王鵬,劉子嶷,劉玉芳,儲(chǔ)明星
miR-535靶向GAB2基因通過(guò)激活PI3K/AKT信號(hào)通路促進(jìn)山羊顆粒細(xì)胞增殖
王鵬,劉子嶷,劉玉芳,儲(chǔ)明星
中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所/畜禽生物育種全國(guó)重點(diǎn)實(shí)驗(yàn)室,北京 100193
【背景】MicroRNA(miRNA)是長(zhǎng)度為18—25 nt的短RNA分子,在哺乳動(dòng)物卵巢顆粒細(xì)胞調(diào)控卵泡發(fā)育過(guò)程中起著重要作用。團(tuán)隊(duì)前期對(duì)云上黑山羊高、低產(chǎn)羔數(shù)個(gè)體卵巢轉(zhuǎn)錄組測(cè)序結(jié)果顯示,miR-535能夠影響山羊產(chǎn)羔數(shù),但具體調(diào)控機(jī)制尚不清楚?!灸康摹客ㄟ^(guò)研究miR-535靶向(GRB2 associated binding protein 2)及其相關(guān)信號(hào)通路PI3K/AKT對(duì)山羊顆粒細(xì)胞增殖的影響,進(jìn)一步探討其分子生物學(xué)調(diào)控機(jī)制?!痉椒ā吭诒狙芯恐?,選擇具有兩胎以上產(chǎn)羔記錄的高、低產(chǎn)云上黑山羊各3只,同期發(fā)情處理后采集卵泡期卵巢組織,收集原代顆粒細(xì)胞。使用熒光定量PCR(reverse transcription-quantitative PCR,RT-qPCR)檢測(cè)miR-535和在云上黑山羊高、低產(chǎn)卵巢組織中的表達(dá)量。構(gòu)建GAB2的過(guò)表達(dá)/干擾載體,使用RT-qPCR、Western blot、免疫熒光、CCK8、EdU和細(xì)胞凋亡檢測(cè)候選基因?qū)ι窖蚵殉差w粒細(xì)胞增殖的影響。使用miRDB和miRanda軟件預(yù)測(cè)miR-535和GAB2的靶向關(guān)系,構(gòu)建GAB2的野生型和突變型載體,利用雙熒光素酶活性檢驗(yàn)檢測(cè)miR-535和GAB2的靶向關(guān)系。構(gòu)建過(guò)表達(dá)/干擾miR-535載體,探究其顆粒細(xì)胞增殖及下游基因功能的影響?!窘Y(jié)果】RT-qPCR結(jié)果顯示,在高產(chǎn)云上黑山羊卵巢組織中的表達(dá)量顯著低于低產(chǎn)個(gè)體,miR-535的表達(dá)則相反(<0.05);隨后,RT-qPCR和Western blot結(jié)果表明,在顆粒細(xì)胞中過(guò)表達(dá)后,CCND2、CDK4和BCL2的表達(dá)量顯著升高(<0.05),BAX的表達(dá)量顯著降低(<0.05),抑制其表達(dá)則與之相反;EdU和CCK8檢測(cè)顯示,過(guò)表達(dá)后顯著促進(jìn)顆粒細(xì)胞增殖(<0.05),抑制其表達(dá)后則相反;雙熒光素酶報(bào)告試驗(yàn)表明,miR-535抑制了GAB2基因3’UTR區(qū)域的雙熒光素酶活性。RT-qPCR和Western blot結(jié)果顯示,在顆粒細(xì)胞中過(guò)表達(dá)miR-535后,GAB2、CCND2、CDK4和BCL2的表達(dá)量顯著降低(<0.05),BAX的表達(dá)量顯著升高(<0.05),抑制其表達(dá)后則與之相反;EdU和CCK8檢測(cè)顯示,miR-535過(guò)表達(dá)后抑制顆粒細(xì)胞增殖,抑制其表達(dá)后則相反;細(xì)胞凋亡試驗(yàn)表明,miR-535過(guò)表達(dá)后促進(jìn)顆粒細(xì)胞增殖,抑制其表達(dá)后則相反。在顆粒細(xì)胞中抑制miR-535后,發(fā)現(xiàn)PI3K/AKT信號(hào)通路標(biāo)志因子AKT1的表達(dá)水平顯著升高(<0.05)?!窘Y(jié)論】miR-535通過(guò)抑制的表達(dá),抑制了山羊顆粒細(xì)胞的增殖,為進(jìn)一步探究miR-535調(diào)控山羊顆粒細(xì)胞的生物學(xué)功能提供了理論依據(jù)。
山羊產(chǎn)羔數(shù);卵巢顆粒細(xì)胞增殖;GAB2基因;miR-535;P13K/AKT信號(hào)通路
【研究意義】顆粒細(xì)胞作為性索體細(xì)胞之一,與哺乳動(dòng)物卵巢卵泡發(fā)育密切相關(guān)[1]。卵泡是卵巢的基本功能單位,由未成熟的卵母細(xì)胞及其周圍顆粒細(xì)胞和卵泡膜細(xì)胞組成[2]。卵泡的選擇、排卵和閉鎖等對(duì)卵巢功能具有重要影響[3]。卵泡發(fā)育是一個(gè)有序、周期性的過(guò)程,從靜止卵泡被激活到生長(zhǎng)選擇成為優(yōu)勢(shì)卵泡的過(guò)程中,顆粒細(xì)胞起著重要的作用[4]。在卵泡發(fā)育的周期中,卵泡具有不同的生長(zhǎng)階段,這些階段與促黃體生成素(FSH)的含量有關(guān),在生長(zhǎng)過(guò)程中,通常是最大的卵泡持續(xù)生長(zhǎng),其他卵泡逐漸閉鎖[5]。從原始卵泡到成熟卵泡的生長(zhǎng)過(guò)程中,顆粒細(xì)胞通過(guò)與卵泡膜細(xì)胞直接聯(lián)系,分泌生長(zhǎng)因子和激素,在滋養(yǎng)卵母細(xì)胞中發(fā)揮關(guān)鍵作用[6]。顆粒細(xì)胞產(chǎn)生的雌激素及其他內(nèi)分泌調(diào)節(jié)物質(zhì),引發(fā)減數(shù)分裂、類固醇生成、卵泡發(fā)育、卵丘擴(kuò)張、黃體化等卵母細(xì)胞過(guò)程,最終導(dǎo)致成熟排卵[7]。因此,顆粒細(xì)胞的增殖、凋亡和分化成為卵泡發(fā)育的關(guān)鍵。排卵數(shù)又對(duì)產(chǎn)羔數(shù)起著決定性的作用,顆粒細(xì)胞的增殖決定了卵母細(xì)胞的生長(zhǎng)發(fā)育,進(jìn)而影響卵母細(xì)胞排卵,影響產(chǎn)羔數(shù)?!厩叭搜芯窟M(jìn)展】GRB2相關(guān)結(jié)合蛋白2(GRB2 associated binding protein 2, GAB2)是GRB家族蛋白的重要成員,介導(dǎo)PI3K信號(hào)通路和ERK信號(hào)通路調(diào)控細(xì)胞生長(zhǎng)發(fā)育[8]。GAB2在N端含有一個(gè)Pleckstrin同源性(PH)結(jié)構(gòu)域,富含賴氨酸的基團(tuán)和酪氨酸殘基,以磷酸化方式與GRB2-SRC同源結(jié)構(gòu)域(SH3)結(jié)合[9-10]。在GAB2中,兩個(gè)富含脯氨酸GRB2-SRC同源結(jié)構(gòu)域(SH3)的結(jié)合位點(diǎn),通過(guò)SHC-GRB2復(fù)合物使GAB2與上游受體結(jié)合[11]。研究表明,GAB2可以參與調(diào)控細(xì)胞生長(zhǎng)、遷移、分化和凋亡[12-14]。miRNA是長(zhǎng)度為18—25 nt的短RNA分子,其主要功能是調(diào)節(jié)靶基因轉(zhuǎn)錄后沉默[15],影響相應(yīng)基因的表達(dá),并對(duì)相應(yīng)的作用途徑進(jìn)行調(diào)控[16]。miRNA在卵巢顆粒細(xì)胞調(diào)控卵泡發(fā)育過(guò)程中起著重要作用[17-18]。已有研究指出miR-10a[19]、miR-130a-3p[20]、miR-21[21]、miR-1306[22]、miR-21-3[23]、miR-183-96-182[24]、miRNA17-9[25]、miR-21-3p[26]等均與卵巢顆粒細(xì)胞的增殖或凋亡相關(guān)。【本研究切入點(diǎn)】本團(tuán)隊(duì)前期在高、低產(chǎn)羔數(shù)云上黑山羊卵巢組織RNA-seq中篩選出與山羊產(chǎn)羔數(shù)相關(guān)候選基因和可能存在的調(diào)控元件miR-535,并且和miR-535可能對(duì)顆粒細(xì)胞產(chǎn)生影響,但具體作用機(jī)制還未明確?!緮M解決的關(guān)鍵問(wèn)題】本研究以山羊顆粒細(xì)胞為研究對(duì)象,利用RT-qPCR、Western blotting、CCK8、EdU、雙熒光素酶試驗(yàn)、免疫熒光和細(xì)胞凋亡試驗(yàn)等驗(yàn)證了mi-535與的調(diào)控關(guān)系,探討對(duì)山羊顆粒細(xì)胞的調(diào)控作用及相關(guān)機(jī)制,為山羊分子育種提供靶點(diǎn)。
試驗(yàn)時(shí)間為2022年12月至2023年3月,試驗(yàn)地點(diǎn)為中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所農(nóng)業(yè)農(nóng)村部動(dòng)物遺傳育種與繁殖重點(diǎn)實(shí)驗(yàn)室。
云上黑山羊飼養(yǎng)于云南紅河哈尼族彝族自治州,選擇3周歲經(jīng)產(chǎn)、健康狀況良好且具有兩胎以上產(chǎn)羔記錄的云上黑山羊,根據(jù)產(chǎn)羔記錄分為高產(chǎn)組(3.00± 0.38/胎)和低產(chǎn)組(1.32±0.19/胎),同期發(fā)情處理45 h后,所有試驗(yàn)羊飼養(yǎng)環(huán)境均相同。安樂(lè)死屠宰,收集新鮮卵巢組織,置于37℃生理鹽水(含2%雙抗(Penicilin-Streptomycin))中,運(yùn)回實(shí)驗(yàn)室。使用75%醫(yī)用酒精洗滌3次,37 ℃預(yù)熱的生理鹽水(含2%雙抗)洗滌3次。使用5 mL醫(yī)用注射器抽取卵泡直徑2—6 mm的卵巢卵泡,收集至15 mL離心管中。2 000 r/min離心5 min去上清,加入DMEM/F12培養(yǎng)基(含2%雙抗)重懸,1 500 r/min離心5 min,去上清,重復(fù)2次。將獲得的細(xì)胞沉淀物加入10 mL DMEM/F12完全培養(yǎng)基(DMEM/F12﹕胎牛血清﹕雙抗=45﹕5﹕1),接種于5 cm2培養(yǎng)皿中,置于細(xì)胞培養(yǎng)箱中培養(yǎng)(37 ℃,5% CO2,飽和濕度)。顆粒細(xì)胞密度達(dá)到85%以上,置于10 cm2培養(yǎng)皿中,同等條件培養(yǎng),用于后續(xù)細(xì)胞試驗(yàn)。HEK293T細(xì)胞從北京綠源博德公司購(gòu)買所得。
DMEM培養(yǎng)基、DMEM/F12培養(yǎng)基、Opti-MEM培養(yǎng)基、PBS緩沖液、胎牛血清、青霉素和鏈霉素、胰蛋白酶從Gbico(美國(guó))公司購(gòu)買所得;組織/細(xì)胞總RNA提取試劑盒、細(xì)胞凋亡檢測(cè)試劑盒、CCK8檢測(cè)試劑盒、Edu檢測(cè)試劑盒、Western blotting所需分離膠、電泳液、轉(zhuǎn)膜液、洗滌液和特超敏ECL 化學(xué)發(fā)光試劑等均從天根生化科技有限公司購(gòu)買所得;Lipofectamine?2000轉(zhuǎn)染試劑盒從Invitrogen(美國(guó))購(gòu)買所得;反轉(zhuǎn)試劑盒和SYBR Green qPCR從Takara(日本)購(gòu)買所得;雙熒光素酶活性測(cè)定試劑盒從Promega(美國(guó))購(gòu)買所得;Western blotting所需一抗和二抗均從Proteintech公司(美國(guó))購(gòu)買所得;全蛋白提取試劑盒和BCA蛋白濃度測(cè)定試劑盒從北京索萊寶科技有限公司購(gòu)買所得;其他均為常規(guī)化學(xué)試劑和常規(guī)耗材。
RNA的提取使用北京天根生化科技有限公司的動(dòng)物組織/細(xì)胞RNA提取試劑盒,根據(jù)試劑說(shuō)明書進(jìn)行提取。提取完成后NanoDrop 2000(Thermo公司,美國(guó))和1.2%瓊脂糖凝膠檢測(cè)RNA樣品的濃度和質(zhì)量。然后根據(jù)反轉(zhuǎn)試劑盒說(shuō)明書獲得cDNA。以cDNA為模板,進(jìn)行RT-qPCR。RT-qPCR的體系為20 μL:10 μmol·μL-1上下游引物各0.8 μL,10 mL SYBR Green qPCR,50 ng·μL-1cDNA 2 mL,6.4 μL ddH2O。qPCR程序?yàn)椋?5 ℃預(yù)變性5 s,95 ℃5 s,60 ℃30 s,40個(gè)循環(huán)。以山羊?yàn)閮?nèi)參基因。使用相對(duì)定量(2-△△CT)算法計(jì)算各基因的相對(duì)表達(dá)量。RT-qPCR的引物使用Primer 5軟件設(shè)計(jì),由上海生工生物工程股份有限公司(中國(guó))合成,序列如表1所示。
使用全蛋白提取試劑盒提取細(xì)胞總蛋白。收集培養(yǎng)好的顆粒細(xì)胞于1.5 mL離心管中,使用高速離心機(jī)4℃12 000 r/min下離心30 min,收集上清,棄沉淀。使用BCA蛋白濃度測(cè)定試劑盒測(cè)定BCA,根據(jù)BCA標(biāo)準(zhǔn)曲線計(jì)算蛋白濃度。按照蛋白體積:5×SDS Loading Buffer=4﹕1,將蛋白與5×SDS Loading Buffer混勻后金屬水浴鍋100 ℃煮沸8 min。每孔加入30 μg蛋白于BeyoGel Plus PAGE預(yù)制膠(Tris-Gly,10%,10孔),80 V,25 min;120 V 60 min,觀察溴酚藍(lán)膠底部即可停止。電泳結(jié)束后,使用150 mA 90 min電泳條件進(jìn)行轉(zhuǎn)膜,隨后使用QuickBlock? Western封閉液搖床室溫封閉2 h。之后加入不同濃度的一抗4℃下?lián)u床封閉過(guò)夜,一抗稀釋濃度:GAB2(1﹕2000);CCND2(1﹕2000);CDK4(1﹕2000);BAX(1﹕2000);BCL2(1﹕2000);AKT(1﹕2000);Caspace3(1﹕2000);PI3K(1﹕2000);GAPDH(1﹕2000)。TBST洗滌5次,每次5 min。二抗(1﹕1000)室溫孵育2 h,二抗洗滌后使用特超敏ECL化學(xué)發(fā)光試劑顯色,Odyssey CLX成像系統(tǒng)(Li-COR)曝光,拍照并保存。使用Image J軟件分析條帶灰度值,目的蛋白與GAPDH灰度值的比值即為目的蛋白的相對(duì)表達(dá)水平。
表1 RT-qPCR所使用的引物序列
根據(jù)miR-535的序列在上海吉瑪制藥技術(shù)有限公司設(shè)計(jì)合成miR-535的模擬物(mimic)和抑制劑(inhibitor)。根據(jù)NCBI提供的序列,設(shè)計(jì)合成的過(guò)表達(dá)載體和干擾載體,過(guò)表達(dá)(pIRES2- EGFP-)和干擾(si-GAB2)載體在上海生工生物工程股份有限公司合成。
將山羊顆粒細(xì)胞以1×106個(gè)/孔的密度接種于6孔板,每孔加入2 mL DMEM完全培養(yǎng)基。待細(xì)胞密度至70%—80%時(shí),進(jìn)行細(xì)胞轉(zhuǎn)染。棄培養(yǎng)基,加入2 mL PBS洗滌兩次。轉(zhuǎn)染6孔板的體系為:取242 μL Opti-MEM和8 μL Lipofectamine 2000試劑充分混勻配成A管。取230 μL Opti-MEM與20 μL 200 nmol·μL-1的載體(miR-535 mimic、miR-535 mimic NC、miR-535 inhibitor、miR-535 inhibitor NC、pIRES2-EGFP-、pIRES2-EGFP-NC、si-、si-NC,miR- 535 mimic+si-,miR-535 mimic+si-NC、miR-535 inhibitor+si-和miR-535 inhibitor+si-NC),充分混勻配成B管,靜置5 min。將B管加入A管,混勻后靜置20 min后加入6孔板中,之后加入1.5 mL的Opti-MEM。每組設(shè)置3個(gè)重復(fù),轉(zhuǎn)染6 h后換為DMEM完全培養(yǎng)基培養(yǎng),48 h后檢測(cè)基因表達(dá)水平或細(xì)胞增殖效率。
根據(jù)NCBI提供的序列合成GAB2基因3′-UTR- WT 和3′-UTR-MUT(上海吉瑪制藥技術(shù)有限公司)連接至psiCHECK2 載體,篩選陽(yáng)性克隆并測(cè)序確認(rèn)后,與miR-535 mimic和mimic NC在共轉(zhuǎn)染至HEK293T 細(xì)胞系中,培養(yǎng)48 h 后收集細(xì)胞至1.5 mL離心管中,1 500 r/min離心5 min,每孔加入75 μL PBS重懸后,移至96 孔白色細(xì)胞培養(yǎng)板中。加入75 μL螢火蟲熒光素酶,采用多功能酶標(biāo)儀(MolecularDevices公司,美國(guó))測(cè)定熒光值;加入75 μL內(nèi)參海腎熒光素酶后,測(cè)定熒光值。計(jì)算螢火蟲熒光素酶反應(yīng)強(qiáng)度/內(nèi)參海腎熒光素酶反應(yīng)強(qiáng)度(Firefly Luciferase/Renilla Luciferase)的比值。
將山羊顆粒細(xì)胞以1×106個(gè)/孔的密度接種于6孔板,每孔加入2 mL DMEM完全培養(yǎng)基。待細(xì)胞密度至70%—80%時(shí),進(jìn)行細(xì)胞轉(zhuǎn)染。根據(jù)細(xì)胞凋亡試劑盒說(shuō)明書進(jìn)行細(xì)胞凋亡實(shí)驗(yàn)。轉(zhuǎn)染后的顆粒細(xì)胞培養(yǎng)48 h后,PBS洗1次;使用4%多聚甲醛固定30 min,使用PBS洗滌1次;收集細(xì)胞,涂片,使細(xì)胞黏附在載玻片上;使用甲醛配置的0.3%過(guò)氧化氫溶液中室溫孵育20 min,PBS洗滌3次;使用免疫染色洗滌液(P0106),冰上孵育2 min,PBS洗滌1次;在載玻片上加50 μL生物素標(biāo)記液(TdT酶﹕Biotin-dUTP=1﹕24),37 ℃孵育60 min,使用PBS洗滌1次,滴加100 μL標(biāo)記反應(yīng)終止液終止反應(yīng),室溫孵育10 min;加入50 μL Streptavidin-HRP工作液,室溫孵育30 min;加入200 μL DAB顯色液,室溫孵育5 min;之后使用熒光倒置顯微鏡(德國(guó)徠卡公司)觀察細(xì)胞形態(tài)。
使用Cell Counting Kit-8 (CCK8),檢測(cè)顆粒細(xì)胞增殖情況。根據(jù)CCK8試劑盒說(shuō)明書,以每孔2×103/100 μL的密度接種于96孔板,每組3個(gè)重復(fù)。根據(jù)試劑商說(shuō)明書,轉(zhuǎn)染相關(guān)載體后分別在細(xì)胞生長(zhǎng)0、6、12、24、48 h每孔加入10 μL CCK8溶液,培養(yǎng)箱孵育2 h后使用酶標(biāo)儀測(cè)定450 nm的吸光度,之后計(jì)算顆粒細(xì)胞增殖速率。細(xì)胞增殖活力計(jì)算:細(xì)胞活力(%)=[A(加藥)-A(空白)]/[A(0加藥)-A(空白)]×100[A(加藥):具有細(xì)胞、CCK-8溶液和藥物溶液的孔的吸光度,A(空白):具有培養(yǎng)基和CCK-8溶液而沒(méi)有細(xì)胞的孔的吸光度,A(0加藥):具有細(xì)胞、CCK-8溶液而沒(méi)有藥物溶液的孔的吸光度]。
使用EdU細(xì)胞增殖檢測(cè)試劑盒,檢測(cè)顆粒細(xì)胞的增殖情況。根據(jù)EdU細(xì)胞增殖檢測(cè)試劑盒說(shuō)明書,將山羊顆粒細(xì)胞以1×106個(gè)/孔的密度接種于6孔板,載體轉(zhuǎn)染后培養(yǎng)12 h,待細(xì)胞狀態(tài)正常后等體積加入37 ℃預(yù)熱的EdU工作液(10 μmol·L-1),孵育3 h。EdU標(biāo)記細(xì)胞完成后,去除培養(yǎng)液,并加入1 mL固定液(免疫染色固定液,P0098),室溫固定15 min。洗滌液洗滌3次,每次5 min。去除洗滌液,每孔用1 mL通透液(免疫染色強(qiáng)力通透液,P0097)通透,室溫孵育15 min。去除通透液,加入1 mL洗滌液洗滌2次,每次3 min。封閉液室溫孵育20 min,洗滌液洗滌3次,每次2 min。每孔加入0.5 mL Click反應(yīng)液,室溫避光孵育30 min,洗滌液洗滌3次,每次5 min。每孔加入200 μL Streptavidin-HRP工作液,室溫孵育30 min。洗滌液洗滌3次,每次2 min。熒光顯微鏡(德國(guó),徠卡)下觀察并拍照記錄。
山羊顆粒細(xì)胞以1×106個(gè)/孔的密度接種于6孔板,每組3個(gè)重復(fù)。多聚賴氨酸處理爬片,置入6孔板中,細(xì)胞轉(zhuǎn)染載體培養(yǎng)48 h后取出。4%多聚甲醛固定20 min,PBS洗滌3次,每次3 min,10%山羊血清孵育30 min,適量GAB2抗體4 ℃孵育過(guò)夜,PBS洗滌3次,每次5 min,適量熒光IgG,37 ℃孵育1 h,PBS洗滌3次,每次5 min。DAPI避光加入染細(xì)胞核5 min,PBS洗滌4次,每次5 min。熒光淬滅劑處理,樹脂膠密封載玻片,熒光倒置顯微鏡(德國(guó),徠卡)觀察采集圖像。
每個(gè)試驗(yàn)3個(gè)生物學(xué)重復(fù),使用SPSS 18.0(SPSS INC. Chicago,IL,USA)軟件進(jìn)行統(tǒng)計(jì)分析。RT-qPCR和Western blot數(shù)據(jù)采用獨(dú)立樣本t檢驗(yàn)分析,雙熒光素酶報(bào)告基因試驗(yàn)通過(guò)單因素方差分析進(jìn)行計(jì)算。**<0.01,*<0.05代表組間差異具有統(tǒng)計(jì)學(xué)意義[27]。
為驗(yàn)證本課題組前期云上黑山羊卵巢轉(zhuǎn)錄組數(shù)據(jù)的準(zhǔn)確性,使用RT-qPCR鑒定miR-535和在云上黑山羊卵巢組織中的表達(dá)量。結(jié)果表明,miR-535在高產(chǎn)云上黑山羊卵巢中的表達(dá)顯著低于低產(chǎn)云上黑山羊中的表達(dá)(<0.05)(圖1-A);在高產(chǎn)云上黑山羊卵巢中的表達(dá)量顯著高于低產(chǎn)云上黑山羊卵巢(<0.05)(圖1-B)。這與本課題組轉(zhuǎn)錄組數(shù)據(jù)結(jié)果一致。
A. miR-535在高、低產(chǎn)羔數(shù)云上黑山羊卵巢組織中的mRNA表達(dá);B. GAB2在高、低產(chǎn)羔數(shù)云上黑山羊卵巢組織中的mRNA表達(dá)。*P<0.05;**P<0.01。下同
為了探究對(duì)山羊卵巢顆粒細(xì)胞的調(diào)控作用,分別過(guò)表達(dá)/干擾后檢測(cè)山羊顆粒細(xì)胞的增殖/凋亡情況。采用免疫熒光技術(shù)鑒定轉(zhuǎn)染質(zhì)粒后GAB2蛋白的表達(dá),過(guò)表達(dá)后,GAB2表達(dá)量顯著增多,干擾si-后,GAB2表達(dá)量顯著降低(圖2-A),表明過(guò)表達(dá)/干擾載體有效。RT-qPCR結(jié)果顯示過(guò)表達(dá)后,細(xì)胞周期相關(guān)基因、基因表達(dá)水平顯著上調(diào)(<0.05),細(xì)胞凋亡相關(guān)基因的表達(dá)水平顯著下調(diào)(<0.05),的表達(dá)水平顯著上調(diào)(<0.05),干擾后則相反(<0.05)(圖2-B)。Western blot的結(jié)果與RT-qPCR結(jié)果一致(圖2-C,D)。CCK8和EdU試驗(yàn)結(jié)果表明,過(guò)表達(dá)顯著促進(jìn)了顆粒細(xì)胞的增殖效率,而抑制的表達(dá)則相反(圖2-E,F(xiàn))。細(xì)胞凋亡染色表明,過(guò)表達(dá)可顯著抑制顆粒細(xì)胞的凋亡;而抑制表達(dá)則促進(jìn)了顆粒細(xì)胞凋亡(圖2-G)。這些結(jié)果表明,能夠促進(jìn)山羊顆粒細(xì)胞的增殖并抑制其凋亡。
A. 轉(zhuǎn)染pIRES2-EGFP-及NC、si-及NC后,免疫熒光檢測(cè)GAB2的表達(dá);B. 過(guò)表達(dá)/抑制后,、、、的mRNA相對(duì)表達(dá)量;C和D .過(guò)表達(dá)/抑制表達(dá)后,CCND2、CDK4、BCL2和BAX的蛋白表達(dá)水平和灰度值分析;E. 過(guò)表達(dá)/干擾表達(dá)后,EdU檢測(cè)顆粒細(xì)胞增殖; F.過(guò)表達(dá)/抑制表達(dá)后,CCK8檢測(cè)顆粒細(xì)胞增殖;G. 過(guò)表達(dá)/抑制表達(dá)后,細(xì)胞凋亡檢測(cè)顆粒細(xì)胞凋亡情況
A. Immunofluorescence detection of GAB2 expression after overexpression or inhibition of; B. Relative mRNA expression levels of,,andafteroverexpression or inhibition; C and D. The protein expression levels and gray value analysis of CCND2, CDK4, BCL2 and BAX after overexpression or inhibition of; E. EdU assay of granulosa cell proliferation after overexpression or inhibition of; F. CCK8 assay of granulosa cell proliferation after overexpression or inhibition of; G. Apoptosis detection of granulosa cell proliferation after overexpression or inhibition of
圖2促進(jìn)山羊顆粒細(xì)胞增殖抑制其凋亡
Fig. 2promoted the proliferation of goat granulosa cells and inhibited their apoptosis
為了研究miR-535與之間的關(guān)系,通過(guò)在線軟件Target Scan和miRanda對(duì)結(jié)合位點(diǎn)保守性進(jìn)行分析。結(jié)果顯示,預(yù)測(cè)的miR-535結(jié)合位點(diǎn)位于的3’UTR區(qū)(圖3-A)。將miR-535 mimics和miR-535 mimics NC與野生型和突變型的雙熒光素酶報(bào)告載體基因共轉(zhuǎn)染至293T細(xì)胞中,雙熒光素酶活性檢測(cè)結(jié)果顯示,miR-535降低了野生型載體中的相對(duì)熒光素酶活性(<0.05)(圖3-B)。在顆粒細(xì)胞中過(guò)表達(dá)miR-535后,的表達(dá)量顯著降低,而抑制miR-535表達(dá)后則相反(<0.05)(圖3-C—E)。這些結(jié)果表明,在山羊顆粒細(xì)胞中miR-535可與的3’UTR區(qū)相結(jié)合,且miR-535直接靶向調(diào)控的表達(dá)。
A. miR-535和GAB2結(jié)合位點(diǎn)保守性預(yù)測(cè);B. miR-535 mimics和GAB2 3’UTR區(qū)的雙熒光素酶活性檢測(cè);C. miR-535過(guò)表達(dá)或抑制后GAB2 mRNA水平表達(dá)量檢測(cè);D,E. miR-535過(guò)表達(dá)或抑制后GAB2 蛋白水平表達(dá)量檢測(cè)及灰度分析
為了探究miR-535對(duì)山羊卵巢顆粒細(xì)胞的調(diào)控作用,將miR-535 mimics、miR-535 mimics NC、miR-535 inhibitor和miR-535 inhibitor NC轉(zhuǎn)染至山羊顆粒細(xì)胞,檢測(cè)其對(duì)山羊顆粒細(xì)胞增殖/凋亡的影響。使用RT-qPCR技術(shù)檢測(cè)了質(zhì)粒轉(zhuǎn)染后miR-535的mRNA相對(duì)表達(dá)量,結(jié)果表明,轉(zhuǎn)染miR-535 mimics后,miR-535的表達(dá)量顯著上調(diào)(<0.05);轉(zhuǎn)染miR-535 inhibitor后,miR-535的表達(dá)量顯著下調(diào)(<0.05)(圖4-A),表明mimics/inhibitor載體有效。結(jié)果表明,過(guò)表達(dá)miR-535后,細(xì)胞周期相關(guān)基因、表達(dá)水平顯著下調(diào),細(xì)胞凋亡相關(guān)基因的表達(dá)水平顯著上調(diào)(<0.05),的表達(dá)水平顯著下調(diào),抑制miR-535表達(dá)后則相反(圖4-B,C)。Western blotting與RT-qPCR的結(jié)果一致(圖4-D,E)。CCK8、EdU結(jié)果顯示,過(guò)表達(dá)miR-535后,顯著抑制了顆粒細(xì)胞的增殖能力;抑制miR-535表達(dá)后則相反(圖4-F,G)。細(xì)胞凋亡染色表明,過(guò)表達(dá)miR-535能夠顯著促進(jìn)顆粒細(xì)胞的凋亡;抑制miR-535后則顯著抑制了顆粒細(xì)胞凋亡(圖4-H)。這些結(jié)果表明,miR-535可以顯著抑制山羊顆粒細(xì)胞的增殖,并促進(jìn)其凋亡。
A. 轉(zhuǎn)染miR-535 mimics、miR-535 inhibitor及NC后,miR-535的mRNA相對(duì)表達(dá)量;B.過(guò)表達(dá)miR-535后,、、和的mRNA相對(duì)表達(dá)量;C. 抑制miR-535表達(dá)后,、、和的mRNA相對(duì)表達(dá)量;D和E.過(guò)表達(dá)或抑制miR-535后,CCND2、CDK4、BCL2和BAX的蛋白表達(dá)水平和灰度值分析;F. 過(guò)表達(dá)或抑制miR-535后,EdU檢測(cè)顆粒細(xì)胞增殖;G. 過(guò)表達(dá)或抑制miR-535后,CCK8檢測(cè)顆粒細(xì)胞增殖;H. 過(guò)表達(dá)或抑制miR-535后,細(xì)胞凋亡檢測(cè)顆粒細(xì)胞凋亡情況
A. Relative mRNA expression of miR-535 after transfection with miR-535 mimics, miR-535 inhibitor and NC;B. Relative mRNA expression levels of,,andafter miR-535 overexpression; C. Relative mRNA expression levels of,,andafter miR-535 inhibition; D and E. The protein expression levels and grayscale values of CCND2, CDK4, BCL2 and BAX after overexpression or inhibition of miR-535; F. Detection of granulosa cell proliferation by EdU after overexpression or inhibition of miR-535; G. Detection of granulosa cell proliferation by CCK8 after overexpression or inhibition of miR-535 granulosa cell proliferation; H. Apoptosis detection of granulosa cells after overexpression or inhibition of miR-535
圖4 miR-535抑制山羊顆粒細(xì)胞增殖并促進(jìn)其凋亡
Fig. 4 miR-535 inhibited proliferation and promoted apoptosis in goat granulosa cells
為了進(jìn)一步探究miR-535與是否存在靶向作用調(diào)控顆粒細(xì)胞的增殖和凋亡。本研究將miR-535 inhibitor+siRNA、miR-535 inhibitor+siRNA NC和miR-535 inhibitor NC+siRNA共轉(zhuǎn)染于顆粒細(xì)胞中,miR-535 inhibitor NC+siRNA NC作為對(duì)照組,來(lái)驗(yàn)證miR-535與基因的靶向調(diào)控關(guān)系。研究結(jié)果表明,與對(duì)照組(miR-535 inhibitor NC+siRNA NC)相比,同時(shí)抑制miR-535和不抑制GAB2的表達(dá)后,細(xì)胞周期相關(guān)基因、和細(xì)胞凋亡相關(guān)基因表達(dá)水平顯著上調(diào),的表達(dá)水平顯著下調(diào)(<0.05);抑制miR-535 的同時(shí)抑制后細(xì)胞周期相關(guān)基因、和細(xì)胞凋亡相關(guān)基因表達(dá)水平顯著下調(diào)(<0.05),細(xì)胞凋亡相關(guān)基因的表達(dá)水平顯著上調(diào)(<0.05)(圖5)。這些結(jié)果表明,山羊卵巢顆粒細(xì)胞增殖和凋亡確實(shí)受到了miR-535-通路的影響,miR-535與的表達(dá)存在拮抗作用。
圖5 GAB2拮抗miR-535的調(diào)控作用
根據(jù)生物信息學(xué)分析表明,作用于PI3K/ AKT信號(hào)通路。STRING分析結(jié)果表明,可與PI3K/AKT信號(hào)通路的標(biāo)志因子AKT1具有蛋白互作的關(guān)系(圖6-A)。因此推測(cè),miR-535靶向調(diào)控激活PI3K/AKT信號(hào)通路影響顆粒細(xì)胞的生長(zhǎng)。結(jié)果表明,過(guò)表達(dá)miR-535后,PI3K/AKT信號(hào)通路相關(guān)基因的表達(dá)量顯著下調(diào),而抑制miR-535后,PI3K/AKT信號(hào)通路相關(guān)基因的表達(dá)量顯著上調(diào)(<0.05)(圖6-B)。Western blotting結(jié)果與RT- qPCR結(jié)果一致(<0.05)(圖6-C,D)。以上研究結(jié)果表明,miR-535靶向調(diào)控激活PI3K/AKT信號(hào)通路影響顆粒細(xì)胞生長(zhǎng)。
卵巢是雌性動(dòng)物重要的繁殖器官,卵泡是哺乳動(dòng)物卵巢行使功能的基本單位。從靜止卵泡被激活,到生長(zhǎng)選擇成為優(yōu)勢(shì)卵泡的過(guò)程中,顆粒細(xì)胞起著重要的作用[28]。目前,關(guān)于山羊卵巢顆粒細(xì)胞增殖的分子機(jī)制仍不清晰。研究發(fā)現(xiàn),miR-495-3p能夠促進(jìn)顆粒細(xì)胞凋亡,抑制顆粒細(xì)胞增殖,刺激類固醇的分泌,從而影響山羊卵泡的發(fā)育[29]。在本課題組前期高、低產(chǎn)羔數(shù)云上黑山羊卵巢轉(zhuǎn)錄組數(shù)據(jù)中發(fā)現(xiàn)相關(guān)候選基因和調(diào)控元件miR-535可能存在靶向關(guān)系,然而,其分子作用機(jī)制還有待研究。在本研究中,發(fā)現(xiàn)miR-535在云上黑山羊高產(chǎn)卵巢中高表達(dá),在云上黑山羊高產(chǎn)卵巢中低表達(dá),存在負(fù)相關(guān)關(guān)系,與前期轉(zhuǎn)錄組數(shù)據(jù)一致。
在哺乳動(dòng)物的卵巢中,卵泡中的體細(xì)胞(顆粒細(xì)胞和卵丘細(xì)胞)在卵母細(xì)胞成熟和雌性生殖過(guò)程中起重要作用[30-31]。在卵泡排卵的過(guò)程中,顆粒細(xì)胞的數(shù)量決定著胚胎發(fā)育速率和卵母細(xì)胞的成熟[32]。miRNA作為基因表達(dá)過(guò)程中重要的調(diào)節(jié)因子,結(jié)合互補(bǔ)mRNA并抑制其表達(dá)[33]。在哺乳動(dòng)物的卵巢中miRNA通過(guò)結(jié)合編碼基因的3’-UTR結(jié)合后,對(duì)編碼基因產(chǎn)生沉默作用,導(dǎo)致mRNA的翻譯停止[34],如miR-324-3p[35]、miR-101-3p[36]、miR-130a-3p[20]等,但miR-535在山羊顆粒細(xì)胞中的作用還未被報(bào)道。有研究表明,miR-535的過(guò)表達(dá)改變了、和的表達(dá),進(jìn)而影響介導(dǎo)的冷信號(hào)轉(zhuǎn)導(dǎo)核心成分以及CBF信號(hào)轉(zhuǎn)導(dǎo)通路下游的冷應(yīng)激響應(yīng)標(biāo)記基因的表達(dá),這說(shuō)明miR-535可以調(diào)控基因功能[37]。在本研究中,miR-535抑制了卵巢顆粒細(xì)胞的增殖,并降低了EdU陽(yáng)性細(xì)胞數(shù)量。這表明miR-535可能是山羊顆粒細(xì)胞中重要非編碼RNA,值得深入探究其功能。
A. STRING分析與GAB2相關(guān)蛋白;B. 過(guò)表達(dá)或抑制miR-535后AKT1的mRNA相對(duì)表達(dá)量;C. 過(guò)表達(dá)或抑制miR-535后AKT1的蛋白表達(dá)水平;D. 過(guò)表達(dá)或抑制miR-535后AKT1的蛋白灰度值分析
作為重要的結(jié)合效應(yīng)蛋白,在眾多細(xì)胞因子的刺激下,磷酸化含有氨基酸殘基的蛋白質(zhì),將信號(hào)傳遞給小GTP酶,完成細(xì)胞信號(hào)傳遞,在細(xì)胞的生長(zhǎng)發(fā)育等過(guò)程中產(chǎn)生重要作用[38]。目前眾多研究表明,miRNA可以靶向從而調(diào)控細(xì)胞的增殖、分化。miR-197通過(guò)靶向膠質(zhì)母細(xì)胞瘤中的抑制細(xì)胞增殖,抑制母細(xì)胞瘤的發(fā)展[39];miR-663b通過(guò)調(diào)控對(duì)肝細(xì)胞癌起到抑制作用[40];miR-218通過(guò)靶向抑制PI3K/AKT/mTOR/VEGFA通路,從而抑制腎細(xì)胞癌和血管內(nèi)皮因子[41];但miR-535對(duì)的調(diào)控作用還未見(jiàn)報(bào)道。本課題組轉(zhuǎn)錄組數(shù)據(jù)庫(kù)中存在可能作為miR-535的靶向mRNA對(duì)顆粒細(xì)胞起調(diào)控作用。使用雙熒光素酶活性報(bào)告驗(yàn)證miR-535能夠與的3’UTR結(jié)合,證實(shí)miR-535與存在直接的靶向關(guān)系。顯著促進(jìn)了細(xì)胞增殖因子和的表達(dá),顯著抑制了凋亡因子且促進(jìn)了的表達(dá)。并且促進(jìn)了卵巢顆粒細(xì)胞的增殖,并提高了EdU陽(yáng)性細(xì)胞數(shù)量。本研究發(fā)現(xiàn),能夠促進(jìn)顆粒細(xì)胞增殖,進(jìn)一步研究發(fā)現(xiàn)miR-535與之間的調(diào)控關(guān)系,且miR-535能夠抑制在顆粒細(xì)胞的表達(dá)。
PI3K/AKT信號(hào)通路能夠參與細(xì)胞增殖、分化、自噬和凋亡等生理過(guò)程,在細(xì)胞穩(wěn)態(tài)和調(diào)節(jié)過(guò)程中起重要作用[42]。作為PI3K/AKT信號(hào)通路中重要的標(biāo)志基因,在PI3K/AKT信號(hào)通路調(diào)控作用中發(fā)揮重要作用。PI3K/AKT信號(hào)通路與顆粒細(xì)胞增殖或凋亡密切相關(guān),在卵巢發(fā)育過(guò)程中,F(xiàn)SH與卵泡膜上的受體結(jié)合,激活上游蛋白激酶與,從而使下游靶基因和PI3K/AKT信號(hào)通路被激活[43]。這表明,可以通過(guò)PI3K/AKT途徑調(diào)控細(xì)胞的生長(zhǎng)過(guò)程。雖然未在山羊中發(fā)現(xiàn)miR-535通過(guò)PI3K/AKT途徑調(diào)控顆粒細(xì)胞增殖。但是在多個(gè)物種中發(fā)現(xiàn)miRNA可通過(guò)PI3K/AKT途徑調(diào)控顆粒細(xì)胞的增殖、自噬、凋亡和分化[44-47]。本研究發(fā)現(xiàn)可與PI3K/AKT信號(hào)通路關(guān)鍵基因產(chǎn)生互作關(guān)系,并且過(guò)表達(dá)miR-535可顯著抑制的表達(dá)。因此推測(cè)miR-535-可能通過(guò)PI3K/AKT信號(hào)通路調(diào)控山羊顆粒細(xì)胞生長(zhǎng)發(fā)育,但還需要進(jìn)一步研究確認(rèn)其調(diào)控機(jī)制。
本研究驗(yàn)證了miR-535通過(guò)靶向調(diào)控的表達(dá)調(diào)控顆粒細(xì)胞,可能通過(guò)PI3K/AKT途徑促進(jìn)顆粒細(xì)胞增殖。這些研究結(jié)果為解析山羊多羔性狀形成的分子機(jī)制及分子育種提供了新的見(jiàn)解。
[1] AERTS J M J, BOLS P E J. Ovarian follicular dynamics: a review with emphasis on the bovine species. Part I: Folliculogenesis and pre-antral follicle development. Reproduction in Domestic Animals = Zuchthygiene, 2010, 45(1): 171-179.
[2] ZHANG H, LIU K. Cellular and molecular regulation of the activation of mammalian primordial follicles: Somatic cells initiate follicle activation in adulthood. Human Reproduction Update, 2015, 21(6): 779-786.
[3] NISSAN T, PARKER R. Computational analysis of miRNA-mediated repression of translation: Implications for models of translation initiation inhibition. RNA, 2008, 14(8): 1480-1491.
[4] TU F, PAN Z X, YAO Y, LIU H L, LIU S R, XIE Z, LI Q F. miR-34a targets the inhibin beta B gene, promoting granulosa cell apoptosis in the porcine ovary. Genetics and Molecular Research, 2014, 13(2): 2504-2512.
[5] LUNDBERG A L, JASKIEWICZ N M, MAUCIERI A M, TOWNSON D H. Stimulatory effects of TGFα in granulosa cells of bovine small antral follicles. Journal of Animal Science, 2022, 100(7): skac105.
[6] LIU Y F, ZHOU Z Y, HE X Y, TAO L, JIANG Y T, LAN R, HONG Q H, CHU M X. Integrated analyses of miRNA-mRNA expression profiles of ovaries reveal the crucial interaction networks that regulate the prolificacy of goats in the follicular phase. BMC Genomics, 2021, 22(1): 812.
[7] TU J J, CHEN Y, LI Z, YANG H, CHEN H, YU Z Y. Long non-coding RNAs in ovarian granulosa cells. Journal of Ovarian Research, 2020, 13(1): 63.
[8] DING C B, YU W N, FENG J H, LUO J M. Structure and function of Gab2 and its role in cancer (Review). Molecular Medicine Reports, 2015, 12(3): 4007-4014.
[9] W?HRLE F U, DALY R J, BRUMMER T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Communication and Signaling, 2009, 7: 22.
[10] GU H H, NEEL B G. The ‘gab’ in signal transduction. Trends in Cell Biology, 2003, 13(3): 122-130.
[11] LOCK L S, ROYAL I, NAUJOKAS M A, PARK M. Identification of an atypical Grb2 carboxyl-terminal SH3 domain binding site in Gab docking proteins reveals Grb2-dependent and-independent recruitment of Gab1 to receptor tyrosine kinases. The Journal of Biological Chemistry, 2000, 275(40): 31536-31545.
[12] ADAMS S J, AYDIN I T, CELEBI J T. GAB2: a scaffolding protein in cancer. Molecular Cancer Research, 2012, 10(10): 1265-1270.
[13] YANG Y, WU J, DEMIR A, CASTILLO-MARTIN M, MELAMED R D, ZHANG G, FUKUNAGA-KANABIS M, PEREZ-LORENZO R, ZHENG B, SILVERS D N, BRUNNER G, WANG S, RABADAN R, CORDON-CARDO C, CELEBI J T. GAB2 induces tumor angiogenesis in NRAS-driven melanoma. Oncogene, 2013, 32(31): 3627-3637.
[14] DUCKWORTH C, ZHANG L, CARROLL S L, ETHIER S P, CHEUNG H W. Overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating chemokine expression. Oncogene, 2016, 35(31): 4036-4047.
[15] JAKWERTH C A, KITZBERGER H, POGORELOV D, MüLLER A, BLANK S, SCHMIDT-WEBER C B, ZISSLER U M. Role of microRNAs in type 2 diseases and allergen-specific immunotherapy. Frontiers in Allergy, 2022, 3: 993937.
[16] JAFARZADEH A, NASERI A, SHOJAIE L, NEMATI M, JAFARZADEH S, BANNAZADEH BAGHI H, HAMBLIN M R, AKHLAGH S A, MIRZAEI H. microRNA-155 and antiviral immune responses. International Immunopharmacology, 2021, 101(Pt A): 108188.
[17] AHERNE S T, LAO N T. Manipulating MiRNA expression to uncover hidden functions. Methods in Molecular Biology, 2017, 1509: 151-160.
[18] SIROTKIN A V, LAUKOVá M, OVCHARENKO D, BRENAUT P, MLYNCEK M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. Journal of Cellular Physiology, 2010, 223(1): 49-56.
[19] DAI T S, KANG X L, YANG C Y, MEI S, WEI S H, GUO X R, MA Z M, SHI Y G, CHU Y K, DAN X G. Integrative analysis of miRNA-mRNA in ovarian granulosa cells treated with kisspeptin in Tan sheep. Animals, 2022, 12(21): 2989.
[20] ZHU L, JING J, QIN S Q, ZHENG Q, LU J N, ZHU C Y, LIU Y, FANG F G, LI Y S, LING Y H. miR-130a-3p regulates steroid hormone synthesis in goat ovarian granulosa cells by targeting thegene. Theriogenology, 2021, 165: 92-98.
[21] ZHANG T J, HUO S D, WEI S C, CUI S. miR-21, miR-125b, and let-7b contribute to the involution of atretic follicles and corpus lutea in Tibetan sheep ovaries. Animal Science Journal, 2022, 93(1): e13756.
[22] ABDURAHMAN A, AIERKEN W, ZHANG F, OBULKASIM R, ANIWASHI J, SULAYMAN A. miR-1306 induces cell apoptosis by targetinggene in the ovine granulosa cells. Frontiers in Genetics, 2022, 13: 989912.
[23] MA L Z, TANG X R, GUO S, LIANG M Y, ZHANG B, JIANG Z L. miRNA-21-3p targeting of FGF2suppresses autophagy of bovine ovarian granulosa cells through AKT/mTOR pathway. Theriogenology, 2020, 157: 226-237.
[24] GEBREMEDHN S, SALILEW-WONDIM D, HOELKER M, RINGS F, NEUHOFF C, THOLEN E, SCHELLANDER K, TESFAYE D. microRNA-183-96-182 cluster regulates bovine granulosa cell proliferation and cell cycle transition by coordinately targeting FOXO1. Biology of Reproduction, 2016, 94(6): 127, 1-11.
[25] ANDREAS E, HOELKER M, NEUHOFF C, THOLEN E, SCHELLANDER K, TESFAYE D, SALILEW-WONDIM D. microRNA 17-92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN andgenes. Cell and Tissue Research, 2016, 366(1): 219-230.
[26] MA L Z, ZHENG Y X, TANG X R, GAO H M, LIU N, GAO Y, HAO L Z, LIU S J, JIANG Z L. miR-21-3p inhibits autophagy of bovine granulosa cells by targeting VEGFA via PI3K/AKT signaling. Reproduction, 2019, 158(5): 441-452.
[27] 王鵬, 韓海銀, 李文韜, 劉子嶷, 儲(chǔ)明星, 劉玉芳. 可變剪接體WNT4-β對(duì)山羊卵泡顆粒細(xì)胞增殖和激素分泌的影響. 畜牧獸醫(yī)學(xué)報(bào), 2022, 53(10): 3480-3489.
WANG P, HAN H Y, LI W T, LIU Z Y, CHU M X, LIU Y F. Effect of alternative splicing WNT4-β on follicular granulosa cell proliferation and hormone secretion in goats. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3480-3489. (in Chinese)
[28] JIN Y F, DONG H Y, SHI Y, BIAN L N. Mutually exclusive alternative splicing of pre-mRNAs. Wiley Interdisciplinary Reviews RNA, 2018, 9(3): e1468.
[29] 王磊, 何莉娜, 唐雪, 李碧筠, 黃思藝, 王鈺錕, 徐德軍, 趙中權(quán). miR-495-3p對(duì)山羊卵巢顆粒細(xì)胞功能的影響. 畜牧獸醫(yī)學(xué)報(bào), 2022, 53(2): 436-446.
WANG L, HE L N, TANG X, LI B J, HUANG S Y, WANG Y K, XU D J, ZHAO Z Q. Effects of miR-495-3p on ovarian granulosa cell functions in goat. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 436-446. (in Chinese)
[30] VELILLA E, IZQUIERDO D, RODRíGUEZ-GONZáLEZ E, LóPEZ-BéJAR M, VIDAL F, PARAMIO M T. Distribution of prepubertal and adult goat oocyte cortical granules during meiotic maturation and fertilisation: Ultrastructural and cytochemical study. Molecular Reproduction and Development, 2004, 68(4): 507-514.
[31] DADASHPOUR DAVACHI N, KOHRAM H, ZARE SHAHNEH A, ZHANDI M, GOUDARZI A, FALLAHI R, MASOUDI R, YOUSEFI A R, BARTLEWSKI P M. The effect of conspecific ampulla oviductal epithelial cells duringmaturation on oocyte developmental competence and maturation-promoting factor (MPF) activity in sheep. Theriogenology, 2017, 88: 207-214.
[32] TIAN C L, LIU L L, YE X Y, FU H F, SHENG X Y, WANG L L, WANG H S, HENG D, LIU L. Functional oocytes derived from granulosa cells. Cell Reports, 2019, 29(13): 4256-4267.e9.
[33] MICHLEWSKI G, CáCERES J F. Post-transcriptional control of miRNA biogenesis. RNA, 2019, 25(1): 1-16.
[34] WANG L L, LI C, LI R, DENG Y L, TAN Y X, TONG C, QI H B. microRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cellular & Developmental Biology Animal, 2016, 52(3): 365-373.
[35] LIU Y F, CHEN Y L, ZHOU Z Y, HE X Y, TAO L, JIANG Y T, LAN R, HONG Q H, CHU M X. Chi-miR-324-3p regulates goat granulosa cell proliferation by targeting DENND1A. Frontiers in Veterinary Science, 2021, 8: 732440.
[36] AN X P, MA H D, LIU Y H, LI F, SONG Y X, LI G, BAI Y Y, CAO B Y. Effects of miR-101-3p on goat granulosa cellsand ovarian developmentvia STC1. Journal of Animal Science and Biotechnology, 2020, 11: 102.
[37] YUE E K, CAO H, LIU B H. OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in. Plants, 2020, 9(10): 1337.
[38] YIN Y, ZHANG L, LI Y, ZHANG C, HE A Q. Gab2 plays a carcinogenic role in ovarian cancer by regulating CrkII. Journal of Ovarian Research, 2023, 16(1): 79.
[39] TIAN L Q, LIU E Q, ZHU X D, WANG X G, LI J, XU G M. microRNA-197 inhibits cell proliferation by targeting GAB2 in glioblastoma. Molecular Medicine Reports, 2016, 13(5): 4279-4288.
[40] GUO L P, LI B L, MIAO M J, YANG J J, JI J S. microRNA-663b targets GAB2 to restrict cell proliferation and invasion in hepatocellular carcinoma. Molecular Medicine Reports, 2019, 19(4): 2913-2920.
[41] MU L J, GUAN B, TIAN J H, LI X, LONG Q Z, WANG M Y, WANG W, SHE J J, LI X D, WU D P, DU Y F. microRNA-218 inhibits tumor angiogenesis of human renal cell carcinoma by targeting GAB2. Oncology Reports, 2020, 44(5): 1961-1970.
[42] KNIGHT Z A, GONZALEZ B, FELDMAN M E, ZUNDER E R, GOLDENBERG D D, WILLIAMS O, LOEWITH R, STOKOE D, BALLA A, TOTH B, BALLA T, WEISS W A, WILLIAMS R L, SHOKAT K M. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell, 2006, 125(4): 733-747.
[43] HUNZICKER-DUNN M E, LOPEZ-BILADEAU B, LAW N C, FIEDLER S E, CARR D W, MAIZELS E T. PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): E2979-E2988.
[44] WEI Q Y, XUE H Q, SUN C J, LI J, HE H R, AMEVOR F K, TAN B, MA M G, TIAN K, ZHANG Z C, ZHANG Y, HE H, XIA L, ZHU Q, YIN H D, CUI C. Gga-miR-146b-3p promotes apoptosis and attenuate autophagy by targeting AKT1 in chicken granulosa cells. Theriogenology, 2022, 190: 52-64.
[45] LI Y Y, WU X H, MIAO S B, CAO Q Y. miR-383-5p promotes apoptosis of ovarian granulosa cells by targeting CIRP through the PI3K/AKT signaling pathway. Archives of Gynecology and Obstetrics, 2022, 306(2): 501-512.
[46] YUAN J S, DENG Y, ZHANG Y Y, GAN X, GAO S Y, HU H, HU S Q, HU J W, LIU H H, LI L, WANG J W.inhibits goose granulosa cell apoptosisPI3K/AKT/Caspase-9 signaling pathway. Animal Reproduction Science, 2019, 200: 86-95.
[47] LI X Y, CHEN H L, ZHANG Z L, XU D J, DUAN J X, LI X D, YANG L, HUA R M, CHENG J Y, LI Q W. Isorhamnetin promotes estrogen biosynthesis and proliferation in porcine granulosa cells via the PI3K/akt signaling pathway. Journal of Agricultural and Food Chemistry, 2021, 69(23): 6535-6542.
miR-535 Targets the GAB2 Gene to Promote Goat Granulosa Cell Proliferation Through Activation of the PI3K/AKT Signaling Pathway
WANG Peng, LIU ZiYi, LIU YuFang, CHU MingXing
Institute of Animal Science, Chinese Academy of Agricultural Sciences/State Key Laboratory of Animal Biotech Breeding, Beijing 100193
【Background】MicroRNAs (miRNAs) are short RNA molecules of 18-25 nt in length that play an important role in the regulation of follicle development in mammalian ovary granulosa cells (GCs). The previous sequencing of the transcriptome of the ovaries of high and low kidding individuals in Yunshang black goats showed that miR-535 was able to influence the kidding number of goats, but the specific regulatory mechanism was not yet clear. 【Objective】The aim of this study was to investigate the molecular mechanisms of miR-535 targeting the GRB2 associated binding protein 2 () and its associated signaling pathway PI3K/AKT affected the proliferation of goat GCs, so as to further investigate the molecular biological regulation mechanism. 【Method】In this study, three high- and low-fertility Yunshang black goats with the kidding number record of more than two litters were selected, and their follicular ovarian tissues were collected after synchronous estrus treatment for collecting primary GCs. The expression of miR-535 andvector was constructed and the effect of candidateon the proliferation of goat GCs was detected using RT-qPCR, Western blot, immunofluorescence, CCK8, EdU and Apoptosis, respectively. The prediction of the targeted relationship between miR-535 andwas performed with miRDB and miRanda software. The Wild-type and Mutant vectors ofwere constructed and the targeting relationship between miR-535 andwas detected by the dual luciferase activity assay. The overexpression/inhibitor miR-535 vector was constructed to explore the effect of its GCs proliferation and downstream gene function. 【Result】The RT-qPCR results showed that the expression ofwas significantly lower in ovarian tissues of Yunshang black goats with high-fertility than that in low-fertility groups, and the expression of miR-535 was the opposite (<0.05). The results of RT-qPCR and Western blot showed that the expression of CCND2, CDK4 and BCL2 was significantly increased (<0.05), while the expression of BAX was significantly decreased (<0.05) after overexpression of<0.05). Dual luciferase reporter assays showed that miR-535 inhibited dual luciferase activity in the 3'UTR region of the GAB2 gene. The results of RT-qPCR and Western blot showed that the expression of GAB2, CCND2, CDK4 and BCL2 in goat GCs was significantly decreased and the expression of BAX was significantly increased after miR-535 overexpression, while the opposite was true after miR-535 inhibition (<0.05). Both EdU and CCK8 assays showed that miR-535 overexpression significantly inhibited the proliferation of GCs, while the opposite was true after miR-535 inhibition (<0.05). Apoptosis assays showed that miR-535 overexpression promoted GCs proliferation and the opposite was true after inhibition of its expression. The expression levels of the PI3K/AKT signaling pathway marker AKT in goat GCs were significantly increased after inhibition of miR-535, respectively (<0.05). 【Conclusion】In conclusion, the results of this study suggested that miR-535 inhibited the proliferation of goat granulosa cells by suppressing the expression of. These results provided a theoretical basis for further investigation of the biological functions of miR-535 regulating goat GCs.
goat kidding number; ovarian granulosa cell proliferation; GAB2gene; miR-535; P13K/AKT signaling pathway
10.3864/j.issn.0578-1752.2023.23.016
2023-03-24;
2023-08-31
國(guó)家自然科學(xué)基金(32102509)、財(cái)政部和農(nóng)業(yè)農(nóng)村部國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-38)、中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(CAAS- ZDRW202106和ASTIP-IAS13)
王鵬,E-mail:wp05223414@163.com。通信作者劉玉芳,E-mail:aigaiy@126.com。通信作者儲(chǔ)明星,E-mail:mxchu@263.net
(責(zé)任編輯 林鑒非)