[J]. 廣西農(nóng)業(yè)科學(xué),2005,36(6):518-520.
HUANG Bingzhi,YANG Hu,XU Linbing,LI Fengnian,WU Yuanli,WEI Yuerong,QIU Jishui. Applicability and culture techniques for Gongjiao (Musa AA Sucrier) in south subtropical regions[J]. Guangxi Agricultural Science,2005,36(6):518-520.
[8] 許林兵,張錫炎,甘東泉,黃秉智,陳煥雄,馮兆昌,吳元立. ‘海貢蕉引種試種研究[J]. 熱帶農(nóng)業(yè)科學(xué),2013,33(8):24-28.
XU Linbing,ZHANG Xiyan,GAN Dongquan,HUANG Bingzhi,CHEN Huanxiong,F(xiàn)ENG Zhaochang,WU Yuanli. Introduction and trial planting of ‘Haigong Jiao (Musa AA)[J]. Chinese Journal of Tropical Agriculture,2013,33(8):24-28.
[9] 鐘秋平,趙新河. 海南9個(gè)香蕉品種的釀酒性能探討[J]. 中國釀造,2008,27(7):44-46.
ZHONG Qiuping,ZHAO Xinhe. Study on wine fermentation ability of nine different banana species in Hainan[J]. China Brewing,2008,27(7):44-46.
[10] 黃秉智,楊護(hù),許林兵,李豐年,吳元立. 香蕉優(yōu)良品種貴妃蕉[J]. 中國果樹,2006(1):28-29.
HUANG Bingzhi,YANG Hu,XU Linbing,LI Fengnian,WU Yuanli. Banana variety Guifei banana[J]. China Fruits,2006(1):28-29.
[11] 傅金鳳,王娟,王琳,盛鷗. 特色香蕉類型‘美食蕉品種果肉中淀粉與礦物質(zhì)在后熟期的變化[J]. 食品科學(xué),2021,42(1):86-92.
FU Jinfeng,WANG Juan,WANG Lin,SHENG Ou. Changes of starch and minerals in pulp of plantain cultivars (Musa spp. AAB) during postharvest ripening[J]. Food Science,2021,42(1):86-92.
[12] 黃秉智,楊護(hù),許林兵,易干軍,吳元立,魏岳榮,邱繼水. 廣粉1號(hào)粉蕉的選育及示范推廣[J]. 福建果樹,2005(3):3-5.
HUANG Bingzhi,YANG Hu,XU Linbing,YI Ganjun,WU Yuanli,WEI Yuerong,QIU Jishui. Breeding,demonstration and popularization of Guangfen No. 1[J]. Fujian Fruits,2005(3):3-5.
[13] HWANG S C,KO W H. Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan[J]. Plant Disease,2004,88(6):580-588.
[14] 黃秉智,楊護(hù),許林兵,魏岳榮,邱繼水,易干軍. 香蕉長果指優(yōu)質(zhì)新品種大豐1號(hào)的選育[J]. 中國果樹,2009(4):9-11.
HUANG Bingzhi,YANG Hu,XU Linbing,WEI Yuerong,QIU Jishui,YI Ganjun. Breeding of high-quality new banana variety Dafeng No. 1[J]. China Fruits,2009(4):9-11.
[15] 黃秉智,楊護(hù),許林兵,易干軍,魏岳榮,邱繼水. 香蕉優(yōu)質(zhì)新品系大豐2號(hào)的選育[J]. 中國果樹,2006(4):11-12.
HUANG Bingzhi,YANG Hu,XU Linbing,YI Ganjun,WEI Yuerong,QIU Jishui. Breeding of a new banana strain Dafeng No. 2 with high quality [J]. China Fruits,2006(4):11-12.
[16] 許林兵,張錫炎,李華平,陳彪,黃秉智,陳維信,馮巖,肖維強(qiáng),周登博,甘東泉. 抗枯萎病香蕉新品種‘南天黃選育[J]. 熱帶作物學(xué)報(bào),2017,38(6):998-1004.
XU Linbing,ZHANG Xiyan,LI Huaping,CHEN Biao,HUANG Bingzhi,CHEN Weixin,F(xiàn)ENG Yan,XIAO Weiqiang,ZHOU Dengbo,GAN Dongquan. The breeding of new banana varieties ‘Nan Tian Huang for resistance to Fusarium wilt[J]. Chinese Journal of Tropical Crops,2017,38(6):998-1004.
[17] 楊興玉,肖維強(qiáng),許林兵,李華平,黃秉智,葉春海,陳彪,陳谷,呂慶芳,梁鉀賢,吳元立,胡玲玉. 香蕉新品種‘南天紅[J]. 園藝學(xué)報(bào),2020,47(S2):2962-2963.
YANG Xingyu,XIAO Weiqiang,XU Linbing,LI Huaping,HUANG Bingzhi,YE Chunhai,CHEN Biao,CHEN Gu,L? Qingfang,LIANG Jiaxian,WU Yuanli,HU Lingyu. A new banana cultivar ‘Nantianhong[J]. Acta Horticulturae Sinica,2020,47(S2):2962-2963.
[18] 魏岳榮,鄺瑞彬,楊護(hù). 矮化香蕉新品種‘中蕉11號(hào)的選育[J]. 果樹學(xué)報(bào),2019,36(7):957-959.
WEI Yuerong,KUANG Ruibin,YANG Hu. Breeding of a new dwarf banana cultivar‘Zhongjiao No. 11[J]. Journal of Fruit Science,2019,36(7):957-959.
[19] 梁水連,呂岱竹,馬晨,相壇壇,周佳,王明月. ‘桂蕉1號(hào)香蕉成熟過程中揮發(fā)性成分和香氣特征分析[J]. 食品工業(yè)科技,2021,42(14):99-106.
LIANG Shuilian,L? Daizhu,MA Chen,XIANG Tantan,ZHOU Jia,WANG Mingyue. Analysis of volatile components and aroma features of banana ‘Guijiao No. 1 fruit at different ripening stages[J]. Science and Technology of Food Industry,2021,42(14):99-106.
[20] 林貴美,鄒瑜,李小泉,牟海飛,李朝生,張進(jìn)忠. 香蕉優(yōu)良品種威廉斯B6的組培選育與種植試驗(yàn)[J]. 中國南方果樹,2008,37(6):35-36.
LIN Guimei,ZOU Yu,LI Xiaoquan,MOU Haifei,LI Chaosheng,ZHANG Jinzhong. Tissue culture,breeding and planting experiment of excellent banana variety Williams B6[J]. South China Fruits,2008,37(6):35-36.
[21] 韋紹龍,黃素梅,韋莉萍,韋弟,李朝生,覃柳燕,田丹丹,張進(jìn)忠,周維,龍盛風(fēng),楊柳. 香蕉抗(耐)枯萎病新品種桂蕉9號(hào)的選育及其高產(chǎn)栽培技術(shù)[J]. 南方農(nóng)業(yè)學(xué)報(bào),2016,47(4):530-536.
WEI Shaolong,HUANG Sumei,WEI Liping,WEI Di,LI Chaosheng,QIN Liuyan,TIAN Dandan,ZHANG Jinzhong,ZHOU Wei,LONG Shengfeng,YANG Liu. Breeding on new banana variety Guijiao 9 resistant or tolerant to Fusarium wilt (Fusarium oxysporum f. sp. cubence,race 4) and its high-yield cultivation technologies[J]. Journal of Southern Agriculture,2016,47(4):530-536.
[22] 牟海飛,劉潔云,韋紹龍,吳代東,黃偉華,吳艷艷,黃永才,林茜,蘇祖祥. 早熟短果指型香蕉新品種桂蕉早1號(hào)的選育及其高產(chǎn)栽培技術(shù)[J]. 南方農(nóng)業(yè)學(xué)報(bào),2017,48(6):1048-1053.
MOU Haifei,LIU Jieyun,WEI Shaolong,WU Daidong,HUANG Weihua,WU Yanyan,HUANG Yongcai,LIN Qian,SU Zuxiang. Breeding of a new early maturing and short-finger banana variety Guijiaozao 1 and its high-yield cultivation technology[J]. Journal of Southern Agriculture,2017,48(6):1048-1053.
[23] 趙明,何海旺,鄒瑜,龍芳,武鵬. 香蕉早熟新品種‘桂蕉青7號(hào)的選育[J]. 中國果樹,2016(2):72-74.
ZHAO Ming,HE Haiwang,ZOU Yu,LONG Fang,WU Peng. Breeding of a new early-maturing banana variety‘Guijiaoqing No. 7[J]. China Fruits,2016(2):72-74.
[24] 劉建平,王芳,杜彩嫻,韓秀香,張珂恒,何建齊,王悅萍. 香蕉新品種東蕉1號(hào)的組織培養(yǎng)技術(shù)研究[J]. 現(xiàn)代農(nóng)業(yè)科技,2018(4):68-69.
LIU Jianping,WANG Fang,DU Caixian,HAN Xiuxiang,ZHANG Keheng,HE Jianqi,WANG Yueping. Study on tissue culture technology of new banana variety Dongjiao No.1[J]. Modern Agricultural Science and Technology,2018(4):68-69.
[25] 漆艷香,謝藝賢,彭軍,曾凡云,張欣. 海南生態(tài)條件下香蕉新品系‘熱科1號(hào)主要農(nóng)藝性狀分析[J]. 熱帶農(nóng)業(yè)科學(xué),2020,40(3):1-5.
QI Yanxiang,XIE Yixian,PENG Jun,ZENG Fanyun,ZHANG Xin. Main agronomic traits of new banana line‘Reke 1 under ecological conditions in Hainan[J]. Chinese Journal of Tropical Agriculture,2020,40(3):1-5.
[26] 張欣,漆艷香,彭軍,張輝強(qiáng),謝藝賢. 香蕉新品系‘熱科2號(hào)主要農(nóng)藝性狀分析[J]. 熱帶農(nóng)業(yè)科學(xué),2016,36(6):19-21.
ZHANG Xin,QI Yanxiang,PENG Jun,ZHANG Huiqiang,XIE Yixian. Main agronomic characters of new line‘Reke 2 of banana[J]. Chinese Journal of Tropical Agriculture,2016,36(6):19-21.
[27] 陳石,周紅玲,易干軍,魏岳榮,盛鷗,鄭加協(xié). ‘中粉1號(hào)粉蕉在福建漳州的適應(yīng)性研究[J]. 中國南方果樹,2012,41(2):102-103.
CHEN Shi,ZHOU Hongling,YI Ganjun,WEI Yuerong,SHENG Ou,ZHENG Jiaxie. Study on adaptability of ‘Zhongfen No.1 banana in Zhangzhou,F(xiàn)ujian[J]. South China Fruits,2012,41(2):102-103.
[28] 楊護(hù),鄺瑞彬,楊敏,周陳平,黃炳雄,徐少峰,魏岳榮. 優(yōu)質(zhì)豐產(chǎn)粉蕉新品種‘青粉1號(hào)的選育[J]. 果樹學(xué)報(bào),2020,37(2):293-296.
YANG Hu,KUANG Ruibin,MIN Yang,ZHOU Chenping,HUANG Bingxiong,XU Shaofeng,WEI Yuerong. Breeding of a new Pisang Awak variety ‘Qingfen No. 1 with good quality and high yield[J]. Journal of Fruit Science,2020,37(2):293-296.
[29] 鄒瑜,林貴美,牟海飛,吳代東,李朝生,韋華芳,張進(jìn)忠,李小泉. 粉蕉新品種‘金粉1號(hào)的選育[J]. 中國南方果樹,2011,40(1):47-48.
ZOU Yu,LIN Guimei,MOU Haifei,WU Daidong,LI Chao
sheng,WEI Huafang,ZHANG Jinzhong,LI Xiaoquan. Breeding of a new banana variety “Jinfen No. 1”[J]. South China Fruits,2011,40(1):47-48.
[30] 郭建輝,黃錫棟. 香蕉離體試管芽誘變育種 Ⅲ. 輻照后代優(yōu)良株系的篩選[J]. 福建農(nóng)業(yè)大學(xué)學(xué)報(bào),2001,30(4):473-476.
GUO Jianhui,HUANG Xidong. Mutation breeding with in vitro buds in banana section Ⅲ. Screening of eminent strains of mutation progeny[J]. Journal of Fujian Agricultural University,2001,30(4):473-476.
[31] 郭建輝,沈明山,蔡恩興,洪富祥,陳麗萍,黃錫棟. 香蕉離體試管芽誘變育種的研究 Ⅴ. 漳蕉8號(hào)株系基因組變異檢測(cè)[J]. 核農(nóng)學(xué)報(bào),2003,17(4):255-258.
GUO Jianhui,SHEN Mingshan,CAI Enxing,HONG Fuxiang,CHEN Liping,HUANG Xidong. Mutation breeding of banana tube-buds in vitro Ⅴ. Genomic variation of Zhangjiao No. 8 strain detected by RAPD[J]. Acta Agriculturae Nucleatae Sinica,2003,17(4):255-258.
[32] 楊興玉,肖維強(qiáng),許林兵,李華平,黃秉智. 高抗枯萎病香蕉新品種佳麗的選育[J]. 果樹學(xué)報(bào),2022,39(4):696-699.
YANG Xingyu,XIAO Weiqiang,XU Linbing,LI Huaping,HUANG Bingzhi. Breeding report of a new banana cultivar Jiali with high resistance to Fusarium wilt[J]. Journal of Fruit Science,2022,39(4):696-699.
[33] 黃俊豪,段承煜,鄧英毅,李峰,馮斗,范斗文,谷俊杰. 4個(gè)粉蕉品種后熟過程中果實(shí)色澤及質(zhì)構(gòu)特性變化規(guī)律比較[J]. 熱帶作物學(xué)報(bào),2022,43(2):277-284.
HUANG Junhao,DUAN Chengyu,DENG Yingyi,LI Feng,F(xiàn)ENG Dou,F(xiàn)AN Douwen,GU Junjie. Comparison of color and texture property change rules of four Fenjiao (Musa ABB pisang awak) varieties during fruit ripening[J]. Chinese Journal of Tropical Crops,2022,43(2):277-284.
[34] 鄧英毅,屈嘯,李峰,覃嬋嬋,馮斗,禤維言,裴鐵雄,姜建初,郭標(biāo),劉永南. 香蕉不同品種生長發(fā)育、結(jié)果性狀和產(chǎn)量比較[J]. 熱帶作物學(xué)報(bào),2018,39(9):1683-1688.
DENG Yingyi,QU Xiao,LI Feng,QIN Chanchan,F(xiàn)ENG Dou,XUAN Weiyan,PEI Tiexiong,JIANG Jianchu,GUO Biao,LIU Yongnan. Comparison of growth,fruit setting characters and yield of different banana varieties[J]. Chinese Journal of Tropical Crops,2018,39(9):1683-1688.
[35] 鄺瑞彬,魏岳榮. 超矮香蕉新品種‘中蕉12號(hào)的選育[J]. 果樹學(xué)報(bào),2020,37(12):1991-1994.
KUANG Ruibin,WEI Yuerong. Breeding report of ultra-dwarf banana cultivar‘Zhongjiao No. 12[J]. Journal of Fruit Science,2020,37(12):1991-1994.
[36] 王澤槐,劉文清,呂順,李建國,傅積棟,李洪波,吳國麟,周建坤. 香蕉新品種‘華農(nóng)中把的選育[J]. 果樹學(xué)報(bào),2012,29(4):710-711.
WANG Zehuai,LIU Wenqing,L? Shun,LI Jianguo,F(xiàn)U Jidong,LI Hongbo,WU Guolin,ZHOU Jiankun.? ‘Huanong Zhongba,a new banana cultivar[J]. Journal of Fruit Science,2012,29(4):710-711.
[37] 只佳增,杜浩,周勁松,張建春,趙麗娟,陳偉強(qiáng). 云南特色香蕉新品種主要農(nóng)藝性狀及產(chǎn)量比較[J]. 熱帶農(nóng)業(yè)科學(xué),2022,42(4):22-27.
ZHI Jiazeng,DU Hao,ZHOU Jinsong,ZHANG Jianchun,ZHAO Lijuan,CHEN Weiqiang. Analysis of main agronomic characters and yield of Yunnan characteristics banana[J]. Chinese Journal of Tropical Agriculture,2022,42(4):22-27.
[38] 吳元立,黃秉智,楊護(hù),許林兵,楊興玉,曾鴻運(yùn). 抗枯萎病優(yōu)質(zhì)特色香蕉新品種粉雜1號(hào)的選育[J]. 果樹學(xué)報(bào),2022,39(12):2450-2454.
WU Yuanli,HUANG Bingzhi,YANG Hu,XU Linbing,YANG Xingyu,ZENG Hongyun. Breeding of Fenza No. 1,a new high-quality and special banana variety with high resistance against Fusarium oxysporum f. sp. cubense[J]. Journal of Fruit Science,2022,39(12):2450-2454.
[39] 林雪茜,彭淼,吳少平,易干軍,董濤,鐘曉紅,高慧君. ‘中蕉9號(hào)與‘巴西蕉果實(shí)后熟過程中可溶性糖積累差異的原因分析[J]. 果樹學(xué)報(bào),2019,36(11):1524-1539.
LIN Xuexi,PENG Miao,WU Shaoping,YI Ganjun,DONG Tao,ZHONG Xiaohong,GAO Huijun. A comparative analysis of the differences in starch degradation and soluble sugar accumulation between‘Zhongjiao No. 9 and‘Baxijiao during fruit ripening[J]. Journal of Fruit Science,2019,36(11):1524-1539.
[40] TANG C Y. Somaclonal variation:A tool for the improvement of Cavendish banana cultivars[J]. Acta Horticulturae,2005,692:61-66.
[41] 莊西卿,劉長全,曹明華,徐曉新,羅德超. 香蕉新品系“熱蕉11號(hào)”植株及果實(shí)性狀的觀測(cè)與分析[J]. 熱帶作物學(xué)報(bào),2007,28(3):5-9.
ZHUANG Xiqing,LIU Changquan,CAO Minghua,XU Xiaoxin,LUO Dechao. Study on the plant and fruit characteristic of the new banana strain ‘Rejiao No. 11[J]. Chinese Journal of Tropical Crops,2007,28(3):5-9.
[42] 周紅玲,鄭云云,鄭加協(xié). 抗枯1號(hào)香蕉在漳州地區(qū)的性狀表現(xiàn)及品質(zhì)分析[J]. 中國南方果樹,2014,43(1):88-89.
ZHOU Hongling,ZHENG Yunyun,ZHENG Jiaxie. Characters and quality analysis of Kangku No.1 banana in Zhangzhou[J]. South China Fruits,2014,43(1):88-89.
[43] 黃秉智,唐小浪,許林兵,楊護(hù),魏岳榮,邱繼水,吳潔芳. 香蕉抗枯萎病品種抗枯5號(hào)引種試驗(yàn)[J]. 中國果樹,2009(6):17-19.
HUANG Bingzhi,TANG Xiaolang,XU Linbing,YANG Hu,WEI Yuerong,QIU Jishui,WU Jiefang. Introduction experiment of banana Fusarium wilt-resistant cultivar Kangku No. 5[J]. China Fruits,2009(6):17-19.
[44] 宋曉兵,彭埃天,凌金鋒,陳霞,周娟. 18份廣東香蕉種質(zhì)對(duì)枯萎病的抗性評(píng)價(jià)[J]. 生物安全學(xué)報(bào),2016,25(3):218-221.
SONG Xiaobing,PENG Aitian,LING Jinfeng,CHEN Xia,ZHOU Juan. Assessment of 18 banana germplasms for resistance to Fusarium wilt race 4[J]. Journal of Biosafety,2016,25(3):218-221.
[45] 劉紹欽,梁張慧,黃熾輝,黃玉香. 抗枯萎病香蕉新品系農(nóng)科1號(hào)的選育[J]. 廣東農(nóng)業(yè)科學(xué),2007,34(1):30-32.
LIU Shaoqin,LIANG Zhanghui,HUANG Chihui,HUANG Yuxiang. Breeding of a new banana strain Nongke No. 1 with resistance to Fusarium wilt[J]. Guangdong Agricultural Sciences,2007,34(1):30-32.
[46] MAURYA P,SAGORE B,JAIN S,SAINI S,INGOLE A,MEENA R,KUMAR V. Mutational breeding in fruit crops:A review[J]. The Pharma Innovation Journal,2022,11(6):1631-1637.
[47] BIDABADI S S,MEON S,WAHAB Z,SUBRAMANIAM S,MAHMOOD M. Induced mutations for enhancing variability of banana (Musa spp.) shoot tip cultures using ethyl methanesulphonate (EMS)[J]. Australian Journal of Crop Science,2012,6(3):391-401.
[48] 楊媚,舒燦偉,陳健儀,聶劍平,周而勛. 利用甲基磺酸乙酯和枯萎病菌毒素誘變篩選香蕉抗毒素突變體[J]. 園藝學(xué)報(bào),2012,39(8):1465-1470.
YANG Mei,SHU Canwei,CHEN Jianyi,NIE Jianping,ZHOU Erxun. Screening of mutants resistant to the toxin produced by Fusarium oxysporum f. sp. cubense using ethyl methane sulfonate and toxin mutagenesis techniques[J]. Acta Horticulturae Sinica,2012,39(8):1465-1470.
[49] 胡玉林,謝江輝,梁國魯,陳佳瑛,王忠猛. 香蕉抗枯萎病突變體的誘發(fā)與篩選[J]. 果樹學(xué)報(bào),2008,25(2):188-192.
HU Yulin,XIE Jianghui,LIANG Guolu,CHEN Jiaying,WANG Zhongmeng. Induction and selection of banana mutants resistant to Fusarium wilt disease[J]. Journal of Fruit Science,2008,25(2):188-192.
[50] BHAGWAT B,DUNCAN E J. Mutation breeding of banana cv. Highgate (Musa spp.,AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens[J]. Scientia Horticulturae,1998,73(1):11-22.
[51] 李洪波,葉肖燕,陳康麗,何建齊,劉建平,唐琪璐,杜彩嫻. NaN3對(duì)香蕉農(nóng)科1號(hào)不定芽誘變的影響[J]. 現(xiàn)代農(nóng)業(yè)科技,2020(14):54-55.
LI Hongbo,YE Xiaoyan,CHEN Kangli,HE Jianqi,LIU Jianping,TANG Qilu,DU Caixian. Effect on mutation of adventitious buds of banana Nongke 1 with sodium azide[J]. Modern Agricultural Science and Technology,2020(14):54-55.
[52] 韓偉,魏岳榮,盛鷗,胡春華,易干軍,楊喬松,黃永紅,李春雨,鄺瑞彬. ‘巴西蕉離體芽的化學(xué)誘變和抗鐮刀菌酸材料的篩選[J]. 核農(nóng)學(xué)報(bào),2012,26(9):1237-1243.
HAN Wei,WEI Yuerong,SHENG Ou,HU Chunhua,YI Ganjun,YANG Qiaosong,HUANG Yonghong,LI Chunyu,KUANG Ruibin. Chemical mutation and screening for tolerance to fusaric acid on shoot tip of Musa AAA Cavendish cv. ‘Baxijiao[J]. Journal of Nuclear Agricultural Sciences,2012,26(9):1237-1243.
[53] PENNA S,GHAG S B,GANAPATHI T R,JAIN S M. Induced genetic diversity in banana[M]//NANDWANI D. Genetic Diversity in Horticultural Plants. Cham:Springer,2019:273-297.
[54] DATTA S,JANKOWICZ-CIESLAK J,NIELEN S,INGELBRECHT I,TILL B J. Induction and recovery of copy number variation in banana through gamma irradiation and low-coverage whole-genome sequencing[J]. Plant Biotechnology Journal,2018,16(9):1644-1653.
[55] HU C H,WU Y L,YI G J. Gamma irradiation of embryogenic cell suspension cultures from Cavendish banana (Musa spp. AAA group) and in vitro selection for resistance to Fusarium wilt[M]//JANKOWICZ-CIESLAK J,INGELBRECHT I L. Efficient screening techniques to identify mutants with TR4 resistance in banana. Berlin,Heidelberg:Springer,2022:21-30.
[56] 高典林. 伽瑪射線誘發(fā)香蕉突變育種之研究-若干突變體之出現(xiàn)[J]. 中國園藝,1979,25(5/6):197-206.
KAO Deinlin. Study on mutation breeding of banana induced by gamma ray-the emergence of several mutants[J]. China Horticulture,1979,25 (5/6):197-206.
[57] 李豐年,黃秉智,楊護(hù),許林兵,曾惜冰. 香蕉60Co輻射誘變效應(yīng)的初步研究[J]. 廣東農(nóng)業(yè)科學(xué),1996,23(3):29-31.
LI Fengnian,HUANG Bingzhi,YANG Hu,XU Linbing,ZENG Xibing. Preliminary study on the mutagenic effect of banana 60Co radiation[J]. Guangdong Agricultural Sciences,1996,23(3):29-31.
[58] 張建斌,張建平,王安邦,徐碧玉,金志強(qiáng),劉菊華. 香蕉不定芽60Co輻射誘變研究[J]. 熱帶農(nóng)業(yè)科學(xué),2018,38(2):42-45.
ZHANG Jianbin,ZHANG Jianping,WANG Anbang,XU Biyu,JIN Zhiqiang,LIU Juhua. Radiation-induced mutation of banana adventitious shoots by using 60Co[J]. Chinese Journal of Tropical Agriculture,2018,38(2):42-45.
[59] 葉春海,豐鋒,呂慶芳,李洪波. 香蕉60Co輻射誘變效應(yīng)的研究[J]. 西南農(nóng)業(yè)大學(xué)學(xué)報(bào),2000,22(4):301-303.
YE Chunhai,F(xiàn)ENG Feng,L? Qingfang,LI Hongbo. Studies on γ-ray induce mutation effect in banana[J]. Journal of Southwest Agricultural University,2000,22(4):301-303.
[60] AGUILAR M J F. Improvement of Cavendish banana cultivars through conventional breeding[J]. Acta Horticulturae,2013,986:205-208.
[61] ORTIZ R,SWENNEN R. From crossbreeding to biotechnology-facilitated improvement of banana and plantain[J]. Biotechnology Advances,2014,32(1):158-169.
[62] UMA S,LAKSHMI S,SARASWATHI M S,AKBAR A,MUSTAFFA M M. Embryo rescue and plant regeneration in banana (Musa spp.)[J]. Plant Cell,Tissue and Organ Culture,2011,105(1):105-111.
[63] VUYLSTEKE D,SWENNEN R,LANGHE E. Somaclonal variation in plantains (Musa spp,AAB group) derived from shoot-tip culture[J]. Fruits,1991,46:429-439.
[64] BAKRY F,HORRY J P. Tetraploid hybrids from interploid 3x × 2x crosses in cooking bananas[J]. Fruits,1992,47(6):641-647.
[65] SMITH M K,HAMILL S D,BECKER D K,DALE J L. Musa spp. banana and plantain[M]//LITZ R E. Biotechnology of fruit and nut crops. UK:CAB International,2005:366-391.
[66] 黃秉智,楊護(hù),許林兵,唐小浪,魏岳榮,邱繼水. 抗枯萎病金手指香蕉的引種栽培研究[J]. 福建果樹,2005(4):15-16.
HUANG Bingzhi,YANG Hu,XU Linbing,TANG Xiaolang,WEI Yuerong,QIU Jishui. Study on introduction and cultivation of Goldern finger banana with resistance to Fusarium wilt[J]. Fujian Fruits,2005(4):15-16.
[67] 黃秉智,許林兵,楊護(hù),唐小浪,魏岳榮,邱繼水,李貫球. 香蕉種質(zhì)資源枯萎病抗性田間評(píng)價(jià)初報(bào)[J]. 廣東農(nóng)業(yè)科學(xué),2005,32(6):9-10.
HUANG Bingzhi,XU Linbing,YANG Hu,TANG Xiaolang,WEI Yuerong,QIU Jishui,LI Guanqiu. Prelimiary results of field evaluation of banana germplasm resistant to Fusarium wilt disease[J]. Guangdong Agricultural Sciences,2005,32(6):9-10.
[68] 蘇祖祥,許娟,石云平,青鐘準(zhǔn),陳河,陸衛(wèi)群,李賢高,陳霞,覃永嬡,李麗,李小泉. 我國特色蕉產(chǎn)業(yè)發(fā)展現(xiàn)狀與建議[J]. 農(nóng)業(yè)研究與應(yīng)用,2022,35(4):56-59.
SU Zuxiang,XU Juan,SHI Yunping,QING Zhongzhun,CHEN He,LU Weiqun,LI Xiangao,CHEN Xia,QIN Yongai,LI Li,LI Xiaoquan. Development status and suggestions of characteristic banana industry in China[J]. Agricultural Research and Application,2022,35(4):56-59.
[69] 鄧彪,盛鷗,魏岳榮,李大志,高慧君,鄺瑞彬,易干軍,MOLINA A B. 二倍體香蕉種質(zhì)資源花粉活力檢測(cè)方法的篩選[J]. 分子植物育種,2014,12(5):1011-1017.
DENG Biao,SHENG Ou,WEI Yuerong,LI Dazhi,GAO Huijun,KUANG Ruibin,YI Ganjun,MOLINA A B. Selection of testing methods on pollen viability of diploid banana (Musa spp.) accessions[J]. Molecular Plant Breeding,2014,12(5):1011-1017.
[70] 李偉明,胡會(huì)剛,胡玉林,段雅婕,陳晶晶,謝江輝,王文華. 3個(gè)野生近緣種與不同栽培蕉的雜交親和性[J]. 熱帶作物學(xué)報(bào),2021,42(12):3500-3507.
LI Weiming,HU Huigang,HU Yulin,DUAN Yajie,CHEN Jingjing,XIE Jianghui,WANG Wenhua. Cross-compatibility among three wild banana species and various cultivars[J]. Chinese Journal of Tropical Crops,2021,42(12):3500-3507.
[71] 趙明,武鵬,龍芳,何海旺,鄒瑜. 以廣西野生蕉為父本的香蕉遠(yuǎn)緣雜交[J]. 南方農(nóng)業(yè)學(xué)報(bào),2019,50(4):695-702.
ZHAO Ming,WU Peng,LONG Fang,HE Haiwang,ZOU Yu. Distant hybridization of banana based on Guangxi wild banana as male parent[J]. Journal of Southern Agriculture,2019,50(4):695-702.
[72] BAKRY F,ASSANI A,KERBELLEC F. Haploid induction:Androgenesis in Musa balbisiana[J]. Fruits,2008,63(1):45-49.
[73] ASSANI A,BAKRY F,KERBELLEC F,HA?COUR R,WENZEL G,F(xiàn)OROUGHI-WEHR B. Production of haploids from anther culture of banana [Musa balbisiana (BB)] [J]. Plant Cell Reports,2003,21(6):511-516.
[74] DHONT A,DENOEUD F,AURY J M,…,WINCKER P. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants[J]. Nature,2012,488(7410):213-217.
[75] WANG Z,MIAO H X,LIU J H,XU B Y,YAO X M,XU C Y,ZHAO S C,F(xiàn)ANG X D,JIA C H,WANG J Y,ZHANG J B,LI J Y,XU Y,WANG J S,MA W H,WU Z Y,YU L L,YANG Y L,LIU C,GUO Y,SUN S L,BAURENS F C,MARTIN G,SALMON F,GARSMEUR O,YAHIAOUI N,HERVOUET C,ROUARD M,LABOUREAU N,HABAS R,RICCI S,PENG M,GUO A P,XIE J H,LI Y,DING Z H,YAN Y,TIE W W,DHONT A,HU W,JIN Z Q. Musa balbisiana genome reveals subgenome evolution and functional divergence[J]. Nature Plants,2019,5(8):810-821.
[76] HAMILL S D,SMITH M K,DODD W A. In vitro induction of banana autotetraploids by colchicine treatment of micropropagated diploids[J]. Australian Journal of Botany,1992,40(6):887-896.
[77] DO AMARAL C M,DE ALMEIDA D S S J,DE OLIVEIRA E S S,DA SILVA L C A,AMORIM E P. Agronomic characterization of autotetraploid banana plants derived from ‘Pisang Lilin (AA) obtained through chromosome doubling[J]. Euphytica,2015,202(3):435-443.
[78] GOIGOUX S,SALMON F,BAKRY F. Evaluation of pollen fertility of diploid and doubled-diploid clones of mlali and their potential use for banana breeding[J]. Acta Horticulturae,2013,986:195-204.
[79] JENNY C,HOLTZ Y,HORRY J P,BAKRY F. Synthesis of new interspecific triploid hybrids from natural AB germplasm in banana (Musa sp.)[J]. Acta Horticulturae,2013,986:209-217.
[80] 胡玉林,謝江輝,郭啟高,梁國魯. 秋水仙素誘導(dǎo)GCTCV-119香蕉多倍體[J]. 果樹學(xué)報(bào),2006,23(3):462-464.
HU Yulin,XIE Jianghui,GUO Qigao,LIANG Guolu. Polyploidy induction of banana variety GCTCV-119 by colchicines[J]. Journal of Fruit Science,2006,23(3):462-464.
[81] 譚平,唐曉華,勞世輝,魏岳榮,洪林. 秋水仙素誘導(dǎo)抗枯1號(hào)香蕉多倍體試驗(yàn)[J]. 南方農(nóng)業(yè)學(xué)報(bào),2012,43(11):1718-1722.
TAN Ping,TANG Xiaohua,LAO Shihui,WEI Yuerong,HONG Lin. In vitro polyploid induction of banana Kangku 1 using colchicine[J]. Journal of Southern Agriculture,2012,43(11):1718-1722.
[82] 彭靜. 離體加倍創(chuàng)造香蕉多倍體種質(zhì)及其鑒定[D]. 長沙:湖南農(nóng)業(yè)大學(xué),2010.
PENG Jing. In vitro production and identification of polyploid banana (Musa spp.) germplasm[D]. Changsha:Hunan Agricultural University,2010.
[83] 張麗平. 香蕉多倍體種質(zhì)創(chuàng)制及其表型差異的機(jī)理初步研究[D]. 贛州:贛南師范大學(xué),2021.
ZHANG Liping. Development of autotetraploid plants derived from banana diploids and exploring the mechanisms of the genetic variability[D]. Ganzhou:Gannan Normal University,2021.
[84] 黃永紅,易干軍,周碧容,曾繼吾,吳元立. 香蕉基因工程研究進(jìn)展[J]. 西北植物學(xué)報(bào),2006,26(10):2179-2185.
HUANG Yonghong,YI Ganjun,ZHOU Birong,ZENG Jiwu,WU Yuanli. Research advances about genetic engineering of banana[J]. Acta Botanica Boreali-Occidentalia Sinica,2006,26(10):2179-2185.
[85] ADERO M,TRIPATHI J N,TRIPATHI L. Advances in somatic embryogenesis of banana[J]. International Journal of Molecular Sciences,2023,24(13):10999.
[86] WANG J Y,GAN S S,ZHENG Y K,JIN Z Q,CHENG Y J,LIU J H. Banana somatic embryogenesis and biotechnological application[J]. Tropical Plants,2022,1(1):1-13.
[87] 胡春華,魏岳榮,劉凱,易干軍,黃秉智,黃永紅. 幾丁質(zhì)酶基因克隆及其野生蕉轉(zhuǎn)化[J]. 分子植物育種,2010,8(4):719-724.
HU Chunhua,WEI Yuerong,LIU Kai,YI Ganjun,HUANG Bingzhi,HUANG Yonghong. Cloning of chitinase gene and its genetic transformation of wild banana (Musa itinerans Cheesm.)[J]. Molecular Plant Breeding,2010,8(4):719-724.
[88] ZHANG L,YUAN L B,STAEHELIN C,LI Y,RUAN J X,LIANG Z W,XIE Z P,WANG W,XIE J H,HUANG S Z. The lysin motif-containing receptor-like kinase 1 protein of banana is required for perception of pathogenic and symbiotic signals[J]. New Phytologist,2019,223(3):1530-1546.
[89] DOU T X,SHAO X H,HU C H,LIU S W,SHENG O,BI F C,DENG G M,DING L J,LI C Y,DONG T,GAO H J,HE W D,PENG X X,ZHANG S,HUO H Q,YANG Q S,YI G J. Host-induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana[J]. Plant Biotechnology Journal,2020,18(1):11-13.
[90] 黃霞,黃學(xué)林,王鴻鶴,李筱菊. 果用香蕉薄片外植體植株再生的研究[J]. 園藝學(xué)報(bào),2001,28(1):19-24.
HUANG Xia,HUANG Xuelin,WANG Honghe,LI Xiaoju. Studies on the plant regeneration from the micro cross sections of banana[J]. Acta Horticulturae Sinica,2001,28(1):19-24.
[91] 徐春香,李華平,肖火根,范懷忠. 香蕉分生小球體途徑胚性細(xì)胞懸浮系的建立[J]. 園藝學(xué)報(bào),2003,30(5):580-582.
XU Chunxiang,LI Huaping,XIAO Huogen,F(xiàn)AN Huaizhong. Establishment of embryogenic cell suspensions from meristematic globules of Musa spp.[J]. Acta Horticulturae Sinica,2003,30(5):580-582.
[92] 張妙霞. 香蕉與龍眼轉(zhuǎn)化受體系統(tǒng)建立及轉(zhuǎn)化PEAS基因初步研究[D]. 福州:福建農(nóng)林大學(xué),2004.
ZHANG Miaoxia. Establishment of banana and longan transgenic receptor system and the preliminary study on the transformation of the PEAS gene[D]. Fuzhou:Fujian Agriculture and Forestry University,2004.
[93] HUANG X,HUANG X L,XIAO W,ZHAO J T,DAI X M,CHEN Y F,LI X J. Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminata cv. Mas (AA) via a liquid co-cultivation system[J]. Plant Cell Reports,2007,26(10):1755-1762.
[94] 吳靜,李瑞珍,徐碧玉,金志強(qiáng). 香蕉ACC合成酶反義基因轉(zhuǎn)化香蕉的研究[J]. 分子植物育種,2007,5(4):497-501.
WU Jing,LI Ruizhen,XU Biyu,JIN Zhiqiang. Genetic transformation of ACC antisense gene into banana[J]. Molecular Plant Breeding,2007,5(4):497-501.
[95] 胡春華,魏岳榮,易干軍,黃秉智,黃永紅. 根癌農(nóng)桿菌介導(dǎo)的香蕉高效遺傳轉(zhuǎn)化系統(tǒng)的建立[J]. 分子植物育種,2010,8(1):172-178.
HU Chunhua,WEI Yuerong,YI Ganjun,HUANG Bingzhi,HUANG Yonghong. Establishment of a high efficient Agrobacterium tumefaciens-mediated transformation system for banana[J]. Molecular Plant Breeding,2010,8(1):172-178.
[96] 胡春華,竇同心,魏岳榮,盛鷗,鄺瑞彬,楊喬松,李春雨,易干軍. 根癌農(nóng)桿菌介導(dǎo)香蕉多芽體薄切片遺傳轉(zhuǎn)化體系的建立[J]. 分子植物育種,2014,12(6):1195-1200.
HU Chunhua,DOU Tongxin,WEI Yuerong,SHENG Ou,KUANG Ruibin,YANG Qiaosong,LI Chunyu,YI Ganjun. Establishment of Agrobacterium-mediated transformation of multiple buds slices of banana[J]. Molecular Plant Breeding,2014,12(6):1195-1200.
[97] DONG T,BI F C,HUANG Y H,HE W D,DENG G M,GAO H J,SHENG O,LI C Y,YANG Q S,YI G J,HU C H. Highly efficient biolistic transformation of embryogenic cell suspensions of banana via a liquid medium selection system[J]. HortScience,2020,55(5):703-708.
[98] 胡春華,鄧貴明,孫曉玄,左存武,李春雨,鄺瑞彬,楊喬松,易干軍. 香蕉CRISPR/Cas9基因編輯技術(shù)體系的建立[J]. 中國農(nóng)業(yè)科學(xué),2017,50(7):1294-1301.
HU Chunhua,DENG Guiming,SUN Xiaoxuan,ZUO Cunwu,LI Chunyu,KUANG Ruibin,YANG Qiaosong,YI Ganjun. Establishment of an efficient CRISPR/Cas9-mediated gene editing system in banana[J]. Scientia Agricultura Sinica,2017,50(7):1294-1301.
[99] ZHANG S,WU S P,HU C H,YANG Q S,DONG T,SHENG O,DENG G M,HE W D,DOU T X,LI C Y,SUN C K,YI G J,BI F C. Increased mutation efficiency of CRISPR/Cas9 genome editing in banana by optimized construct[J]. PeerJ,2022,10:e12664.
[100] HU C H,SHENG O,DENG G M,HE W D,DONG T,YANG Q S,DOU T X,LI C Y,GAO H J,LIU S W,YI G J,BI F C. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase 1) promotes the shelf life of banana fruit[J]. Plant Biotechnology Journal,2021,19(4):654-656.
[101] SHAO X H,WU S P,DOU T X,ZHU H C,HU C H,HUO H Q,HE W D,DENG G M,SHENG O,BI F C,GAO H J,DONG T,LI C Y,YANG Q S,YI G J. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana[J]. Plant Biotechnology Journal,2020,18(1):17-19.
[102] WU S P,ZHU H C,LIU J X,YANG Q S,SHAO X H,BI F C,HU C H,HUO H Q,CHEN K L,YI G J. Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana[J]. BMC Plant Biology,2020,20(1):425.
[103] HU C H,YANG Q S,SHAO X H,DONG T,BI F C,LI C Y,DENG G M,LI Y,YI G J,DOU T X. The application of the ‘Gene-deletor technology in banana[J]. Plant Cell,Tissue and Organ Culture,2020,140(1):105-114.
[104] TRIPATHI J N,NTUI V O,RON M,MUIRURI S K,BRITT A,TRIPATHI L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding[J]. Communications Biology,2019,2:1-12.
[105] TRIPATHI L,NTUI V O,TRIPATHI J N,NORMAN D,CRAWFORD J. A new and novel high-fidelity genome editing tool for banana using Cas-CLOVER[J]. Plant Biotechnology Journal,2023,21(9):1731-1733.
[106] KLEIDON J,BRININ A,PAUL J Y,HARDING R,DALE J,DUGDALE B. Production of selectable marker gene-free Cavendish banana (Musa spp.) using a steroid-inducible recombinase platform[J]. Transgenic Research,2020,29(1):81-93.
[107] AWASTHI P,KHAN S,LAKHANI H,CHATURVEDI S,SHIVANI S,KAUR N,SINGH J,KESARWANI A K,TIWARI S. Transgene-free genome editing supports the role of carotenoid cleavage dioxygenase 4 as a negative regulator of β-carotene in banana[J]. Journal of Experimental Botany,2022,73(11):3401-3416.
[108] 肖望,黃霞,魏岳榮. 香蕉原生質(zhì)體培養(yǎng)和體細(xì)胞雜交研究進(jìn)展[J]. 果樹學(xué)報(bào),2009,26(3):369-374.
XIAO Wang,HUANG Xia,WEI Yuerong. Progress in protoplast culture and somatic hybridization in banana (Musa spp.)[J]. Journal of Fruit Science,2009,26(3):369-374.
[109] ASSANI A,CHABANE D,HA?COUR R,BAKRY F,WENZEL G,F(xiàn)OROUGHI-WEHR B. Protoplast fusion in banana (Musa spp.):Comparison of chemical (PEG:polyethylene glycol) and electrical procedure[J]. Plant Cell,Tissue and Organ Culture,2005,83(2):145-151.
[110] XIAO W,HUANG X,GONG Q,DAI X M,ZHAO J T,WEI Y R,HUANG X L. Somatic hybrids obtained by asymmetric protoplast fusion between Musa Silk cv. Guoshanxiang (AAB) and Musa acuminata cv. Mas (AA)[J]. Plant Cell,Tissue and Organ Culture,2009,97(3):313-321.
[111] DAI X M,XIAO W,HUANG X,ZHAO J T,CHEN Y F,HUANG X L. Plant regeneration from embryogenic cell suspensions and protoplasts of dessert banana cv. ‘Da Jiao (Musa paradisiacal ABB Linn.) via somatic embryogenesis[J]. In Vitro Cellular & Developmental Biology - Plant,2010,46(5):403-410.
[112] SAMANTARA K,BOHRA A,MOHAPATRA S R,PRIHATINI R,ASIBE F,SINGH L,REYES V P,TIWARI A,MAURYA A K,CROSER J S,WANI S H,SIDDIQUE K H M,VARSHNEY R K. Breeding more crops in less time:A perspective on speed breeding[J]. Biology,2022,11(2):275.
[113] HICKEY L T,HAFEEZ A N,ROBINSON H,JACKSON S A,LEAL-BERTIOLI S C M,TESTER M,GAO C X,GODWIN I D,HAYES B J,WULFF B B H. Breeding crops to feed 10 billion[J]. Nature Biotechnology,2019,37(7):744-754.
[114] HOU B H,TSAI Y H,CHIANG M H,TSAO S M,HUANG S H,CHAO C P,CHEN H M. Cultivar-specific markers,mutations,and chimerisim of Cavendish banana somaclonal variants resistant to Fusarium oxysporum f. sp. cubense tropical race 4[J]. BMC Genomics,2022,23(1):470.
[115] AHMAD F,MARTAWI N M,POERBA Y S,DE JONG H,SCHOUTEN H,KEMA G H J. Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession[J]. Theoretical and Applied Genetics,2020,133(12):3409-3418.
[116] CHEN A,SUN J M,MARTIN G,GRAY L A,H?IBOV? E,CHRISTELOV? P,YAHIAOUI N,ROUNSLEY S,LYONS R,BATLEY J,CHEN N,HAMILL S,RAI S K,COIN L,UWIMANA B,DHONT A,DOLE?EL J,EDWARDS D,SWENNEN R,AITKEN E A B. Identification of a major QTL-controlling resistance to the subtropical race 4 of Fusarium oxysporum f. sp. cubense in Musa acuminata ssp. malaccensis[J]. Pathogens,2023,12(2):289.
[117] BIABIANY S,ARAOU E,CORMIER F,MARTIN G,CARREEL F,HERVOUET C,SALMON F,EFILE J C,LOPEZ-LAURI F,D'HONT A,L?CHAUDEL M,RICCI S. Detection of dynamic QTLs for traits related to organoleptic quality during banana ripening[J]. Scientia Horticulturae,2022,293:110690.
[118] REEVES G,TRIPATHI A,SINGH P,JONES M R W,NANDA A K,MUSSEAU C,CRAZE M,BOWDEN S,WALKER J F,BENTLEY A R,MELNYK C W,HIBBERD J M. Monocotyledonous plants graft at the embryonic root-shoot interface[J]. Nature,2022,602(7896):280-286.
[119] TRIPATHI J N,NTUI V O,MALARVIZHI M,MUIRURI S,RAVISHANKAR K V,TRIPATHI L. Improvement of nutraceutical traits of banana:New breeding techniques[M]//KOLE C. Compendium of crop genome designing for nutraceuticals. Singapore:Springer,2023:1-33.
[120] 羅德超. 淺談香蕉品種選育目標(biāo)[J]. 福建熱作科技,1991,16(2):37-38.
LUO Dechao. Talking about the objective of banana variety breeding[J]. Fujian Science & Technology of Tropical Crops,1991,16(2):37-38.
[121] BRISIBE E A,UBI G M,EKANEM N G. Descriptive and multivariate analyses of morphotaxonomic and yield-related traits in inflorescence dichotomous cultivars of Musa species (AAB genome)[J]. Genetic Resources and Crop Evolution,2021,68(8):3357-3372.
[122] MIAO Y L,WANG L Y,PENG C W,LI H,LI X H,ZHANG M. Banana plant counting and morphological parameters measurement based on terrestrial laser scanning[J]. Plant Methods,2022,18(1):66.
[123] MIAO H X,SUN P G,LIU Q,LIU J H,JIA C H,ZHAO D F,XU B Y,JIN Z Q. Molecular identification of the key starch branching enzyme-encoding gene SBE2.3 and its interacting transcription factors in banana fruits[J]. Horticulture Research,2020,7:101.
[124] XIAO Y Y,KUANG J F,QI X N,YE Y J,WU Z X,CHEN J Y,LU W J. A comprehensive investigation of starch degradation process and identification of a transcriptional activator MabHLH6 during banana fruit ripening[J]. Plant Biotechnology Journal,2018,16(1):151-164.
[125] SHENG O,YIN Z B,HUANG W J,CHEN M Y,DU M Y,KONG Q,F(xiàn)ERNIE A R,YI G J,YAN S J. Metabolic profiling reveals genotype-associated alterations in carotenoid content during banana postharvest ripening[J]. Food Chemistry,2023,403:134380.
[126] ZHU L S,CHEN L,WU C J,SHAN W,CAI D L,LIN Z X,WEI W,CHEN J Y,LU W J,KUANG J F. Methionine oxidation and reduction of the ethylene signaling component MaEIL9 are involved in banana fruit ripening[J]. Journal of Integrative Plant Biology,2023,65(1):150-166.
[127] HAN Y C,KUANG J F,CHEN J Y,LIU X C,XIAO Y Y,F(xiàn)U C C,WANG J N,WU K Q,LU W J. Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening[J]. Plant Physiology,2016,171(2):1070-1084.
[128] YANG Y Y,SHAN W,YANG T W,WU C J,LIU X C,CHEN J Y,LU W J,LI Z G,DENG W,KUANG J F. MaMYB4 is a negative regulator and a substrate of RING-type E3 ligases MaBRG2/3 in controlling banana fruit ripening[J]. The Plant Journal,2022,110(6):1651-1669.
[129] 李豐年,許林兵,黃秉智,楊護(hù),曾惜冰,鐘明. 香蕉組培苗大田變異調(diào)查與分析[J]. 中國南方果樹,1996,25(1):39-40.
LI Fengnian,XU Linbing,HUANG Bingzhi,YANG Hu,ZENG Xibing,ZHONG Ming. Investigation and analysis on field variation of banana tissue culture seedlings[J]. South China Fruits,1996,25(1):39-40.
[130] 吳元立,楊喬松,李春雨,黃秉智,董濤,盛鷗,畢方鋮,鄧貴明,胡春華,高慧君,竇同心,何維弟,劉思文,易干軍. 香蕉-尖孢鐮刀菌互作機(jī)理及抗病育種研究進(jìn)展[J]. 廣東農(nóng)業(yè)科學(xué),2020,47(11):32-41.
WU Yuanli,YANG Qiaosong,LI Chunyu,HUANG Bingzhi,DONG Tao,SHENG Ou,BI Fangcheng,DENG Guiming,HU Chunhua,GAO Huijun,DOU Tongxin,HE Weidi,LIU Siwen,YI Ganjun. Research progress in the mechanisms of banana-Fusarium oxysporum f. sp. cubense interaction and genetic improvement for resistance to Fusarium wilt[J]. Guangdong Agricultural Sciences,2020,47(11):32-41.
[131] 孫雪麗,郝向陽,王天池,賴鐘雄,程春振. 香蕉枯萎病防控和抗病育種研究進(jìn)展[J]. 果樹學(xué)報(bào),2018,35(7):870-879.
SUN Xueli,HAO Xiangyang,WANG Tianchi,LAI Zhongxiong,CHENG Chunzhen. Researches on the control and disease resistance breeding of Banana Fusarium wilt disease[J]. Journal of Fruit Science,2018,35(7):870-879.
[132] 吳元立,黃秉智,張智勝,楊興玉. 香蕉枯萎病抗性離體接種鑒定方法的優(yōu)化[J]. 園藝學(xué)報(bào),2020,47(8):1577-1584.
WU Yuanli,HUANG Bingzhi,ZHANG Zhisheng,YANG Xingyu. Modification of in vitro bioassay for screening Musa species against Fusarium oxysporum f. sp. cubense[J]. Acta Horticulturae Sinica,2020,47(8):1577-1584.
[133] 徐春香,陳佳越,潘曉,王澤槐,陳厚彬. 利用胚性細(xì)胞懸浮系研究香蕉枯萎病抗性離體篩選技術(shù)[J]. 果樹學(xué)報(bào),2008,25(5):686-690.
XU Chunxiang,CHEN Jiayue,PAN Xiao,WANG Zehuai,CHEN Houbin. Study on in vitro screening technique for mutants resistant to Fusarium wilt through embryogenic cell suspension of banana (Musa spp. AAA group)[J]. Journal of Fruit Science,2008,25(5):686-690.
[134] 劉海瑞. 應(yīng)用病菌毒素篩選香蕉抗枯萎病突變體[D]. 福州:福建農(nóng)林大學(xué),2007.
LIU Hairui. Screening the resistant mutants to banana vascular wilt using the crude toxins of Fusarium oxysporum f. sp. cubense[D]. Fuzhou:Fujian Agriculture and Forestry University,2007.
[135] 張靜,孫秀秀,徐碧玉,金志強(qiáng),劉菊華. 香蕉分子育種研究進(jìn)展[J]. 分子植物育種,2018,16(3):914-923.
ZHANG Jing,SUN Xiuxiu,XU Biyu,JIN Zhiqiang,LIU Juhua. Research advances in molecular breeding of banana[J]. Molecular Plant Breeding,2018,16(3):914-923.
[136] ROCHA A J,SOARES J M D S,NASCIMENTO F D S,SANTOS A S,AMORIM V B O,F(xiàn)ERREIRA C F,HADDAD F,SANTOS-SEREJO J A D,AMORIM E P. Improvements in the resistance of the banana species to Fusarium wilt:A systematic review of methods and perspectives[J]. Journal of Fungi,2021,7(4):249.
[137] LI H C,HU C H,XIE A F,WU S P,BI F C,DONG T,LI C Y,DENG G M,HE W D,GAO H J,SHENG O,YI G J,YANG Q S,DOU T X. Overexpression of MpbHLH transcription factor,an encoding ICE1-like protein,enhances Foc TR4-resistance of Cavendish banana[J]. Scientia Horticulturae,2022,291:110590.
[138] DALE J,JAMES A,PAUL J Y,KHANNA H,SMITH M,PERAZA-ECHEVERRIA S,GARCIA-BASTIDAS F,KEMA G,WATERHOUSE P,MENGERSEN K,HARDING R. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4[J]. Nature Communications,2017,8:1496.
[139] TRIPATHI L,NTUI V O,TRIPATHI J N. Control of bacterial diseases of banana using CRISPR/Cas-based gene editing[J]. International Journal of Molecular Sciences,2022,23(7):3619.
[140] TRIPATHI L,DHUGGA K S,NTUI V O,RUNO S,SYOMBUA E D,MUIRURI S,WEN Z Y,TRIPATHI J N. Genome editing for sustainable agriculture in Africa[J]. Frontiers in Genome Editing,2022,4:876697.
[141] TRIPATHI L,NTUI V O,TRIPATHI J N. CRISPR/Cas9-based genome editing of banana for disease resistance[J]. Current Opinion in Plant Biology,2020,56:118-126.
[142] WANG X Y,YU R B,LI J Y. Using genetic engineering techniques to develop banana cultivars with Fusarium wilt resistance and ideal plant architecture[J]. Frontiers in Plant Science,2021,11:617528.
[143] RAY J D,SUBANDIYAH S,RINCON-FLOREZ V A,PRAKOSO A B,MUDITA I W,CARVALHAIS L C,MARKUS J E R,ODWYER C A,DRENTH A. Geographic expansion of banana blood disease in southeast Asia[J]. Plant Disease,2021,105(10):2792-2800.
[144] 蔣禮珍. 香蕉種植中的幾個(gè)氣象問題及生產(chǎn)對(duì)策[J]. 廣西氣象,1995,16(3):44-45.
JIANG Lizhen. Several meteorological problems and production countermeasures in banana planting[J]. Journal of Guangxi Meteorology,1995,16(3):44-45.
[145] 黃相,鄒瑜,趙明,武鵬,龍芳,何海旺,莫天利,秦獻(xiàn)泉. 多效唑?qū)?個(gè)香蕉品種旱地栽培的矮化效應(yīng)[J]. 中國南方果樹,2022,51(4):63-67.
HUANG Xiang,ZOU Yu,ZHAO Ming,WU Peng,LONG Fang,HE Haiwang,MO Tianli,QIN Xianquan. Dwarfing effect of paclobutrazol (PP333) on three different banana cultivars grown in dryland[J]. South China Fruits,2022,51(4):63-67.
[146] 舒海燕,孫威,王展,銀曼妮,韓謙,周兆禧,戴敏潔,金志強(qiáng),李敬陽,常勝合. 香蕉抗風(fēng)育種的可行性分析[J]. 分子植物育種,2016,14(12):3511-3515.
SHU Haiyan,SUN Wei,WANG Zhan,YIN Manni,HAN Qian,ZHOU Zhaoxi,DAI Minjie,JIN Zhiqiang,LI Jingyang,CHANG Shenghe. The possible analysis for breeding banana varieties with high resistance to typhoon[J]. Molecular Plant Breeding,2016,14(12):3511-3515.
[147] HASHIM N,BIN JANIUS R,BARANYAI L,RAHMAN R A,OSMAN A,ZUDE M. Kinetic model for colour changes in bananas during the appearance of chilling injury symptoms[J]. Food and Bioprocess Technology,2012,5(8):2952-2963.
[148] 王偉英,鄒暉,林江波,戴藝民. 香蕉抗寒技術(shù)研究進(jìn)展[J]. 東南園藝,2018,6(6):61-66.
WANG Weiying,ZOU Hui,LIN Jiangbo,DAI Yimin. Research progress on techniques involved in cold resistance of banana[J]. Southeast Horticulture,2018,6(6):61-66.
[149] 王安邦. 香蕉抗寒種質(zhì)創(chuàng)新、篩選及鑒定[D]. 海口:海南大學(xué),2013.
WANG Anbang. Creating,screening and identification of cold-tolerance germplasm in banana (Musa AAA Cavendish cv. Brazil)[D]. Haikou:Hainan University,2013.
[150] 李衛(wèi)亮,李茂富,賀軍虎,趙小青,馮順,周海蘭,李紹鵬. 香蕉抗寒相關(guān)功能基因研究進(jìn)展[J]. 分子植物育種,2015,13(5):1185-1192.
LI Weiliang,LI Maofu,HE Junhu,ZHAO Xiaoqing,F(xiàn)ENG Shun,ZHOU Hailan,LI Shaopeng. Research progress on banana functional genes involved in cold resistance[J]. Molecular Plant Breeding,2015,13(5):1185-1192.
[151] DOU T X,HU C H,SUN X X,SHAO X H,WU J H,DING L J,GAO J,HE W D,BISWAS M K,YANG Q S,YI G J. MpMYBS3 as a crucial transcription factor of cold signaling confers the cold tolerance of banana[J]. Plant Cell,Tissue and Organ Culture,2016,125(1):93-106.
[152] GAO J,DOU T,HE W D,SHENG O,BI F,DENG G,GAO H J,DONG T,LI C Y,ZHANG S,YI G,HU C H,YANG Q S. MaMAPK3-MaICE1-MaPOD P7 pathway,a positive regulator of cold tolerance in banana[J]. BMC Plant Biology,2021,21(1):97.
[153] RAVI I,UMA S,VAGANAN M M,MUSTAFFA M M. Phenotyping bananas for drought resistance[J]. Frontiers in Physiology,2013,4:9.
[154] EYLAND D,LUCHAIRE N,CABRERA-BOSQUET L,PARENT B,JANSSENS S B,SWENNEN R,WELCKER C,TARDIEU F,CARPENTIER S C. High-throughput phenotyping reveals differential transpiration behaviour within the banana wild relatives highlighting diversity in drought tolerance[J]. Plant,Cell & Environment,2022,45(6):1647-1663.
[155] WEI J Y,LIU D B,LIU Y W,WEI S X. Physiological analysis and transcriptome sequencing reveal the effects of salt stress on banana (Musa acuminata cv. BD) leaf[J]. Frontiers in Plant Science,2022,13:822838.
[156] MIAO H X,SUN P G,LIU J H,WANG J Y,XU B Y,JIN Z Q. Overexpression of a novel ROP gene from the banana (MaROP5g) confers increased salt stress tolerance[J]. International Journal of Molecular Sciences,2018,19(10):3108.
[157] NANSAMBA M,SIBIYA J,TUMUHIMBISE R,KARAMURA D,KUBIRIBA J,KARAMURA E. Breeding banana (Musa spp.) for drought tolerance:A review[J]. Plant Breeding,2020,139(4):685-696.
[158] TRIPATHI L,NTUI V O,TRIPATHI J N. Application of genetic modification and genome editing for developing climate-smart banana[J]. Food and Energy Security,2019,8(4):e00168.
[159] SREEDHARAN S,SHEKHAWAT U K S,GANAPATHI T R. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses[J]. Plant Biotechnology Journal,2013,11(8):942-952.
[160] XU Y,HU W,LIU J H,SONG S,HOU X W,JIA C H,LI J Y,MIAO H X,WANG Z,TIE W W,XU B Y,JIN Z Q. An aquaporin gene MaPIP2-7 is involved in tolerance to drought,cold and salt stresses in transgenic banana (Musa acuminata L.)[J]. Plant Physiology and Biochemistry,2020,147:66-76.
[161] 紀(jì)峰. 香蕉酒生產(chǎn)工藝研究進(jìn)展[J]. 現(xiàn)代食品,2021,27(2):55-57.
JI Feng. Research progress on production technology of banana wine[J]. Modern Food,2021,27(2):55-57.
[162] 傅金鳳,涂師運(yùn),王娟,盛鷗. 美食蕉的降血糖活性及其對(duì)糖脂代謝指標(biāo)、激素的影響[J]. 食品科學(xué),2022,43(19):165-173.
FU Jinfeng,TU Shiyun,WANG Juan,SHENG Ou. Anti-hyperglycemic activity and effects of plantain on glucolipid metabolism indices and hormones[J]. Food Science,2022,43(19):165-173.
[163] PAUL J Y,KHANNA H,KLEIDON J,HOANG P,GEIJSKES J,DANIELLS J,ZAPLIN E,ROSENBERG Y,JAMES A,MLALAZI B,DEO P,ARINAITWE G,NAMANYA P,BECKER D,TINDAMANYIRE J,TUSHEMEREIRWE W,HARDING R,DALE J. Golden bananas in the field:Elevated fruit pro-vitamin A from the expression of a single banana transgene[J]. Plant Biotechnology Journal,2017,15(4):520-532.
[164] YADAV K,PATEL P,SRIVASTAVA A K,GANAPATHI T R. Overexpression of native ferritin gene MusaFer1 enhances iron content and oxidative stress tolerance in transgenic banana plants[J]. PLoS One,2017,12(11):e0188933.
[165] SUNIL KUMAR G B,SRINIVAS L,GANAPATHI T R. Iron fortification of banana by the expression of soybean ferritin[J]. Biological Trace Element Research,2011,142(2):232-241.
[166] CHAN H T,CHIA M Y,PANG V F,JENG C R,DO Y Y,HUANG P L. Oral immunogenicity of porcine reproductive and respiratory syndrome virus antigen expressed in transgenic banana[J]. Plant Biotechnology Journal,2013,11(3):315-324.
[167] ZOU F L,TAN C M,ZHANG B,WU W,SHANG N. The valorization of banana by-products:Nutritional composition,bioactivities,applications,and future development[J]. Foods,2022,11(20):3170.
[168] 胡玲玉,黃秉智,楊興玉,吳元立,許林兵. 香蕉種質(zhì)資源的安全保存與有效利用[J]. 廣東農(nóng)業(yè)科學(xué),2020,47(12):24-31.
HU Lingyu,HUANG Bingzhi,YANG Xingyu,WU Yuanli,XU Linbing. Safe conservation and effective utilization of banana germplasm resources[J]. Guangdong Agricultural Sciences,2020,47(12):24-31.
[169] LI Z Y,WANG J B,F(xiàn)U Y L,JING Y L,HUANG B L,CHEN Y,WANG Q M,WANG X B,MENG C Y,YANG Q,XU L. The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids[J]. BMC Biology,2022,20(1):186.