李 清,許博文,黃 晨,于冰冰,王 凱,袁 琿
(中國(guó)礦業(yè)大學(xué)(北京) 力學(xué)與建筑工程學(xué)院,北京 100083)
在地下工程中,巖體通常存在大量缺陷,當(dāng)其受開挖等工程擾動(dòng)影響,內(nèi)部缺陷附近就會(huì)產(chǎn)生應(yīng)力集中現(xiàn)象,致使其應(yīng)力場(chǎng)發(fā)生改變,嚴(yán)重時(shí)會(huì)影響圍巖的完整性,甚至造成巖體力學(xué)性質(zhì)的削弱,最終導(dǎo)致圍巖結(jié)構(gòu)失穩(wěn)[1-4]。因此,對(duì)沖擊荷載下含缺陷介質(zhì)的動(dòng)態(tài)斷裂行為進(jìn)行深入研究具有重要的工程意義。
很多學(xué)者應(yīng)用動(dòng)態(tài)焦散線實(shí)驗(yàn)系統(tǒng)在該方面做了許多研究,取得大量成果。王雁冰利用數(shù)字激光動(dòng)態(tài)焦散線試驗(yàn)系統(tǒng)[5],進(jìn)行雙孔爆破爆炸應(yīng)力波作用下缺陷介質(zhì)裂紋擴(kuò)展試驗(yàn)。研究了含水平預(yù)制裂紋和豎直預(yù)制裂紋的介質(zhì)裂紋擴(kuò)展路徑、速度、加速度和裂尖動(dòng)態(tài)應(yīng)力強(qiáng)度因子變化規(guī)律。李清采用新型數(shù)字激光動(dòng)態(tài)焦散線試驗(yàn)系統(tǒng)[6],對(duì)含孔洞缺陷和預(yù)制邊裂紋的半圓盤試件進(jìn)行三點(diǎn)彎曲梁動(dòng)態(tài)沖擊實(shí)驗(yàn),從裂紋擴(kuò)展速度與應(yīng)力強(qiáng)度因子兩個(gè)方面對(duì)其影響性進(jìn)行分析。李清等采用新型數(shù)字激光動(dòng)態(tài)焦散線試驗(yàn)系統(tǒng)[7],將裂紋缺陷介質(zhì)相互垂直或共線為變量,以有機(jī)玻璃(PMMA)為試驗(yàn)材料,研究其在動(dòng)荷載作用下的動(dòng)態(tài)斷裂特性。楊立云運(yùn)用新型數(shù)字激光動(dòng)態(tài)焦散線試驗(yàn)系統(tǒng)以及施加動(dòng)載系統(tǒng)完成了動(dòng)態(tài)焦散線試驗(yàn)[8],得到了裂紋的焦散線圖片與主裂紋的起裂時(shí)間。楊仁樹采用數(shù)字激光動(dòng)態(tài)焦散線試驗(yàn)方法[9],進(jìn)行了含圓形孔缺陷的沖擊試驗(yàn),從裂紋軌跡、擴(kuò)展速度、動(dòng)態(tài)應(yīng)力強(qiáng)度因子三個(gè)方面研究了運(yùn)動(dòng)裂紋與圓形孔缺陷的相互作用機(jī)制。趙勇為了研究沖擊荷載作用下脆性材料中運(yùn)動(dòng)裂紋與靜止裂紋的相互作用[10],采用數(shù)字激光動(dòng)態(tài)焦散實(shí)驗(yàn)系統(tǒng)選取有機(jī)玻璃(PMMA)作為實(shí)驗(yàn)材料進(jìn)行三點(diǎn)彎曲實(shí)驗(yàn),并結(jié)合幾何分形理論進(jìn)行研究。楊仁樹為了研究預(yù)制裂紋不同偏移距離時(shí)運(yùn)動(dòng)裂紋與空孔的相互作用規(guī)律[11],采用動(dòng)態(tài)焦散線實(shí)驗(yàn)系統(tǒng),將預(yù)制裂紋的偏移距離設(shè)定為唯一變量,對(duì)含空孔的有機(jī)玻璃(PMMA)試件進(jìn)行沖擊三點(diǎn)彎實(shí)驗(yàn)。
在裂紋擴(kuò)展規(guī)律和應(yīng)力強(qiáng)度因子研究方面,亦有許多學(xué)者展開了大量研究。鄭昌達(dá)為了探究沖擊荷載下巷道圍巖不同角度徑向裂紋的破壞機(jī)制[12],采用落錘沖擊加載平臺(tái)和數(shù)字激光動(dòng)態(tài)焦散線實(shí)驗(yàn)系統(tǒng),以有機(jī)玻璃(PMMA)為試驗(yàn)材料,進(jìn)行沖擊荷載下半圓孔上不同角度裂紋的三點(diǎn)彎曲梁動(dòng)態(tài)斷裂試驗(yàn)。梅比為了研究三點(diǎn)彎曲梁中不同直徑和位置的圓孔形缺陷對(duì)裂紋擴(kuò)展的影響[13],采用動(dòng)態(tài)焦散線實(shí)驗(yàn)系統(tǒng)對(duì)含圓孔型缺陷的有機(jī)玻璃(PMMA)材料進(jìn)行沖擊斷裂力學(xué)實(shí)驗(yàn),從圓孔直徑、裂紋擴(kuò)展速度、動(dòng)態(tài)應(yīng)力強(qiáng)度因子三個(gè)方面進(jìn)行了分析。張召冉為了研究空孔及其缺陷在爆炸荷載作用下的擴(kuò)展行為和作用機(jī)理[14],以有機(jī)玻璃(PMMA)為試驗(yàn)材料,借助動(dòng)態(tài)焦散線系統(tǒng)和理論分析為手段研究不同間距下空孔、空孔處預(yù)制裂紋、爆生裂紋動(dòng)態(tài)擴(kuò)展規(guī)律及機(jī)理。楊立云采用動(dòng)靜組合加載試驗(yàn)裝置和焦散線實(shí)驗(yàn)系統(tǒng)[15],以有機(jī)玻璃(PMMA)為試驗(yàn)對(duì)象,從裂紋擴(kuò)展模式、應(yīng)力集中程度進(jìn)行分析,得到了切槽與水平方向呈不同角度(0°、45°、90°)下的初始應(yīng)力場(chǎng)對(duì)爆生裂紋擴(kuò)展規(guī)律的影響效應(yīng)。楊仁樹采用數(shù)字激光動(dòng)態(tài)焦散線實(shí)驗(yàn)系統(tǒng)[16],研究了爆炸荷載作用下空孔缺陷對(duì)裂紋擴(kuò)展的作用以及規(guī)律。
然而,目前研究缺陷的形狀以圓孔形為主,條形缺陷研究較少,并且對(duì)不同位置的裂紋缺陷影響研究深度不足,對(duì)動(dòng)態(tài)裂紋斷裂的研究還不夠全面和系統(tǒng),需要進(jìn)一步實(shí)驗(yàn)分析與探討。本文利用數(shù)字激光動(dòng)態(tài)焦散線實(shí)驗(yàn)系統(tǒng)和落錘沖擊實(shí)驗(yàn)系統(tǒng),以有機(jī)玻璃(PMMA)作為實(shí)驗(yàn)材料,將條形裂紋缺陷的高度作為變量,研究不同高度下三點(diǎn)彎曲梁構(gòu)件的動(dòng)態(tài)裂紋擴(kuò)展規(guī)律。
類似于光的反射和折射等原理,當(dāng)試件表面存在不同程度的凹陷或其他變化,平行光射入材料厚度變化的區(qū)域會(huì)發(fā)生偏移,形成一個(gè)空間三維包絡(luò)面,于試件一定距離放一個(gè)與試件表面平行的參考平面用來(lái)捕捉包絡(luò)面,則能在參考平面上看到三維包絡(luò)面在該位置的橫截面圖像,圖像中的明亮曲線就是焦散線,它所包圍著的陰影區(qū)就是焦散斑,如圖1所示。
圖1 焦散線成像示意圖Fig. 1 Caustic line imaging schematic
數(shù)字激光動(dòng)態(tài)焦散線實(shí)驗(yàn)系統(tǒng)能夠?qū)崟r(shí)記錄裂紋動(dòng)態(tài)起裂、擴(kuò)展的全過(guò)程,圖2為其示意圖,實(shí)驗(yàn)中落錘與加載頭接觸的同時(shí)觸發(fā)高速攝像機(jī)開關(guān)。光源采用綠色激光光源,光強(qiáng)范圍在0~200 mW之間,實(shí)驗(yàn)光強(qiáng)設(shè)置為100 mW。高速攝像機(jī)最大拍攝速度為150 000 fps,照片分辨率為192 pixel×184 pixel。
圖2 數(shù)字激光動(dòng)態(tài)焦散線實(shí)驗(yàn)系統(tǒng)示意圖Fig. 2 Schematic diagram of digital laser dynamic caustic line experiment system
本實(shí)驗(yàn)沖擊加載裝置采用落錘沖擊加載系統(tǒng),用夾具將試件固定充當(dāng)支座,試件距兩端10 mm,落錘高度45 cm,位于試件中間正上方,落錘沖擊加載速度大概為2.97 m/s,示意圖如圖3所示。
圖3 落錘加載系統(tǒng)示意圖Fig. 3 Schematic diagram of the drop weight loading system
試驗(yàn)采用PMMA即有機(jī)玻璃作為實(shí)驗(yàn)材料,材料尺寸為220 mm×60 mm×5 mm。設(shè)計(jì)不同高度條形缺陷梁構(gòu)件以研究其高度變化對(duì)動(dòng)態(tài)斷裂行為的影響。在試件底部中央設(shè)有8 mm長(zhǎng)的預(yù)制裂紋,切縫寬度為0.6 mm,裂尖寬度為0.3 mm,居中設(shè)置不同高度的條形缺陷,條形缺陷寬度3 mm,長(zhǎng)度為30 mm,缺陷底部距梁底邊分別為22 mm、28.5 mm、35 mm,如圖4所示。
圖4 試驗(yàn)?zāi)P褪疽鈭D(單位:mm)Fig. 4 Schematic diagram of the experimental model(unit:mm)
為了保證實(shí)驗(yàn)結(jié)果的可靠性,每類試件試驗(yàn)6次,選取實(shí)驗(yàn)結(jié)果最好的試件進(jìn)行分析。如圖5所示分別為缺陷高度22、28.5、35 mm的裂紋擴(kuò)展圖像。
圖5 裂紋擴(kuò)散的焦散線圖片F(xiàn)ig. 5 Caustic line Picture of crack propagation
三種情況下,應(yīng)力波到達(dá)裂紋尖端的時(shí)間非常接近,均為80 μs左右,說(shuō)明條形缺陷的高度對(duì)應(yīng)力波的傳播影響不大。三種情況下裂紋起裂時(shí)間接近,均為190 μs左右,起裂時(shí)焦散斑直徑均為7.9 mm。裂紋起裂后焦散斑直徑增大,位置高度為22、28.5、35 mm的構(gòu)件在第一階段焦散斑直徑最大值分別為8.3、8.7、9 mm,當(dāng)焦散斑擴(kuò)展至缺陷位置,其直徑開始減小,整個(gè)階段均為Ⅰ型裂紋。
觀察構(gòu)件裂紋貫通處的亮斑變化,在第二階段當(dāng)裂紋貫通后,能量在缺陷兩側(cè)位置積累并釋放焦散斑,致其直徑不斷增大且兩側(cè)對(duì)稱。經(jīng)過(guò)600 μs左右,焦散斑直徑達(dá)到起裂前最大值,此時(shí)焦散斑脫離陰影區(qū)呈現(xiàn)鴨蛋狀,為Ⅰ-Ⅱ復(fù)合型裂紋,裂紋同時(shí)受正應(yīng)力和剪切力作用。裂紋擴(kuò)展時(shí),焦散斑最大直徑分別為11.5、11.2、10.1 mm,最小直徑分別為10.4、10.1、8.8 mm,隨著裂紋的擴(kuò)展,焦散斑直徑先增大后不斷減小,并在最后階段有所波動(dòng)。
2.2.1 裂紋擴(kuò)展速度計(jì)算公式
動(dòng)態(tài)焦散線試驗(yàn)采用數(shù)字?jǐn)z影機(jī)對(duì)焦散線的圖像進(jìn)行捕捉,后用計(jì)算機(jī)軟件PS準(zhǔn)確地量出隨時(shí)間推移裂紋尖端的相對(duì)坐標(biāo)。
利用“中點(diǎn)公式”法計(jì)算裂紋的擴(kuò)展速率,該算法精度高且計(jì)算過(guò)程便捷,裂紋擴(kuò)展在某一時(shí)刻速率表達(dá)式如下
(1)
式中:t為裂紋擴(kuò)展的相對(duì)時(shí)間;L(t+1)和L(t-1)表示焦散斑圖像中t時(shí)刻前后兩幅圖片裂紋尖端焦散斑的位置。
2.2.2 裂紋擴(kuò)展速度變化規(guī)律
不同高度條形缺陷的梁構(gòu)件在落錘沖擊下裂紋擴(kuò)展速度和距離的關(guān)系如圖6所示。
圖6 裂紋擴(kuò)展速度隨距離變化圖像Fig. 6 Crack propagation velocity with distance image
對(duì)比缺陷高度22 mm、28.5 mm、35 mm的三個(gè)試件。第一階段最大速度分別為247.49 m/s、292.49 m/s和284.99 m/s,平均速度分別為230 m/s、267.49 m/s和258 m/s,由數(shù)據(jù)可知,缺陷高度為28.5 mm的梁構(gòu)件比缺陷高度為22 mm的梁構(gòu)件最大速度和平均速度分別增加18.18%、16.3%,這說(shuō)明隨著缺陷高度增加,預(yù)制裂紋的擴(kuò)展速度呈上升趨勢(shì),這是由于增加的缺陷高度對(duì)裂紋擴(kuò)展的抑制作用逐漸減弱;缺陷高度為35 mm的梁構(gòu)件較缺陷高度為28.5 mm的梁構(gòu)件最大速度和平均速度相差不大,說(shuō)明即使抑制作用減弱,裂紋擴(kuò)展速度也不會(huì)無(wú)限制地增加,會(huì)在一定范圍內(nèi)波動(dòng)。原因可能為當(dāng)裂紋擴(kuò)展速度超過(guò)一定值時(shí),裂紋尖端的能量釋放率大于裂紋擴(kuò)展所需要的表面能,使得裂紋尖端產(chǎn)生了次裂紋,增加了粗糙程度,進(jìn)而增加了裂紋尖端的韌度,抑制了擴(kuò)展速度。
第二個(gè)階段分為速度下降、速度振蕩、臨近斷裂三個(gè)區(qū)間,其分界點(diǎn)與裂紋擴(kuò)展偏轉(zhuǎn)點(diǎn)大致相同。速度下降區(qū)間裂紋擴(kuò)展初始速度分別為634.42 m/s、524.97 m/s、377.67 m/s,隨著缺陷高度的增加,裂紋初始擴(kuò)展速度逐漸減小。第一區(qū)間的裂紋擴(kuò)展軌跡分別在41 mm、51 mm、56 mm位置處出現(xiàn)第一個(gè)偏轉(zhuǎn)點(diǎn),此時(shí)裂紋擴(kuò)展軌跡大幅度向沖擊荷載作用點(diǎn)處傾斜;進(jìn)入第二區(qū)間,裂紋擴(kuò)展速度平均值分別為275 m/s、237 m/s、169 m/s,隨著缺陷高度的增加,裂紋擴(kuò)展速度逐漸減小,對(duì)于缺陷高度為22 mm和28.5 mm的試件,裂紋擴(kuò)展速度發(fā)生振蕩,這是應(yīng)力波和裂紋尖端相互作用的結(jié)果,對(duì)于缺陷高度為35 mm的試件,裂紋擴(kuò)展速度在第二階段仍舊急速下降。當(dāng)裂紋分別擴(kuò)展到56 mm、58 mm、58 mm處時(shí),裂紋開始逐步增加向上擴(kuò)展的幅度,出現(xiàn)第二個(gè)偏轉(zhuǎn)點(diǎn);進(jìn)入第三區(qū)間,裂紋擴(kuò)展速度大幅下降,試件逐漸斷裂。
2.3.1 應(yīng)力強(qiáng)度因子計(jì)算公式
根據(jù)相關(guān)文獻(xiàn)資料[17],焦散線應(yīng)力強(qiáng)度因子的計(jì)算公式表示為
(2)
(3)
式中:Dmax為焦散線的最大直徑;z0為試件到參考平面的距離;d為試件的實(shí)際厚度;Ed為動(dòng)態(tài)彈性模量;λ為動(dòng)態(tài)泊松比;g為應(yīng)力強(qiáng)度數(shù)值因子;μ為應(yīng)力強(qiáng)度因子比例系數(shù)。
有機(jī)玻璃試件的動(dòng)態(tài)力學(xué)參數(shù)如表1所示。
表1 有機(jī)玻璃的動(dòng)態(tài)力學(xué)參數(shù)Table 1 Dynamic mechanical parameters of plexiglass
2.3.2 應(yīng)力強(qiáng)度因子變化規(guī)律
根據(jù)公式(2)與(3)計(jì)算出長(zhǎng)條形缺陷裂紋的應(yīng)力強(qiáng)度因子,其與距離關(guān)系曲線如圖7所示。
圖7 應(yīng)力強(qiáng)度因子隨距離變化圖像Fig. 7 Image of stress intensity factor as a function of distance
比較缺陷高度為22 mm、28.5 mm、35 mm的三組實(shí)驗(yàn)。第一階段,預(yù)制裂紋的起裂韌度相同,說(shuō)明缺陷高度對(duì)預(yù)制裂紋的斷裂韌度沒(méi)有影響。隨著缺陷高度的增加,三組實(shí)驗(yàn)振蕩區(qū)間的應(yīng)力強(qiáng)度因子平均值分別為1.480 MPa/m3/2、1.665 MPa/m3/2、1.812 MPa/m3/2,提升了12.5 %、8.83 %,這說(shuō)明缺陷高度的增加使裂紋尖端的能量越來(lái)越大,但速度卻并沒(méi)有一直增加,驗(yàn)證了之前的推測(cè)。
第二階段的應(yīng)力強(qiáng)度因子變化可分為三個(gè)區(qū)間。第一個(gè)區(qū)間,起裂時(shí)Ⅰ型應(yīng)力強(qiáng)度因子分別為3.281 MPa/m3/2、3.192 MPa/m3/2、2.876 MPa/m3/2,分別比第一階段的起裂韌度增加了121.69%、91.7%、58.72%,受缺陷位置鈍化效應(yīng)的影響,Ⅰ型韌度隨著缺陷高度的增加而減小。Ⅱ型起裂韌度分別為1.254 MPa/m3/2、1.319 MPa/m3/2、1.398 MPa/m3/2,隨著缺陷高度的增加而變大,Ⅱ型起裂韌度在第一區(qū)間逐漸減小至零,Ⅰ-Ⅱ復(fù)合型裂紋轉(zhuǎn)變?yōu)棰裥土鸭y,進(jìn)入第二區(qū)間;第二區(qū)間的Ⅱ型起裂應(yīng)力強(qiáng)度因子幾乎為零,說(shuō)明該區(qū)間軌跡中正應(yīng)力占據(jù)主導(dǎo)地位,剪切力較小,Ⅰ型應(yīng)力強(qiáng)度因子減小速率放緩,在偏轉(zhuǎn)點(diǎn)處有所增加之后開始振蕩變化,應(yīng)力強(qiáng)度因子平均值分別為2.596 MPa/m3/2、2.074 MPa/m3/2、1.941 MPa/m3/2,隨著缺陷高度的增加,應(yīng)力強(qiáng)度因子逐漸減小;進(jìn)入第三區(qū)間,應(yīng)力強(qiáng)度因子快速下降,直至斷裂。
利用數(shù)字激光動(dòng)態(tài)焦散線實(shí)驗(yàn)系統(tǒng)和落錘沖擊試驗(yàn)系統(tǒng),針對(duì)不同高度的條形缺陷三點(diǎn)彎曲梁構(gòu)件,從裂紋運(yùn)動(dòng)軌跡、擴(kuò)展速度和應(yīng)力強(qiáng)度因子三個(gè)方面進(jìn)行分析,研究結(jié)果表明:
1)含條形缺陷梁構(gòu)件的斷裂分為兩個(gè)階段,第一階段是構(gòu)件起裂到貫通缺陷,裂紋類型為Ⅰ型裂紋;第二階段是缺陷起裂到梁構(gòu)件整體斷裂,裂紋類型由Ⅰ-Ⅱ復(fù)合型裂紋經(jīng)偏轉(zhuǎn)化為Ⅰ型裂紋。
2)裂紋擴(kuò)展速度受缺陷高度的影響,隨著缺陷高度的增加,第一階段裂紋擴(kuò)展速度先增大后在300 m/s附近波動(dòng),第二階段裂紋擴(kuò)展速度呈現(xiàn)減小趨勢(shì)。
3)裂紋應(yīng)力強(qiáng)度因子受缺陷高度影響,第一階段裂紋起裂應(yīng)力強(qiáng)度因子隨著缺陷高度的增加而變大;第二階段Ⅰ型應(yīng)力強(qiáng)度因子隨著缺陷高度的增加而減小,Ⅱ型應(yīng)力強(qiáng)度因子則增大。
4)通過(guò)比較裂紋擴(kuò)展速度和應(yīng)力強(qiáng)度因子的圖像可以看出,二者相似度極高。裂紋的擴(kuò)展速度是動(dòng)能的體現(xiàn),而應(yīng)力強(qiáng)度因子是應(yīng)變能的體現(xiàn),由于裂紋擴(kuò)展的復(fù)雜性,速度的增加往往會(huì)引起裂紋尖端次裂紋的產(chǎn)生或者主裂紋發(fā)生偏轉(zhuǎn),裂紋的粗糙程度增加,導(dǎo)致表面能產(chǎn)生變化,因此二者不能保證完全相同的變化規(guī)律。