陳玉鑫 唐明帥 李艷永 魏蕓蕓 曹昌軍
摘要: 天山造山帶是新生代以來(lái)復(fù)活隆升的陸內(nèi)造山帶,強(qiáng)烈的地震活動(dòng)性使得理解和認(rèn)識(shí)天山造山帶深部結(jié)構(gòu)及盆山耦合關(guān)系尤為重要。文章中使用天山造山帶及鄰區(qū)(40°~49°N,79°~93°E)85個(gè)臺(tái)站2017—2019年的背景噪聲資料,結(jié)合背景噪聲互相關(guān)方法獲得了6~52 s瑞利波相速度頻散曲線,利用基于射線追蹤的面波直接反演法對(duì)天山中段地殼三維S波速度結(jié)構(gòu)及盆山耦合關(guān)系進(jìn)行研究。結(jié)果顯示:地殼淺層S波速度分布與構(gòu)造單元中沉積層厚度相關(guān),塔里木盆地北緣、準(zhǔn)噶爾盆地南緣表現(xiàn)為低速,天山造山帶表現(xiàn)為高速;到了中下地殼,天山造山帶下方存在被高速異常包裹的低速體;莫霍面附近,天山造山帶表現(xiàn)出相對(duì)低速;準(zhǔn)噶爾盆地南緣和天山造山帶的地殼厚度分別在45~50 km、50~62 km之間,沿南北向,天山造山帶莫霍面呈現(xiàn)較為寬緩的形態(tài);在82°~86.5°E之間,塔里木盆地和準(zhǔn)噶爾盆地向天山下方雙向俯沖,86.5°~88°E之間,準(zhǔn)噶爾盆地向天山南向俯沖,由西向東,不同盆山耦合關(guān)系揭示了新生代以來(lái)天山中段不同區(qū)域構(gòu)造運(yùn)動(dòng)差異,為進(jìn)一步探討造山動(dòng)力過(guò)程提供參考。
關(guān)鍵詞: 天山造山帶; 背景噪聲; 面波直接反演法; 地殼速度結(jié)構(gòu); 盆山耦合
中圖分類號(hào): P315文獻(xiàn)標(biāo)志碼:A 文章編號(hào): 1000-0844(2023)04-0970-13
DOI:10.20000/j.1000-0844.20220706001
Crustal S-wave velocity structure of the middle TianshanMountains based on the direct inversion method of ambient noise surface wave
CHEN Yuxin1 , TANG Mingshuai LI Yanyong3, WEI Yunyun3, CAO Changjun3
Abstract:? The Tianshan orogenic belt is an intracontinental orogenic belt that has been revived and uplifted since the Cenozoic. Thus, understanding and appreciating the deep structure and basin-mountain coupling relationships in Tianshan orogenic belt are particularly important due to the strong seismic activity. The phase-velocity dispersion curves of the 6-52 s Rayleigh wave were obtained in this paper using the cross-correlation method of ambient noise based on the ambient noise data from 85 stations in the Tianshan orogenic belt and adjacent areas (40°-49°N, 79°-93°E) during 2017-2019. The direct inversion method of surface waves based on ray tracing was employed to investigate the 3D crustal S-wave velocity structure and basin-mountain coupling relationship in the middle Tianshan Mountains. Results show that the S-wave velocity distribution in the shallow crust is related to the thickness of sedimentary layers in the tectonic unit, demonstrating low velocity in the northern margin of Tarim Basin and the southern margin of Junggar Basin and high velocity in the Tianshan orogenic belt. Low-velocity bodies wrapped by high-velocity anomalies below the Tianshan orogenic belt are found in the middle and lower crusts; the Tianshan orogenic belt shows relatively low velocities near the Moho surface. The crustal thicknesses of the southern margin of Junggar Basin and the Tianshan orogenic belt are in the range of 45-50 and 50-62 km, respectively. Between 82°-86.5°E, Tarim and Junggar Basins are subducted bidirectionally below Tianshan Mountains; between 86.5°-88°E, the Junggar Basin is subducted southward to Tianshan Mountains. From west to east, different basin-mountain coupling relationships reveal the difference in tectonic movement in different regions of the middle Tianshan Mountains since the Cenozoic, thus providing a reference for further exploration of orogenic dynamical processes.
Keywords: Tianshan orogenic belt; ambient noise; direct inversion method of the surface wave; crustal velocity structure; basin-mountain coupling
0 引言
天山造山帶是中亞地區(qū)典型的緯向造山帶,橫跨烏茲別克斯坦、吉爾吉斯斯坦和哈薩克斯坦三國(guó),一直延伸至中國(guó)境內(nèi)的新疆地區(qū)。伊犁盆地、巴音布魯克盆地、焉耆盆地和吐哈盆地等山間盆地及一系列海拔超過(guò)4 000 m的高峰組成了中國(guó)境內(nèi)的天山造山帶。天山地區(qū)的構(gòu)造演化經(jīng)歷了超大陸裂解、洋盆開合以及板塊碰撞增生等一系列復(fù)雜過(guò)程[1-3]?,F(xiàn)今的天山造山帶是受晚新生代以來(lái)印度—?dú)W亞板塊碰撞遠(yuǎn)程效應(yīng)影響,復(fù)活隆升的陸內(nèi)造山帶,強(qiáng)烈的板內(nèi)構(gòu)造作用和地震活動(dòng)性使其成為眾多學(xué)者研究關(guān)注的熱點(diǎn)[4-7]。
利用深地震測(cè)深、深地震反射以及寬頻地震觀測(cè)等地學(xué)斷面資料[8-13]或整合區(qū)域內(nèi)地球物理觀測(cè)資料,結(jié)合地震走時(shí)成像[14-17]、背景噪聲成像[18-21]、遠(yuǎn)震接收函數(shù)[22-25]、GPS觀測(cè)及數(shù)值模擬[26-28]、構(gòu)造應(yīng)力場(chǎng)分析[29-30]等方法探究天山造山帶及鄰區(qū)地殼變形、深部結(jié)構(gòu)、盆山耦合關(guān)系,是探究天山新生代隆升機(jī)制的重要方法?;谶@些研究,學(xué)者們提出了塔里木盆地順時(shí)針旋轉(zhuǎn)[31]、帕米爾高原向北推擠[32]、層間插入與俯沖消減[33]、巖石圈碰撞拆沉擠壓[34]、上地幔對(duì)流[35]、M型俯沖[36]等眾多模型,目前達(dá)成共識(shí),印度—?dú)W亞板塊碰撞遠(yuǎn)程效應(yīng)的影響是天山新生代隆升的根本原因,但受制于自然條件、觀測(cè)成本、臺(tái)站分布及資料數(shù)量等客觀因素影響,對(duì)于隆升的直接原因仍存在爭(zhēng)議,特別是缺乏天山地區(qū)高分辨率地殼速度結(jié)構(gòu)圖像,制約了對(duì)天山造山帶盆山耦合關(guān)系及深部動(dòng)力學(xué)過(guò)程的進(jìn)一步分析。
背景噪聲成像是噪聲互相關(guān)方法在地震學(xué)領(lǐng)域的重要應(yīng)用,它通過(guò)對(duì)地震儀記錄的噪聲信號(hào)進(jìn)行互相關(guān)計(jì)算,獲得反映臺(tái)站間地下介質(zhì)信息的格林函數(shù),進(jìn)而提取面波頻散進(jìn)行速度結(jié)構(gòu)反演[37]。該方法不受天然地震分布范圍影響,沒(méi)有布設(shè)深地震測(cè)深、反射剖面所面臨的費(fèi)用昂貴、破壞地層、污染環(huán)境等問(wèn)題,在足夠的臺(tái)站和合理的布設(shè)下,就可得到地下介質(zhì)深部信息,因而廣泛應(yīng)用于地表淺層至上地幔深度,小尺度區(qū)域到全球尺度研究當(dāng)中[38]。郭志等[21]利用中亞地區(qū)50個(gè)臺(tái)站噪聲數(shù)據(jù)對(duì)西南天山相速度分布和S波速度結(jié)構(gòu)進(jìn)行反演,認(rèn)為塔里木盆地和哈薩克地臺(tái)的雙向俯沖以及地幔熱物質(zhì)上涌共同為天山造山帶活化提供了動(dòng)力。唐小勇等[39]利用新疆地區(qū)70個(gè)臺(tái)站記錄數(shù)據(jù)對(duì)全疆10~35 s相速度分布進(jìn)行研究,發(fā)現(xiàn)盆山構(gòu)造與相速度異常有很好的對(duì)應(yīng)性。劉文學(xué)等[40]基于中亞地區(qū)88個(gè)臺(tái)站計(jì)算的接收函數(shù)和瑞利波群速度圖像對(duì)天山造山帶及鄰區(qū)地殼上地幔S波速度模型進(jìn)行反演,分析了東、西天山不同速度分布特征??紫槠G等[41]結(jié)合背景噪聲成像和馬爾科夫鏈蒙特卡洛方法(MCMC)對(duì)中國(guó)境內(nèi)天山下方S波速度結(jié)構(gòu)及盆山接觸關(guān)系進(jìn)行分析,認(rèn)為天山中部(83°~86°E)主要為雙向俯沖,而東西部只存在較弱的單向俯沖。Lü等[18]使用布設(shè)在天山及鄰區(qū)108個(gè)臺(tái)站記錄的噪聲數(shù)據(jù)進(jìn)行全波形反演,對(duì)西天山、中天山以及東天山不同盆山耦合關(guān)系進(jìn)行了研究。
近年來(lái),隨著新疆臺(tái)網(wǎng)的進(jìn)一步建設(shè),相較以往,天山中段固定臺(tái)站分布密度有了很大提升,有利于提高地殼速度結(jié)構(gòu)反演分辨率,為深入了解盆山耦合機(jī)制及造山動(dòng)力學(xué)、進(jìn)行地震精定位等研究提供基礎(chǔ)支撐?;谏渚€追蹤的面波直接反演方法,考慮面波非大圓路徑傳播,追蹤路徑更接近真實(shí)情況,對(duì)獲取天山中段精細(xì)速度結(jié)構(gòu)具有顯著優(yōu)勢(shì)[38]。本研究利用天山中段85個(gè)臺(tái)站噪聲數(shù)據(jù),基于背景噪聲互相關(guān)方法提取瑞利波相速度頻散,利用面波直接反演法獲得了天山中段三維地殼S波速度結(jié)構(gòu),對(duì)天山中段不同塊體地殼速度分布特征及差異、盆山耦合關(guān)系進(jìn)行了分析,為深入理解天山造山動(dòng)力學(xué)和孕震環(huán)境提供參考。
1 數(shù)據(jù)和方法
本研究收集了天山造山帶及鄰區(qū)(40°~49°N,79°~93°E)包括新疆臺(tái)網(wǎng)(含克拉瑪依地方臺(tái)網(wǎng))、哈薩克斯坦臺(tái)網(wǎng)以及中國(guó)地震局地球物理研究所布設(shè)的流動(dòng)觀測(cè)臺(tái)陣總計(jì)85個(gè)臺(tái)站的記錄(圖1,黃色框內(nèi)為本文研究區(qū))。其中,流動(dòng)觀測(cè)臺(tái)站和13個(gè)固定臺(tái)站(新疆地震臺(tái)網(wǎng))觀測(cè)時(shí)間分別為2017年5月—2019年7月和2018年2月—2019年12月,其余臺(tái)站均為2017年1月—2019年12月。數(shù)據(jù)觀測(cè)時(shí)間越長(zhǎng),記錄的噪聲源分布越均勻,提取出的信號(hào)信噪比越高。本研究選用不同時(shí)段的噪聲數(shù)據(jù)計(jì)算互相關(guān),保證每個(gè)臺(tái)站對(duì)至少有一年數(shù)據(jù)記錄的同時(shí),同一時(shí)期參與計(jì)算的臺(tái)站對(duì)數(shù)目盡可能多,保證成像結(jié)果的可靠性。
實(shí)際數(shù)據(jù)處理流程參照Bensen等[42]提出的方法,首先對(duì)單臺(tái)數(shù)據(jù)進(jìn)行預(yù)處理,將所有數(shù)據(jù)轉(zhuǎn)換為SAC格式,切割合并為一天長(zhǎng)度,選取垂直分量數(shù)據(jù)重采樣到1Hz,去均值、去趨勢(shì)、去除儀器響應(yīng)后,濾波到4~10 s、10~20 s、20~30 s、30~40 s、40~50 s、50~60 s六個(gè)頻帶,利用滑動(dòng)絕對(duì)平均法進(jìn)行時(shí)域歸一化壓制非噪聲信號(hào),通過(guò)頻譜白化拓寬背景噪聲的信號(hào)頻帶[43]。其次,利用預(yù)處理后同時(shí)期任意臺(tái)站對(duì)數(shù)據(jù)進(jìn)行互相關(guān)計(jì)算并將每日的互相關(guān)函數(shù)疊加得到最終的互相關(guān)結(jié)果(圖2)。隨著疊加時(shí)間的增長(zhǎng),互相關(guān)函數(shù)信噪比增高,面波信號(hào)增強(qiáng)。受噪聲源分布不均的影響,互相關(guān)函數(shù)的正、負(fù)分支信號(hào)往往不對(duì)稱,實(shí)際處理中需要將正、負(fù)分支信號(hào)反序疊加求取平均,形成對(duì)稱分量以提高互相關(guān)函數(shù)在各個(gè)周期上的信噪比[44]。
互相關(guān)函數(shù)在時(shí)間域的導(dǎo)數(shù)即為臺(tái)站間的經(jīng)驗(yàn)格林函數(shù),受求導(dǎo)的影響,互相關(guān)函數(shù)與經(jīng)驗(yàn)格林函數(shù)之間存在π/2的相移[44]。本研究采用基于圖像分析技術(shù)的面波頻散曲線提取方法[45],通過(guò)Hilbert變換將互相關(guān)函數(shù)轉(zhuǎn)換為經(jīng)驗(yàn)格林函數(shù),提取瑞利波相速度頻散。為減小提取過(guò)程中頻散曲線多分支現(xiàn)象干擾,利用Shen等[46]計(jì)算的中國(guó)地區(qū)S波速度模型和Crust1.0模型[47]計(jì)算了天山中段混合路徑頻散作為參考頻散。同時(shí),對(duì)頻散曲線進(jìn)行嚴(yán)格質(zhì)量控制:(1)提取臺(tái)站間距大于2倍波長(zhǎng),信噪比大于5的相速度頻散曲線(信噪比定義為信號(hào)窗包絡(luò)振幅最大值與噪聲窗包絡(luò)振幅均值之比,信號(hào)速度窗范圍為2~5.2 km/s,噪聲窗為信號(hào)窗后150 s);(2)剔除部分過(guò)短、抖動(dòng)、斜率過(guò)大以及存在離群點(diǎn)(速度值過(guò)大或過(guò)小)的數(shù)據(jù);(3)利用聚類分析[48]剔除路徑近似但頻散數(shù)值差異較大的數(shù)據(jù)。經(jīng)過(guò)質(zhì)量控制,共得到周期6~52 s內(nèi)1 780條頻散曲線(圖3,黑線)。在大部分周期內(nèi)射線數(shù)目較多(圖3中紅線為不同周期頻散數(shù)目),天山中段(圖1黃色框內(nèi))射線覆蓋較好(圖5)。利用經(jīng)驗(yàn)關(guān)系[49]和區(qū)域內(nèi)平均相速度頻散曲線(圖3,黃線,數(shù)值見(jiàn)左側(cè)縱軸)計(jì)算的對(duì)應(yīng)敏感核(圖4)顯示,不同周期的相速度頻散對(duì)不同深度的S波速度結(jié)構(gòu)敏感性不同,6~52 s的頻散對(duì)地下7~60 km內(nèi)速度結(jié)構(gòu)的敏感性較好。
本研究利用Fang等[50]提出的基于射線追蹤的面波直接反演法研究天山中段地殼速度結(jié)構(gòu),初始模型和權(quán)重因子λ的選取對(duì)于反演結(jié)果的可靠性至關(guān)重要。考慮到造山帶和盆地物質(zhì)組成及性質(zhì)方面的差異,構(gòu)建了研究區(qū)三維S波速度初始模型(圖6)。橫向上經(jīng)緯度間隔為0.25°,垂向上共分21層,0~5 km深度采用Han等[51]的模型,5 km之后結(jié)合Shen[46]和Lü等[18]的模型構(gòu)建新模型,并利用5階高斯濾波進(jìn)行平滑[52]。權(quán)重因子λ是衡量模型正則化項(xiàng)與數(shù)據(jù)殘差項(xiàng)的關(guān)鍵反演參數(shù),λ選取過(guò)小,反演結(jié)果會(huì)過(guò)度擬合數(shù)據(jù)引入測(cè)量誤差,選取過(guò)大,反演結(jié)果會(huì)過(guò)度平滑和依賴初始模型[53]。通常采用L曲線確定最佳權(quán)重因子,曲線拐點(diǎn)對(duì)應(yīng)的權(quán)重為最佳權(quán)重,經(jīng)測(cè)試選取λ為25作為權(quán)重因子[圖7(a)]。
反演過(guò)程中共進(jìn)行了10次迭代[圖7(b),右上角為走時(shí)殘差分布],隨著迭代次數(shù)的增加,反演后殘差標(biāo)準(zhǔn)差逐漸減小,從走時(shí)殘差分布來(lái)看,反演后殘差分布相對(duì)集中,呈現(xiàn)正態(tài)分布,表明反演數(shù)據(jù)得到較好地收斂,10次迭代后反演結(jié)果趨于穩(wěn)定,S波速度結(jié)構(gòu)較為可靠。
為檢驗(yàn)成像結(jié)果分辨率,采用與初始模型一致的格網(wǎng)劃分,設(shè)置速度異常體大小為2°×2°,1.5°×1.5°,1°×1°,噪聲水平為1%和0.5%,進(jìn)行棋盤測(cè)試。圖8為20 km和40 km深度棋盤測(cè)試結(jié)果,現(xiàn)有射線分布下,2°×2°,1.5°×1.5°的速度異常體能夠得到較好恢復(fù),且噪聲水平越小越容易恢復(fù),隨著不同周期頻散數(shù)目減少,恢復(fù)結(jié)果變差;在北天山及準(zhǔn)噶爾盆地南緣附近由于較高的射線密度,1°×1°的速度異常體也能夠得到較好恢復(fù),但在塔里木盆地北緣等射線密度較低的地方,恢復(fù)效果非常有限,到了40 km深度,棋盤測(cè)試恢復(fù)效果已變差??偟膩?lái)說(shuō),1.5°×1.5°以上大小的速度異常反演結(jié)果是較為可信的,北天山和準(zhǔn)噶爾盆地南緣分辨率可達(dá)1°。
2 反演結(jié)果及討論
圖9為反演得到的不同深度S波速度結(jié)構(gòu)。7 km深度,速度分布與盆山構(gòu)造單元中沉積分布相關(guān)。準(zhǔn)噶爾盆地南緣、塔里木盆地北緣、吐哈盆地、伊犁盆地以及焉耆盆地等都表現(xiàn)出明顯的低速特征,天山造山帶總體呈現(xiàn)出較高的速度分布,且內(nèi)部高于南北緣。研究表明,南北天山山前為巨厚的沉積坳陷帶,準(zhǔn)噶爾盆地南緣、吐哈盆地分別存在8~13 km和7 km左右的沉積層,天山造山帶基底埋深0~2 km,中天山地表廣泛出露古生代變質(zhì)巖層[33,54-55]。速度分布與這些沉積分布特征相一致,高速分布對(duì)應(yīng)沉積較薄的造山帶,低速分布則與盆地中巨厚的松散沉積物有關(guān)。
與7 km深度比較,20 km深度準(zhǔn)噶爾盆地南緣、吐哈盆地速度出現(xiàn)明顯提升,天山造山帶速度更加均一,天山南緣存在部分低速體,與Bao等[56]、Han等[51]的結(jié)果比較一致。
35 km深度對(duì)應(yīng)中下地殼,天山南北緣表現(xiàn)為低速,其內(nèi)部存在被高速體包裹的低速異常,集中在84°~88°E。這些低速異常可能是俯沖下插到天山中下地殼的塔里木盆地、準(zhǔn)噶爾盆地中上地殼成分,其所含的一些巖類在相對(duì)較高的溫壓條件下發(fā)生巖石弱化而強(qiáng)度降低,形成地殼中具有低波速、低電阻特性的軟弱帶[57-58]。相較于天山造山帶,準(zhǔn)噶爾盆地南緣速度偏高。博格達(dá)峰—吐哈盆地一帶形成了一條高速帶,與Q值偏高的中地殼局部抬升區(qū)一致[60],該高速帶自7 km深度一直延伸到40 km深度,高速塊體表現(xiàn)剛性,在南北向應(yīng)力擠壓下容易斷錯(cuò),引起博格達(dá)峰與北天山“錯(cuò)斷”[15]。
40 km深度,盆山構(gòu)造表現(xiàn)出明顯的高低速分界,天山中東部地區(qū)表現(xiàn)為相對(duì)低速,而艾比湖斷陷盆地、準(zhǔn)噶爾盆地南緣顯現(xiàn)出相對(duì)高速。
50 km深度被認(rèn)為是區(qū)域平均莫霍面,接收函數(shù)結(jié)果[22]表明塔里木盆地北緣、準(zhǔn)噶爾盆地南緣、天山造山帶平均地殼厚度分別為45 km、48 km、57 km。準(zhǔn)噶爾盆地南緣、塔里木盆地北緣大部分區(qū)域在此深度已進(jìn)入上地幔,顯現(xiàn)出高速,天山表現(xiàn)為相對(duì)低速,大部分區(qū)域仍位于下地殼。不同于天山中東部,伊犁盆地附近速度分布明顯偏高,暗示該處Moho面深度較淺,與Stolk等[54]的結(jié)果一致。在86°~87°E之間,準(zhǔn)噶爾盆地南緣、天山造山帶存在低速異常帶,一直延伸到60 km,相較于劉文學(xué)等[40]在84°~88°E之間發(fā)現(xiàn)的穿過(guò)準(zhǔn)噶爾盆地、天山和塔里木盆地近SN向的低速帶,該低速帶范圍更小。
60 km深度,塔里木盆地北緣表現(xiàn)為高速,天山造山帶、準(zhǔn)噶爾盆地南緣呈現(xiàn)出明顯的橫向不均勻性,高低速相間分布。天山西部進(jìn)入上地幔的地區(qū)表現(xiàn)為相對(duì)高速,西南端、東部部分區(qū)域仍處于下地殼,表現(xiàn)為低速異常,這些低速異??赡芘c上地幔熱物質(zhì)上涌使得殼幔邊界溫度抬升,部分巖石“軟化”有關(guān)[15,35,59]。
為更好地探討天山造山帶及兩側(cè)盆地的深部殼幔結(jié)構(gòu)、盆山耦合關(guān)系繪制了8條S波速度垂直剖面(圖10)??梢钥闯?,天山中段存在明顯的橫向分塊、縱向分層的結(jié)構(gòu)特征。天山造山帶淺層地殼S波速度大于兩邊的塔里木盆地北緣與準(zhǔn)噶爾盆地南緣,天山中部高于天山南北。地質(zhì)研究表明,現(xiàn)今的天山褶皺是塔里木陸塊、準(zhǔn)噶爾陸塊與伊犁—中天山陸塊碰撞縫合的產(chǎn)物,其兩側(cè)的塔里木盆地、準(zhǔn)噶爾盆地中形成了巨厚的新近紀(jì)—第四紀(jì)沉積[7],強(qiáng)烈的構(gòu)造運(yùn)動(dòng)使得不同構(gòu)造單元之間礦物組分及分布存在差異,造就了不同的速度分布特征。N3-S3、N4-S4剖面中,準(zhǔn)噶爾盆地下方低速分布代表其南緣巨厚的沉積層,W3-E3剖面86~88°E之間的低速分布也可能與北側(cè)的準(zhǔn)噶爾盆地南緣沉積分布相關(guān)。
剖面N4-S4北天山下方上地殼中存在明顯的高速異常體,其速度值與30~40 km深度的準(zhǔn)噶爾盆地相同。北天山曾為準(zhǔn)噶爾板塊的一部分,受到新生代以來(lái)印度—?dú)W亞板塊碰撞遠(yuǎn)程效應(yīng)影響,天山造山帶在快速隆升的過(guò)程中將原本更深的巖層抬升到了上地殼,形成了該高速體[61]。到了中下地殼,部分區(qū)域同等深度盆地速度值大于天山山脈,表明在該深度天山造山帶可能仍處于下地殼而盆地已開始進(jìn)入上地幔。在剖面W1-E1、W2-E2下方存在許多低速體,這些低速體可能是構(gòu)造活動(dòng)帶到中下地殼的盆地淺部物質(zhì)[58]。
綜合前人成果[23,63],以4.2 km/s為莫霍面速度,準(zhǔn)噶爾盆地南緣地殼厚度在45~50 km之間,天山大部分地殼厚度在50~62 km之間,與接收函數(shù)和其他一些研究成果一致[22,64]。在南北向剖面中,天山下方莫霍面明顯下凹,呈現(xiàn)出傾角較小,較為寬緩的形態(tài)。寬緩的殼-幔過(guò)渡帶是構(gòu)造活動(dòng)強(qiáng)烈的區(qū)域,莫霍面和上地幔頂部附近存在以高密度礦物組分下沉和低密度礦物組分上升為形式的物質(zhì)交換,由此產(chǎn)生的上地幔形變?cè)谔焐降貧さ牡撞扛郊討?yīng)力作用,使得該區(qū)域構(gòu)造不穩(wěn)定[65]。
橫跨天山南北的速度剖面揭示出天山中段不同區(qū)域的盆山耦合關(guān)系,由西向東,盆山耦合關(guān)系逐漸由塔里木盆地、準(zhǔn)噶爾盆地雙向俯沖轉(zhuǎn)換為準(zhǔn)噶爾盆地單向俯沖。N1-S1、N2-S2、N3-S3剖面下方天山南北緣均存在向下俯沖的低速分布,表明在此區(qū)域存在塔里木盆地和準(zhǔn)噶爾盆地向天山下方雙向俯沖。N4-S4剖面中,準(zhǔn)噶爾盆地低速分布向南下插,代表其向南俯沖到天山造山帶下方。N5-S5剖面下方,低速俯沖不明顯,可能暗示剖面附近俯沖作用相對(duì)較弱。這些剖面結(jié)果與趙俊猛等[60,62]、郭飚等[11]、孔祥艷等[61]的研究結(jié)果類似。
3 結(jié)論
本研究搜集了布設(shè)在天山造山帶及鄰區(qū)(40°~49°N,79°~93°E)85個(gè)臺(tái)站2017—2019年記錄的連續(xù)背景噪聲資料,利用噪聲互相關(guān)方法提取了周期為6~52 s的瑞利波相速度頻散曲線并基于面波直接反演法對(duì)天山中段地殼三維S波速度結(jié)構(gòu)進(jìn)行研究,探討分析了不同構(gòu)造單元不同深度速度分布及結(jié)構(gòu)特征,不同區(qū)域天山造山帶及兩側(cè)盆地的盆山耦合關(guān)系,獲得的主要認(rèn)識(shí)如下:
(1) 地殼淺層S波速度結(jié)構(gòu)與不同構(gòu)造單元沉積層分布有很高的一致性,天山造山帶表現(xiàn)為高速,塔里木盆地北緣、準(zhǔn)噶爾盆地南緣表現(xiàn)為低速。
(2) 到了中下地殼,盆山速度結(jié)構(gòu)表現(xiàn)出相反特征,天山造山帶下方不同深度存在被高速異常包裹的低速體,這些低速體可能是構(gòu)造活動(dòng)帶到中下地殼的盆地淺部物質(zhì)。
(3) 莫霍面附近,天山造山帶顯現(xiàn)出相對(duì)較低的速度,意味著其具有較低的力學(xué)強(qiáng)度,作為相對(duì)“較軟”的塊體在兩邊“剛性”塊體的擠壓下容易發(fā)生變形、隆升。
(4) 準(zhǔn)噶爾盆地南緣及天山的地殼厚度分別在45~50 km、50~62 km之間,沿南北向,天山下方莫霍面表現(xiàn)出傾角較小,較為寬緩的形態(tài),其附近存在著地幔物質(zhì)交換,是構(gòu)造不穩(wěn)定的區(qū)域。
(5) 在82°~86.5°E之間,塔里木盆地和準(zhǔn)噶爾盆地向天山下方雙向俯沖,在86.5°~88°E之間,準(zhǔn)噶爾盆地向天山南向俯沖,由西向東,不同盆山耦合關(guān)系揭示了新生代以來(lái)天山中段不同區(qū)域構(gòu)造運(yùn)動(dòng)差異。
致謝:感謝新疆地震臺(tái)網(wǎng)、克拉瑪依地方臺(tái)網(wǎng)、IRIS(http://ds.iris.edu/)、中國(guó)地震局地球物理研究所吳建平研究員提供波形資料;感謝中國(guó)科學(xué)技術(shù)大學(xué)姚華建教授、張智奇博士提供的相關(guān)背景噪聲成像程序和使用指導(dǎo);感謝呂子強(qiáng)教授提供新疆地區(qū)三維速度模型;感謝全國(guó)地理信息資源目錄服務(wù)系統(tǒng)(www.webmap.cn)提供國(guó)境線數(shù)據(jù)。
參考文獻(xiàn)(References)
[1]李錦軼,王克卓,李亞萍,等.天山山脈地貌特征、地殼組成與地質(zhì)演化[J].地質(zhì)通報(bào),2006,25(8):895-909.
LI Jinyi,WANG Kezhuo,LI Yaping,et al.Geomorphological features,crustal composition and geological evolution of the Tianshan Mountains[J].Geological Bulletin of China,2006,25(8):895-909.
[2]劉玉虎,劉興旺,楊鑫,等.天山及其鄰區(qū)板塊構(gòu)造演化與巖石層動(dòng)力學(xué)問(wèn)題探討[J].大地測(cè)量與地球動(dòng)力學(xué),2012,32(1):31-37.
LIU Yuhu,LIU Xingwang,YANG Xin,et al.Discussion of some problems of plate tectonics evolution and mantle dynamics of Tianshan and its adjacent area[J].Journal of Geodesy and Geodynamics,2012,32(1):31-37.
[3]劉玉虎,劉興旺,鄭建京,等.天山南北地塊構(gòu)造演化與地幔對(duì)流耦合動(dòng)力機(jī)制[J].地球物理學(xué)進(jìn)展,2011,26(5):1544-1556.
LIU Yuhu,LIU Xingwang,ZHENG Jianjing,et al.Coupling dynamic mechanisms between plate tectonics evolution and mantle convection of south and north Tianshan[J].Progress in Geophysics,2011,26(5):1544-1556.
[4]MOLNAR P,TAPPONNIER P.Cenozoic tectonics of Asia:effects of a continental collision:features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J].Science,1975,189(4201):419-426.
[5]TAPPONNIER P,MOLNAR P.Active faulting and Cenozoic tectonics of the Tien Shan,Mongolia,and Baykal regions[J].Journal of Geophysical Research:Solid Earth,1979,84(B7):3425-3459.
[6]YIN A,NIE S,CRAIG P,et al.Late Cenozoic tectonic evolution of the southern Chinese Tian Shan[J].Tectonics,1998,17(1):1-27.
[7]舒良樹,郭召杰,朱文斌,等.天山地區(qū)碰撞后構(gòu)造與盆山演化[J].高校地質(zhì)學(xué)報(bào),2004,10(3):393-404.
SHU Liangshu,GUO Zhaojie,ZHU Wenbin,et al.Post-collision tectonism and basin-range evolution in the Tianshan belt[J].Geological Journal of China Universities,2004,10(3):393-404.
[8]POUPINET G,AVOUAC J P,JIANG M,et al.Intracontinental subduction and Palaeozoic inheritance of the lithosphere suggested by a teleseismic experiment across the Chinese Tien Shan[J].Terra Nova,2002,14(1):18-24.
[9]高銳,管燁,賀日政,等.新疆地學(xué)斷面(獨(dú)山子—泉水溝)走廊域及鄰區(qū)地球物理調(diào)查綜合研究[J].地球?qū)W報(bào),2001,22(6):527-533.
GAO Rui,GUAN Ye,HE Rizheng,et al.The integrated geophysical observation and research along the Xinjiang (XUAR) geotransect and its surrounding areas[J].Acta Geoscientia Sinica,2001,22(6):527-533.
[10]李秋生,盧德源,高銳,等.新疆地學(xué)斷面(泉水溝—獨(dú)山子)深地震測(cè)深成果綜合研究[J].地球?qū)W報(bào),2001,22(6):534-540.
LI Qiusheng,LU Deyuan,GAO Rui,et al.An integrated study of deep seismic sounding profiling along Xinjiang global geosciences transect (Quanshuigou—Dushanzi)[J].Acta Geosicientia Sinica,2001,22(6):534-540.
[11]郭飚,劉啟元,陳九輝,等.中國(guó)境內(nèi)天山地殼上地幔結(jié)構(gòu)的地震層析成像[J].地球物理學(xué)報(bào),2006,49(6):1693-1700.
GUO Biao,LIU Qiyuan,CHEN Jiuhui,et al.Seismic tomography of the crust and upper mantle structure underneath the Chinese Tianshan[J].Chinese Journal of Geophysics,2006,49(6):1693-1700.
[12]李海鷗,姜枚,王亞軍,等.新疆富蘊(yùn)—庫(kù)爾勒剖面接收函數(shù)方法獲得的地殼上地幔結(jié)構(gòu)成像[J].地質(zhì)學(xué)報(bào),2006,80(1):135-141.
LI Haiou,JIANG Mei,WANG Yajun,et al.Image of crust and upper mantle structure along the array from Fuyun to Kuerle by P-to-S converted waves[J].Acta Geologica Sinica,2006,80(1):135-141.
[13]李昱,劉啟元,陳九輝,等.天山地殼上地幔的S波速度結(jié)構(gòu)[J].中國(guó)科學(xué)(D輯),2007,37(3):344-352.
LI Yu,LIU Qiyuan,CHEN Jiuhui,et al.S-wave velocity structure of crust and upper mantle in Tianshan Mountains[J].Science in China (Series D),2007,37(3):344-352.
[14]LEI J S.Seismic tomographic imaging of the crust and upper mantle under the central and western Tien Shan orogenic belt[J].Journal of Geophysical Research,2011,116(B9):B09305.
[15]羅炬,李志海,王海濤.天山中東段地震層析成像的初步研究[J].地震工程學(xué)報(bào),2014,36(1):107-113,169.
LUO Ju,LI Zhihai,WANG Haitao.A preliminary study on seismic tomography in mid-eastern segment of Tianshan Mountain[J].China Earthquake Engineering Journal,2014,36(1):107-113,169.
[16]HE C S,SANTOSH M.Role of mantle dynamics in rebuilding the Tianshan orogenic belt in NW China:a seismic tomographic investigation[J].Journal of Geodynamics,2018,116:37-46.
[17]張志斌,梁曉峰,周貝貝,等.北天山中段地殼三維速度結(jié)構(gòu)與地震重定位[J].地震地質(zhì),2021,43(5):1292-1310.
ZHANG Zhibin,LIANG Xiaofeng,ZHOU Beibei,et al.Three-dimensional seismic velocity structure of the middle part of North Tianshan Mountains,Xinjiang based on seismic relocation and local seismic tomography[J].Seismology and Geology,2021,43(5):1292-1310.
[18]L Z Q,GAO H Y,LEI J S,et al.Crustal and upper mantle structure of the Tien Shan orogenic belt from full-wave ambient noise tomography[J].Journal of Geophysical Research:Solid Earth,2019,124(4):3987-4000.
[19]L Z Q,LEI J S.Shear-wave velocity structure beneath the central Tien Shan (NW China) from seismic ambient noise tomography[J].Journal of Asian Earth Sciences,2018,163:80-89.
[20]呂子強(qiáng),趙俐紅,李鉑,等.天山造山帶地區(qū)瑞利面波相速度與方位各向異性[J].地球物理學(xué)報(bào),2019,62(9):3354-3364.
L Ziqiang,ZHAO Lihong,LI Bo,et al.Rayleigh wave phase velocity and azimuthal anisotropy of Tien Shan orogenic belt from ambient noise tomography[J].Chinese Journal of Geophysics,2019,62(9):3354-3364.
[21]郭志,高星,王衛(wèi)民,等.采用地震背景噪音成像技術(shù)反演天山及周邊區(qū)域地殼剪切波速度結(jié)構(gòu)[J].科學(xué)通報(bào),2010,55(26):2627-2634.
GUO Zhi,GAO Xing,WANG Weimin,et al.Inversion of crustal shear wave velocity structure in Tianshan and its surrounding areas by seismic background noise imaging technology[J].Chinese Science Bulletin,2010,55(26):2627-2634.
[22]CAI Y,WU J P,WANG W L.Crustal thickness and Poisson's ratio in Tianshan region from receiver functions[J].Pure and Applied Geophysics,2021,178(9):3529-3542.
[23]孔祥艷,吳建平,房立華,等.利用面波頻散和接收函數(shù)聯(lián)合反演中國(guó)境內(nèi)天山及鄰區(qū)的地殼上地幔速度結(jié)構(gòu)[J].地震地質(zhì),2020,42(4):844-865.
KONG Xiangyan,WU Jianping,F(xiàn)ANG Lihua,et al.Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure beneath Chinese Tienshan and its adjacent areas[J].Seismology and Geology,2020,42(4):844-865.
[24]唐明帥,王海濤,魏蕓蕓,等.2012年新源—和靜MS6.6地震前后 地殼介質(zhì)泊松比變化[J].地震地質(zhì),2019,41(5):1123-1135.
TANG Mingshuai,WANG Haitao,WEI Yunyun,et al.Poisson's ratio variations of crustal media before and after Xinyuan—Hejing MS6.6 earthquake in 2012[J].Seismology and Geology,2019,41(5):1123-1135.
[25]蔡妍,吳建平,明躍紅,等.新疆天山地區(qū)殼幔S波速度結(jié)構(gòu)特征及變形分析[J].地球物理學(xué)報(bào),2019,62(11):4214-4226.
CAI Yan,WU Jianping,MING Yuehong,et al.Crust-mantle S wave velocity structures beneath Tianshan area and its deformation analysis[J].Chinese Journal of Geophysics,2019,62(11):4214-4226.
[26]NEIL E A,HOUSEMAN G A.Geodynamics of the Tarim Basin and the Tian Shan in central Asia[J].Tectonics,1997,16(4):571-584.
[27]雷顯權(quán),陳運(yùn)平,趙炯洋.天山現(xiàn)今地殼變形的非連續(xù)接觸模型模擬[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,42(9):2754-2762.
LEI Xianquan,CHEN Yunping,ZHAO Jiongyang.Discontinuous contact model to simulate current crustal deformation in Tianshan Mountain[J].Journal of Central South University,2011,42(9):2754-2762.
[28]王偉,楊少敏,譚凱,等.利用GPS資料分析天山現(xiàn)今地殼縮短速率[J].大地測(cè)量與地球動(dòng)力學(xué),2014,34(5):59-63.
WANG Wei,YANG Shaomin,TAN Kai,et al.Present crustal shortening rate of Tianshan Mountain with GPS data[J].Journal of Geodesy and Geodynamics,2014,34(5):59-63.
[29]高國(guó)英,聶曉紅,龍海英.2003—2008年新疆區(qū)域構(gòu)造應(yīng)力場(chǎng)特征探討[J].地震地質(zhì),2010,32(1):70-79.
GAO Guoying,NIE Xiaohong,LONG Haiying.Discussion on the characteristics of regional tectonic stress field of Xinjiang from 2003 to 2008[J].Seismology and Geology,2010,32(1):70-79.
[30]劉方斌,古麗孜娜提·依德熱斯,曲均浩.新疆地區(qū)區(qū)域應(yīng)力場(chǎng)特征及強(qiáng)震間庫(kù)侖應(yīng)力變化探討[J].地震工程學(xué)報(bào),2021,43(5):1024-1036.
LIU Fangbin,Gulizinati Yideresi,QU Junhao.Characteristics of regional stress field and static Coulomb stress changes among strong earthquakes in Xinjiang area[J].China Earthquake Engineering Journal,2021,43(5):1024-1036.
[31]CHEN Y,COGNE J P,COURTILLOT V,et al.Paleomagnetic study of Mesozoic continental sediments along the northern Tien Shan (China) and heterogeneous strain in central Asia[J].Journal of Geophysical Research:Solid Earth,1991,96(B3):4065-4082.
[32]ZHANG P Z,DENG Q D,YANG X P J E R I C.Late Cenozoic tectonic deformation and mechanism along the Tianshan Mountain,Northwestern China[J].Earthquake Research In China,1996(2):23-26.
[33]ZHAO J M,LIU G D,LU Z X,et al.Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar Basin[J].Tectonophysics,2003,376(3-4):199-239.
[34]盧華復(fù),王勝利,賈東,等.塔里木盆地與天山山脈晚新生代盆山耦合機(jī)制[J].高校地質(zhì)學(xué)報(bào),2005,11(4):493-503.
LU Huafu,WANG Shengli,JIA Dong,et al.The Late Cenozoic basin/mountain coupling mechanics of the Tarim Basin and the Tianshan Mountains[J].Geological Journal of China Universities,2005,11(4):493-503.
[35]LIU J,LIU Q Y,GUO B,et al.Small-scale convection in the upper mantle beneath the Chinese Tian Shan Mountains[J].Physics of the Earth and Planetary Interiors,2007,163(1-4):179-190.
[36]LI J Y,ZHANG J,ZHAO X X,et al.Mantle subduction and uplift of intracontinental mountains:a case study from the Chinese Tianshan Mountains within Eurasia[J].Scientific Reports,2016,6:28831.
[37]徐義賢,羅銀河.噪聲地震學(xué)方法及其應(yīng)用[J].地球物理學(xué)報(bào),2015,58(8):2618-2636.
XU Yixian,LUO Yinhe.Methods of ambient noise-based seismology and their applications[J].Chinese Journal of Geophysics,2015,58(8):2618-2636.
[38]陳玉鑫,唐明帥.地震背景噪聲互相關(guān)方法應(yīng)用研究綜述[J].地震研究,2021,44(4):594-606.
CHEN Yuxin,TANG Mingshuai.Review of the application of seismic ambient noise cross-correlation method[J].Journal of Seismological Research,2021,44(4):594-606.
[39]唐小勇,范文淵,馮永革,等.新疆地區(qū)環(huán)境噪聲層析成像研究[J].地球物理學(xué)報(bào),2011,54(8):2042-2049.
TANG Xiaoyong,F(xiàn)AN Wenyuan,F(xiàn)ENG Yongge,et al.Phase velocity tomography of Rayleigh wave in Xinjiang from ambient noise[J].Chinese Journal of Geophysics,2011,54(8):2042-2049.
[40]劉文學(xué),劉貴忠,周剛,等.天山及其鄰區(qū)地殼上地幔S波速度結(jié)構(gòu)的接收函數(shù)與面波頻散聯(lián)合反演[J].地震學(xué)報(bào),2014,36(1):20-31,158.
LIU Wenxue,LIU Guizhong,ZHOU Gang,et al.Joint inversion of receiver function and surface wave dispersion for crust and upper mantle S-wave velocity structure beneath Tianshan and its adjacent regions[J].Acta Seismologica Sinica,2014,36(1):20-31,158.
[41]孔祥艷,吳建平,劉靖.利用背景噪聲層析成像方法反演新疆天山及鄰區(qū)S波速度結(jié)構(gòu)[J].中國(guó)地震,2021,37(1):43-58.
KONG Xiangyan,WU Jianping,LIU Jing.S-wave velocity structure inversed by ambient noise tomography in Xinjiang Tian Shan and its surrounding areas[J].Earthquake Research in China,2021,37(1):43-58.
[42]BENSEN G D,RITZWOLLER M H,BARMIN M P,et al.Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J].Geophysical Journal International,2007,169(3):1239-1260.
[43]房立華.華北地區(qū)瑞利面波噪聲層析成像研究[D].北京:中國(guó)地震局地球物理研究所,2009.
FANG Lihua.Study on Rayleigh surface wave noise tomography in North China[D].Beijing:Institute of Geophysics China Earthquake Administation,2009.
[44]LIN F C,MOSCHETTI M P,RITZWOLLER M H.Surface wave tomography of the western United States from ambient seismic noise:Rayleigh and Love wave phase velocity maps[J].Geophysical Journal International,2008,173(1):281-298.
[45]YAO H J,VAN DER HILST R D,DE HOOP M V.Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis -I.Phase velocity maps[J].Geophysical Journal International,2006,166(2):732-744.
[46]SHEN W S,RITZWOLLER M H,KANG D,et al.A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J].Geophysical Journal International,2016,206(2):954-979.
[47]LASKE G,MASTERS G,MA Z,et al.Update on CRUST1.0-A 1-degree global model of Earth''s crust[C]// EGU General Assembly Conference Abstracts.EGUGA,2013.
[48]ZHANG Y Y,YAO H J,YANG H Y,et al.3-D crustal shear-wave velocity structure of the Taiwan Strait and Fujian,SE China,revealed by ambient noise tomography[J].Journal of Geophysical Research-Solid Earth.2018,123,(9):8016-8031.
[49]BROCHER T M.Empirical relations between elastic wavespeeds and density in the earths crust[J].Bulletin of the Seismological Society of America,2005,95(6):2081-2092.
[50]FANG H J,YAO H J,ZHANG H J,et al.Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing:methodology and application[J].Geophysical Journal International,2015,201(3):1251-1263.
[51]HAN S C,ZHANG H J,XIN H L,et al.USTClitho2.0:updated unified seismic tomography models for continental China lithosphere from joint inversion of body-wave arrival times and surface-wave dispersion data[J].Seismological Research Letters,2022,93(1):201-215.
[52]ZHANG Z Q,YAO H J,WANG W T,et al.3-D crustal azimuthal anisotropy reveals multi-stage deformation processes of the Sichuan Basin and its adjacent area,SW China[J].Journal of Geophysical Research:Solid Earth,2022,127(1):e2021JB023289.
[53]李玲利,黃顯良,姚華建,等.合肥市地殼淺部三維速度結(jié)構(gòu)及城市沉積環(huán)境初探[J].地球物理學(xué)報(bào),2020,63(9):3307-3323.
LI Lingli,HUANG Xianliang,YAO Huajian,et al.Shallow shear wave velocity structure from ambient noise tomography in Hefei City and its implication for urban sedimentary envoiroment[J].Chinese Journal of Geophysics,2020,63(9):3307-3323.
[54]STOLK W,KABAN M,BEEKMAN F,et al.High resolution regional crustal models from irregularly distributed data:application to Asia and adjacent areas[J].Tectonophysics,2013,602:55-68.
[55]盧德源,李秋生,高銳,等.橫跨天山的人工爆炸地震剖面[J].科學(xué)通報(bào),2000,45(9):982-988.
LU Deyuan,LI Qiusheng,GAO Rui,et al.Artificial explosion seismic profile across Tianshan Mountain[J].Chinese Science Bulletin,2000,45(9):982-988.
[56]BAO X,SONG X,LI J.High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J].Earth and Planetary Science Letters,2015,417:132-141.
[57]趙俊猛,劉國(guó)棟,盧造勛,等.天山造山帶與準(zhǔn)噶爾盆地殼幔過(guò)渡帶及其動(dòng)力學(xué)含義[J].中國(guó)科學(xué)(D輯:地球科學(xué)),2001,31(4):272-282.
ZHAO Junmeng,LIU Guodong,LU Zaoxun,et al.The crust-mantle transition zone between Tianshan orogenic belt and Junggar Basin and its dynamic significance[J].Scientia Sinica (Terrae),2001,31(4):272-282.
[58]姜枚,李海鷗,王亞軍,等.青藏高原隆升對(duì)新疆天山山脈地殼-上地幔構(gòu)造的影響[J].地學(xué)前緣,2006,13(5):401-407.
JIANG Mei,LI Haiou,WANG Yajun,et al.The effect of Qinghai—Tibet Plateau uplift on the structure of crust and upper mantle beneath the Tianshan Mountains in Xinjiang[J].Earth Science Frontiers,2006,13(5):401-407.
[59]張冰,周銘,李紅誼.塔里木盆地及鄰區(qū)地殼上地幔S波速度結(jié)構(gòu)研究[J].地質(zhì)論評(píng),2015,61(增刊1):770-771.
ZHANG Bing,ZHOU Ming,LI Hongyi.Study on S-wave velocity structure of crust and upper mantle in Tarim Basin and its adjacent areas[J].Geological Review,2015,61(Suppl01):770-771.
[60]趙俊猛,李植純,馬宗晉.天山分段性的地球物理學(xué)分析[J].地學(xué)前緣,2003,10(增刊1):125-131.
ZHAO Junmeng,LI Zhichun,MA Zongjin.Geophysical evidence for segmentation of the Tianshan[J].Earth Science Frontiers,2003,10(Suppl01):125-131.
[61]孔祥艷.天山地區(qū)地殼上地幔速度結(jié)構(gòu)研究[D].北京:中國(guó)地震局地球物理研究所,2019.
KONG Xiangyan.Study on velocity structure of crust and upper mantle in Tianshan area[D].Beijing:Institute of Geophysics,China Earthquake Administation,2019.
[62]趙俊猛,張培震,張先康,等.中國(guó)西部殼幔結(jié)構(gòu)與動(dòng)力學(xué)過(guò)程及其對(duì)資源環(huán)境的制約:“羚羊計(jì)劃”研究進(jìn)展[J].地學(xué)前緣,2021,28(5):230-259.
ZHAO Junmeng,ZHANG Peizhen,ZHANG Xiankang,et al.Crust-mantle structure and geodynamic processes in western China and their constraints on resources and environment:Research progress of the ANTILOPE Project[J].Earth Science Frontiers,2021,28(5):230-259.
[63]呂子強(qiáng).天山造山帶地殼上地幔速度結(jié)構(gòu)研究[D].北京:中國(guó)地震局地球物理研究所,2019.
L Ziqiang.Study on velocity structure of crust and upper mantle in Tianshan orogenic belt[D].Beijing:Institute of Geophysics China Earthquake Administation,2019.
[64]ZHAO J M,DENG G,XU Q,et al.Basement structure and properties of the southern Junggar Basin[J].Journal of Geodynamics,2018,121:26-35.
[65]胥頤,劉福田,劉建華,等.天山地震帶的地殼結(jié)構(gòu)與強(qiáng)震構(gòu)造環(huán)境[J].地球物理學(xué)報(bào),2000,43(2):184-193.
XU Yi,LIU Futian,LIU Jianhua,et al.Crustal structure and tectonic environment of strong earthquakes in the Tianshan earthquake belt[J].Chinese Journal of Geophysics,2000,43(2):184-193.(本文編輯:賈源源)
收稿日期:2022-07-06
基金項(xiàng)目:新疆維吾爾自治區(qū)重點(diǎn)研發(fā)項(xiàng)目(2022B03001-1);國(guó)家自然科學(xué)基金項(xiàng)目(41674063);新疆維吾爾自治區(qū)自然科學(xué)基金(2016D01A061,2021D01A131);新疆呼圖壁人工主動(dòng)震源實(shí)驗(yàn)創(chuàng)新團(tuán)隊(duì)(XJDZCXTD2020-3);國(guó)家重點(diǎn)研發(fā)計(jì)劃“變革性技術(shù)關(guān)鍵科學(xué)問(wèn)題”專題項(xiàng)目(2019YFA0708601-02)
第一作者簡(jiǎn)介:陳玉鑫(1995-),男,助理工程師,主要從事噪聲成像研究。E-mail:yuxin_chen1@163.com。
通信作者:唐明帥(1976-),女,正高級(jí)工程師,主要從事地震分析和地震學(xué)研究。E-mail:tmings65@sina.cn。