吳瀟 胡楊 蒙小玉 崔艷波 郎肖璇 齊開杰 張巖 張紹鈴 殷豪
摘? ? 要:【目的】通過對不同有機溶劑提取梨果皮蠟質(zhì)的安全性和有效性進行比較和鑒定,以篩選出低毒、高效的果皮蠟質(zhì)提取溶劑,替代傳統(tǒng)毒性較高的提取溶劑——三氯甲烷,為梨果皮蠟質(zhì)相關(guān)研究工作奠定基礎(chǔ)。【方法】以翠冠梨成熟果實為試材,用三氯甲烷(對照)和7種毒性相對較低的有機溶劑(碳酸二甲酯、乙醚、乙酸丁酯、丙酮、乙酸乙酯、甲醇、正己烷)分別提取果皮蠟質(zhì),并通過氣相色譜-質(zhì)譜聯(lián)用儀進行蠟質(zhì)組分檢測,比較不同有機溶劑的毒性與蠟質(zhì)提取效果?!窘Y(jié)果】通過比較分析發(fā)現(xiàn),甲醇和乙醚的蠟質(zhì)提取效果整體較差;乙酸丁酯提取效果好于三氯甲烷,且毒性為三氯甲烷的1/14,但其揮發(fā)性差;正己烷雖然毒性最低,對烷烴提取效果較好,但其對萜類物質(zhì)的提取效果較差,且屬易燃易爆危化品。因此,這4種有機溶劑均不宜作為改良溶劑。丙酮提取萜類化合物含量為三氯甲烷的3倍,因此可以用作果皮萜類化合物提取的改良溶劑;乙酸乙酯的半數(shù)致死量(median lethal dose,LD50)為5620 mg·kg-1,毒性為三氯甲烷的1/6,且蠟質(zhì)提取效果優(yōu)于三氯甲烷,可作為替代溶劑;而碳酸二甲酯的LD50為13 000 mg·kg-1,毒性僅為三氯甲烷的1/14,提取效果與三氯甲烷相當,可作為替代溶劑?!窘Y(jié)論】丙酮是提取萜類的優(yōu)勢型溶劑,可作為改良溶劑。乙酸乙酯蠟質(zhì)提取效果優(yōu)于三氯甲烷和碳酸二甲酯,且毒性較低,可作為蠟質(zhì)提取最優(yōu)溶劑。篩選出來的溶劑將有助于植物表皮蠟質(zhì)提取及相關(guān)組分研究工作。
關(guān)鍵詞:梨;蠟質(zhì);有機溶劑
中圖分類號:S661.2 文獻標志碼:A 文章編號:1009-9980(2023)12-2562-12
收稿日期:2023-05-18 接受日期:2023-09-18
基金項目:南京市農(nóng)業(yè)科技產(chǎn)學研合作專項(2022RHCXY江寧05);三亞崖州灣科技城科技專項資助(SCKJ-JYRC-2022-60);中央高?;究蒲袠I(yè)務費專項資金資助(KYQN2023031);江蘇省自然科學基金青年項目(BK20221011);國家自然科學基金青年項目(32202411);中國博士后科學基金第4批特別資助(站前)(2022TQ0160);“卓博計劃”項目資助(2022ZB338)
作者簡介:吳瀟,男,在站博士后,研究方向為梨果皮蠟質(zhì)代謝產(chǎn)物解析與形成分子機制。E-mail:wuxiao@njau.edu.cn。#為共同第一作者。
*通信作者 Author for correspondence. E-mail:yinhao@njau.edu.cn
Comparison of cuticular wax extraction from pear fruit by different organic solvents
WU Xiao1, 2, 3, HU Yang1, 2, 3#, MENG Xiaoyu1, 2, 3, CUI Yanbo4, LANG Xiaoxuan1, 2, 3, QI Kaijie1, 2, 3, ZHANG Yan5, ZHANG Shaoling1, 2, 3, YIN Hao1, 2, 3*
(1Sanya Institute of Nanjing Agricultural University, Sanya 572024, Hainan, China; 2Suining Pear Industry Research Institute of Nanjing Agricultural University, Xuzhou 221299, Jiangsu, China; 3College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; 4Nanjing Ningcui Biological Seed Industry Co., Ltd, Nanjing 211121, Jiangsu, China; 5Suining Fruit Mulberry Technical Guidance Station of Agricultural Extension Center, Xuzhou 221000, Jiangsu, China)
Abstract: 【Objective】 Establishing a comprehensive extraction protocol is the foundation for studying plant cuticular wax. Currently, organic reagents widely used in the study of extraction of plant cuticular wax, such as chloroform, dichloromethane, etc., are mostly highly toxic and pose certain risks to the physical and mental health of experimental personnel. Therefore, the safety and effectiveness of different organic solvents for extracting pear peel cuticular wax were compared and identified in this study, in order to screen out low-toxic and efficient extraction solvents for pear peel cuticular wax, and replace the chloroform of traditional extraction solvent with higher toxicity, laying a foundation for pear peel cuticular wax related research work. 【Methods】The fruit of Cuiguan pear at 90 days after flowering was used as test material, and the cuticular wax of peel was extracted using chloroform as control group and seven other organic solvents with relatively low toxicity, including dimethyl carbonate, ether, butyl acetate, acetone, ethyl acetate, methanol, and n-hexane. The components of cuticular wax extracted by these different solvents were detected by gas chromatography-mass spectrometry (GC-MS), and the extraction effect of cuticular wax were also compared from different perspectives such as the number of extracted cuticular wax compounds, content of total cuticular wax, and content of specific compounds. 【Results】 The number of cuticular wax compounds extracted from pear peel using two solvents, methanol and ether, is the least, with only 28 and 24, respectively, which have a generally low affection of cuticular wax extraction. Thirty-eight compounds of cuticular wax were extracted using butyl acetate, slightly lower than the number of compounds of cuticular wax extracted using chloroform, and the distribution of the extracted compounds of cuticular wax is similar to that of chloroform. Therefore, the extraction effect of butyl acetate was similar to that of chloroform. In addition, the volatility of butyl acetate was much lower than that of chloroform, even though it was detected with higher extraction effect and much lower toxicity (1/14 toxicity of chloroform). Although n-hexane had the lowest toxicity and good extraction effect on alkanes, accounting for 73.7% of the total wax, its extraction effect on terpenoids was insufficient, only accounting for 6.3% of the total wax, and it also belongs to flammable and explosive hazardous chemicals. Taken together, these four organic solvents are not suitable as improved solvents for extracting cuticular wax. On the contrary, the content of total cuticular wax extracted using acetone was the highest among all groups (0.56 mg·cm-2) and was 2.3 times higher than that of chloroform. Thirty-six compounds of cuticular wax were extracted using acetone, slightly lower than the number of cuticular wax extracted by chloroform. The content of terpenoids extracted using acetone was almost three times higher than that of chloroform. Therefore it could be used as an improved solvent for the extraction of terpenoids from pear pericarp. The number of compounds of cuticular wax extracted using ethyl acetate was the highest, up to 41, and the distribution of the extracted compounds of cuticular wax was similar to that of chloroform. Ethyl acetate, which has 1/6 toxicity of chloroform, was found to have a higher efficiency of cuticular wax extraction than chloroform. Thus it could be used as an alternative cuticular wax extraction solvent. In addition, the number of extracted cuticular wax compounds, content of total cuticular wax, and content of specific compound extracted were detected using dimethyl carbonate, which has similar wax extraction effect compared with chloroform but its toxicity was only 1/14 of chloroform. The results indicated that it could be an alternative solvent for extracting pear peel cuticular wax. Fifty-four wax compounds found in eight organic solvent detection were analyzed through principal component analysis (PCA). The eight organic solvent detection could be divided into five groups based on the relationships between organic solvents (scores) and their 54 wax compounds (loadings). Butyl acetate and ethyl acetate formed the first group, which were characterized by high concentrations of nonacosane in the extraction. Group two contained acetone and ether, which were characterized with high concentrations of terpenoids and low concentrations of alkanes. Group three including methanol, which were mainly characterized by low concentrations of terpenoids and alkanes. n-hexane characterized by high concentrations of alkanes and low concentrations of terpenoids in the extract formed group four. The fifth group contained chloroform and dimethyl carbonate with no significant characteristics. 【Conclusion】 Acetone was the dominant solvent for the extraction of terpenoids from pear fruit peel and can be used as an improved solvent. The extraction effect of cuticular wax using ethyl acetate was equivalent to that of chloroform and dimethyl carbonate, and it also has lower toxicity, which could be used as the optimal solvent to replace chloroform in the cuticular wax extraction progress. Thus, these selected solvents will be helpful for the work of extraction of cuticular wax and related components in plant.
Key words: Pear; Cuticular wax; Organic solvents
蠟質(zhì)作為植物與外界接觸的第一道屏障,具有控制非氣孔水分散失和氣體交換,保護植物免受紫外線輻射、真菌或昆蟲引起的機械損傷以及其他非生物和生物環(huán)境脅迫的作用[1-2]。角質(zhì)層經(jīng)過索氏提取器分餾后剩余不可溶的殘留物稱為聚合物基質(zhì),經(jīng)酸水解得到角質(zhì),可溶性部分稱為蠟質(zhì)[3]。蠟質(zhì)可以分為表皮外蠟和表皮內(nèi)蠟。外蠟沉積在角質(zhì)層外面,可以通過阿拉伯樹膠從植物表面剝離[4],當外蠟完全去除后,可以用有機溶劑萃取鑲嵌在角質(zhì)層中的內(nèi)蠟[5],完成內(nèi)外蠟的分離。蠟質(zhì)主要是由碳原子數(shù)在18~34碳之間的超長鏈脂肪酸及其衍生物組成,包括醛、烷烴、支鏈烷烴、烯烴、伯醇、仲醇、不飽和脂肪醇、酮和蠟酯等[6]。此外,還含有萜類和其他微量次級代謝物如固醇和類黃酮類物質(zhì)。研究發(fā)現(xiàn)不同植物物種、同一物種的不同基因型和不同地理位置,以及不同的發(fā)育階段和貯藏環(huán)境中表皮蠟質(zhì)組分均存在差異[7-9]。
常用的植物表皮蠟質(zhì)提取方法有兩種:一種是表皮圓片提取法[10-11],其操作簡便,提取溶劑用量少,提取效率高,但該方法會提取出部分果肉中的脂溶性物質(zhì),結(jié)果誤差較大;另一種是整果浸提法[12-13],該方法通過將整果浸泡于溶劑中,需要大量的提取溶劑。兩種方法都是利用有機溶劑的萃取性能對蠟質(zhì)進行提取。因此,選擇合適的有機溶劑對于植物表皮蠟質(zhì)的研究具有重要意義。然而,常用的提取試劑,如三氯甲烷[12]、二氯甲烷[14]等,大多毒性較高,對實驗人員的身心健康具有一定危害。因此,急需對蠟質(zhì)的提取溶劑進行篩選、優(yōu)化,尋找一種低毒甚至無毒的綠色有機溶劑作為蠟質(zhì)提取試劑。目前,關(guān)于溶劑選取、體積配比、浸提時間、提取溫度及不同料液比等對蠟質(zhì)提取效果的影響已經(jīng)有部分研究報道。如Yin等[15]的研究表明先用氯仿和甲醇混合液(體積比3∶1)萃取,再用氯仿提取,蘋果梨果皮蠟質(zhì)提取效果最好。李珍慈等[16]通過研究發(fā)現(xiàn)庫爾勒香梨果皮蠟質(zhì)的最佳條件為三氯甲烷與二氯甲烷混合液(體積比2∶1)作為提取溶劑,1∶2.5(g∶mL)料液比,75 s提取時間。張微等[17]明確了玉露香梨蠟質(zhì)提取的最佳條件為三氯甲烷和二氯甲烷體積比2∶1、提取時間為60 s、提取溫度為40 ℃、料液比為1∶2(g∶mL)。上述方法雖然較好地改善了梨果皮蠟質(zhì)提取的效果,但忽視了三氯甲烷等溶劑毒性對人體健康的危害。筆者在本研究中以三氯甲烷試劑作為對照,另外選取了7種常見的有機溶劑作為提取試劑,以翠冠梨果實為實驗材料進行整果蠟質(zhì)浸提,比較不同溶劑毒性與蠟質(zhì)提取效果,篩選適宜的低毒高效提取溶劑,為后續(xù)蠟質(zhì)的研究工作奠定基礎(chǔ)。
1 材料和方法
1.1 試材及取樣
在南京農(nóng)業(yè)大學梨工程技術(shù)研究中心湖熟基地采集盛花期后90 d的翠冠梨果實樣品。挑選大小一致、無機械損傷、無病蟲害的果實,用網(wǎng)套包裹立即運回實驗室。乙醚、丙酮購自南京農(nóng)業(yè)大學實驗材料供應中心;三氯甲烷(分析純、色譜純)、甲醇購自南京輝亞生物科技有限公司;碳酸二甲酯、乙酸丁酯、乙酸乙酯、正己烷購自南京晚晴化玻儀器有限公司。
1.2 蠟質(zhì)的提取
首先通過先前報道的三維激光掃描測量方法對每個翠冠梨果實表面積精確測定[18],并做好記錄。將翠冠果實置于燒杯中,加入300 mL三氯甲烷提取溶劑浸泡梨果實,用玻璃棒緩慢攪動,避免破壞梨果表皮,提取75 s;向提取液加入2 μL的0.01 g·mL-1二十四烷作為內(nèi)標,使用氮吹儀吹干。接下來,分別使用碳酸二甲酯、乙醚、乙酸丁酯、丙酮、乙酸乙酯、甲醇、正己烷作為提取溶劑按照相同方法提取果實表皮蠟質(zhì)。每個處理3個重復,每個重復6個梨果實。
1.3 蠟質(zhì)的衍生與含量測定
取1 mg吹干的蠟質(zhì)粗提物,加入1 mL氯仿重新溶解,加入40 μL吡啶和40 μL N,O-雙(三甲基硅烷基)三氟乙酰胺[N,O-bis(trimethylsilyl)trifluoroacetamide,BSTFA],70 ℃水浴1 h,再次利用氮吹儀吹干所有試劑,加入1.2 mL色譜級的氯仿溶解。
通過氣相色譜-質(zhì)譜聯(lián)用儀(Bruker 450-GC,Bruker 320-MS)和色譜柱(BR-5MS,30 m× 0.25 mm× 0.25 μm)對提取的樣品進行檢測。氦氣用作載氣,流速為1.2 mL·min-1。采用以下參數(shù):進樣量,1.0 μL;進樣口溫度,280 ℃;傳輸線溫度,280 ℃;離子源溫度,250 ℃;四級桿溫度,150 ℃;電子能量(EI),70 eV;掃描范圍,50~650 m·z-1。升溫程序如下:50 ℃持續(xù)2 min。然后,以40 ℃·min-1的速率將溫度增加到200 ℃,保持2 min。最后,以3 ℃·min-1的速率升高至320 ℃,保持30 min。
蠟質(zhì)成分經(jīng)GC-MS檢測后得到其離子峰,使用70-750-750的篩選條件,依據(jù)NIST 2013質(zhì)譜庫進行檢索判定,確定物質(zhì)種類,并對離子峰進行面積積分,通過物質(zhì)峰面積,內(nèi)標二十四烷峰面積以及梨果實表面積等數(shù)值計算物質(zhì)含量。所有化合物含量相加記為該樣品的總蠟質(zhì)含量。
1.4 數(shù)據(jù)分析
實驗數(shù)據(jù)采用Microsoft Excel 2016與GraphPad Prism 9軟件進行統(tǒng)計和分析,使用方差分析2012軟件進行方差分析,采用Origin 2022進行主成分分析(Principal component analysis,PCA)。所有圖片通過Adobe Illustrator 2021軟件進行組合。
2 結(jié)果與分析
2.1 不同溶劑提取蠟質(zhì)組分數(shù)量差異比較
使用八種提取溶劑對翠冠果實進行整果蠟質(zhì)提取,通過GC-MS檢測梨表皮蠟質(zhì)成分,共檢測到54種化合物(表1)。如圖1所示,乙醚和甲醇提取的蠟質(zhì)化合物數(shù)量最少,分別只有28和24種,提取效果差;乙酸乙酯提取數(shù)量最多,為41種;碳酸二甲酯和三氯甲烷提取數(shù)量相同,均為40種。
2.2 不同溶劑提取蠟質(zhì)總量和組分含量差異比較
如圖2所示,不同溶劑提取梨果皮蠟質(zhì)含量差異顯著,從0.08 mg·cm-2(甲醇)到0.56 mg·cm-2(丙酮)不等。與對照三氯甲烷(0.24 mg·cm-2)相比,丙酮(0.56 mg·cm-2)、乙酸乙酯(0.48 mg·cm-2)、乙酸丁酯(0.36 mg·cm-2)和乙醚(0.32 mg·cm-2)提取的總蠟含量較高,且差異顯著(p<0.05);碳酸二甲酯(0.22 mg·cm-2)提取的總蠟含量與對照相比無顯著差異;甲醇(0.13 mg·cm-2)和正己烷(0.08 mg·cm-2)提取的總蠟含量顯著低于對照。
對8種溶劑提取的含量較高蠟質(zhì)化合物分為7類,相對含量結(jié)果顯示碳酸二甲酯、乙酸乙酯和乙酸丁酯提取的蠟質(zhì)化合物組分與三氯甲烷提取效果相似。這些化合物主要包括烷烴、伯醇、脂肪酸、三萜類、酯、醛,以及其他未分類化合物。其中,碳酸二甲酯提取的蠟質(zhì)化合物占比與三氯甲烷的提取效果無顯著差異,二者提取的烷烴類占比分別為18.7%和15.1%,伯醇占比分別為1.9%和1.6%,脂肪酸占比分別為5.0%和5.2%,三萜類占比分別為71.3%和75.5%,表明兩種溶劑提取蠟質(zhì)組分具有極高相似性。此外,正己烷提取烷烴占比達73.7%,但對三萜類提取效果較差,僅為6.3%。相反,乙醚和丙酮對三萜類化合物的提取效果較好,分別達到88.7%和92.1%,而對烷烴的提取效果較差,僅為6.1%和3.8%。
7類化合物絕對含量表明不同溶劑提取果皮蠟質(zhì)中不同化學組分效果差異顯著(表2),乙酸丁酯提取烷烴效果最好,為66.13 μg·cm-2,而甲醇提取烷烴效果最差,為2.66 μg·cm-2;碳酸二甲酯和三氯甲烷提取的烷烴含量分別為39.10 μg·cm-2和36.31 μg·cm-2,差異不顯著;三氯甲烷提取伯醇效果最好,為5.51 μg·cm-2,丙酮效果最差,僅為0.58 μg·cm-2;對于脂肪酸的提取,乙酸乙酯效果最好,達到14.42 μg·cm-2,甲醇提取率最低,為1.75 μg·cm-2,碳酸二甲酯的提取量高于三氯甲烷,為13.70 μg·cm-2,但差異不顯著。丙酮溶劑對于三萜類化合物的提取效率相對較高,達到518.72 μg·cm-2,其提取出的齊墩果酸含量達到314.99 μg·cm-2,正己烷提取三萜類物質(zhì)的能力最差,僅5.29 μg·cm-2,差異顯著,碳酸二甲酯(155.96 μg·cm-2)和三氯甲烷(175.53 μg·cm-2)的提取效果差異不顯著。綜上,乙酸丁酯和乙酸乙酯提取效果最好;碳酸二甲酯和三氯甲烷提取效果次之,且提取效果無顯著差異;正己烷對烷烴、伯醇、脂肪酸提取效果好,但對三萜類化合物的提取效果極差;丙酮的提取效果與正己烷相反,其可高效提取三萜類物質(zhì);而甲醇對各類物質(zhì)的提取效果均不理想。
2.3 不同溶劑提取梨果皮蠟質(zhì)中不同鏈長化合物和萜類化合物的差異比較
對不同溶劑提取的梨果皮蠟質(zhì)具體化合物進行檢測分析,發(fā)現(xiàn)不同溶劑提取的烷烴C16~C31化合物含量范圍為2.55 μg·cm-2(甲醇溶劑)~65.87 μg·cm-2(乙酸丁酯溶劑)(圖3)。梨果實表皮蠟質(zhì)中的烷烴主要是二十九烷(C29),乙醚、丙酮和甲醇對其提取效果較差,乙酸丁酯、乙酸乙酯和正己烷對C29提取效果較好;不同溶劑提取的伯醇化合物(C22-C28)含量差異較大,丙酮溶劑提取量為0 μg·cm-2,而三氯甲烷提取量達5.51 μg·cm-2,此外,乙醚和甲醇的提取量相對較少,而碳酸二甲酯、乙酸乙酯和乙酸丁酯的提取量較大,與三氯甲烷差異不顯著(圖4-A);碳酸二甲酯對十六烷酸(C16)和二十八烷酸(C28)等脂肪酸(C16-C28)的提取效果最好,達12.56 μg·cm-2,而甲醇的提取效果最差,僅為1.75 μg·cm-2(圖4-B)。此外,筆者發(fā)現(xiàn)丙酮對齊墩果酸、羽扇豆醇、烏發(fā)醇和白樺脂酸等三萜類化合物提取效果最好,為518.72 μg·cm-2,而正己烷的提取效果最差,僅為5.29 μg·cm-2(圖5)。
2.4 不同溶劑提取蠟質(zhì)含量主成分分析
為了進一步了解不同溶劑提取蠟質(zhì)的效果,對提取的54種蠟質(zhì)化合物進行了主成分分析(圖6)。PC1(94.2%)和PC2(4.0%)共描述了98.2%的數(shù)據(jù)差異性。根據(jù)54種蠟質(zhì)化合物主成分分析,將8種溶劑處理分為5類:乙酸丁酯(Ba1-3)和乙酸乙酯(Ea1-3)形成一組,其共同特征是兩種溶劑提取的蠟質(zhì)中二十九烷含量較高;丙酮(A1-3)和乙醚(Ee1-3)為第二組,其蠟質(zhì)提取物中萜類物質(zhì)含量較高,但烷烴含量較低;甲醇(M1-3)因提取的萜類和烷烴含量較低,單獨為第三組;正己烷(H1-3)因提取蠟質(zhì)中烷烴含量較高,萜類物質(zhì)含量最低,單獨構(gòu)成第四組;而三氯甲烷(T1-3)和碳酸二甲酯(Dc1-3)提取的蠟質(zhì)化合物無顯著差異,共同組成第五組(圖6)。該分類結(jié)果與前文各溶劑提取蠟質(zhì)化合物組分和含量一致。
3 討 論
筆者在本研究中選取了8種有機溶劑,以最常用的蠟質(zhì)提取溶劑三氯甲烷為對照,采用相同條件方法分別提取翠冠梨果實表皮蠟質(zhì),比較不同溶劑的蠟質(zhì)提取效果,以便篩選到與三氯甲烷提取效果相近但毒性較低的安全溶劑,進而在蠟質(zhì)提取過程中替代三氯甲烷,保證實驗人員在操作過程中的身心健康與安全。通過查閱國家衛(wèi)生和計劃生育委員會《食品安全國家標準急性經(jīng)口毒性試驗》(2015)數(shù)據(jù)可知,正己烷半數(shù)致死量(median lethal dose,LD50)數(shù)值最大,達到了28 710 mg·kg-1,其毒性最低,僅為三氯甲烷的1/32,乙酸丁酯和碳酸二甲酯次之,其毒性為三氯甲烷的1/14。盡管正己烷具有低毒特性,但由于正己烷閃點為-22 ℃,屬于高度揮發(fā)的無色液體,極易燃,其蒸氣與空氣可形成爆炸性混合物,遇明火、高熱極易燃燒爆炸,所以其用于實驗存在較大安全隱患,并且其對于萜類物質(zhì)的提取效果較差;乙酸丁酯的蠟質(zhì)提取效果優(yōu)于三氯甲烷,且其毒性僅為三氯甲烷的1/14,但由于其沸點為126.6 ℃,不易揮發(fā),在蠟質(zhì)提取過程中吹干溶劑較難。丙酮對萜類物質(zhì)提取效果約是三氯甲烷的3倍,但其對萜類以外物質(zhì)的提取效果差,可作為蠟質(zhì)萜類物質(zhì)的優(yōu)選提取溶劑;甲醇和乙醚的蠟質(zhì)提取效果均較差。因此,上述5種溶劑均不適合作為蠟質(zhì)提取的最優(yōu)改良溶劑。乙酸乙酯LD50為5620 mg·kg-1,屬于2級(實際無毒)毒性,且其蠟質(zhì)提取效果優(yōu)于三氯甲烷,適合作為最優(yōu)替代溶劑;碳酸二甲酯LD50為13 000 mg·kg-1,其毒性為三氯甲烷的1/14,具有熔、沸點范圍窄,溶解性能好,蒸發(fā)速度較快(沸點:90 ℃),閃點高(17 ℃)、蒸汽壓低和空氣中爆炸下限高(3.1%)等特點,且提取效果與三氯甲烷相當,可以作為替代溶劑。此外,研究表明使用中等極性的溶劑可以最大化萃取蠟質(zhì)成分,包括極度疏水的碳氫化合物和含有(多個)官能團的極性更大的化合物[15,19]。筆者在本研究中篩選出乙酸乙酯和碳酸二甲酯均屬于中間極性溶劑,與該結(jié)果保持一致。因此,乙酸乙酯和碳酸二甲酯這兩種低毒高效的梨果皮蠟質(zhì)提取溶劑將為安全有效地開展梨果皮蠟質(zhì)研究及其他果樹表皮蠟質(zhì)研究工作提供新的選擇。
植物表皮的蠟質(zhì)含量、組分與結(jié)構(gòu)極為復雜,并且容易受到外界環(huán)境的影響[20]。不同物種的不同品種間、同一品種的不同組織器官之間、同一器官的不同發(fā)育時期之間都存在差異。表皮蠟質(zhì)的高效提取是開展植物蠟質(zhì)相關(guān)研究的第一步,也是最重要的一步工作。因此,僅以三氯甲烷作為蠟質(zhì)的提取溶劑并不能滿足所有蠟質(zhì)研究的需求,而根據(jù)研究對象和目標選擇適宜的蠟質(zhì)提取溶劑將使研究結(jié)論更可靠,更高效。針對不同物種蠟質(zhì)提取方法的優(yōu)化,研究者做出了大量工作,例如,王敏力等[21]通過EB酶解液提取柑橘果實蠟質(zhì),獲得了與先前報道一致的蠟質(zhì)成分。王雨菲等[22]通過二氯甲烷、正己烷、乙酸乙酯、甲醇4種溶劑提取葡萄果實蠟質(zhì),發(fā)現(xiàn)二氯甲烷與正己烷混合比3∶1(mL∶mL),液料比2∶1(mL∶g),浸泡7.5 min蠟質(zhì)提取最佳。郭焰等[23]發(fā)現(xiàn)通過按照料液比1∶15加入乙酸乙酯提取玫瑰花蠟質(zhì)效果最好,并且對具有多種生理功能的二十八烷醇提取效果較好,達到了23.16%。馮秀靜等[24]采用亞臨界丁烷提取甘蔗蠟發(fā)現(xiàn)料液比為1∶20(g∶mL),提取溫度為70 ℃,提取3次效果最好。此外,部分研究者關(guān)注某一類特定蠟質(zhì)化合物的提取。例如,枸杞表皮蠟質(zhì)主要成分為烷烴,楊愛梅等[25]選用正己烷提取枸杞表皮蠟質(zhì)開展相關(guān)研究。因此,本研究篩選的蠟質(zhì)萜類物質(zhì)提取溶劑——丙酮,可作為梨果皮萜類物質(zhì)研究的高效提取溶劑,為梨果皮等植物表皮蠟質(zhì)的提取和研究提供更安全、高效的選擇。
4 結(jié) 論
筆者在本研究中篩選出3種蠟質(zhì)優(yōu)良提取試劑,乙酸乙酯蠟質(zhì)提取效果最好,碳酸二甲酯蠟質(zhì)提取效果與三氯甲烷相當,二者均毒性較低,揮發(fā)性較好,可作為三氯甲烷替代溶劑,丙酮是提取萜類化合物優(yōu)勢型溶劑。
參考文獻 References:
[1] SAMUELS L,KUNST L,JETTER R. Sealing plant surfaces:Cuticular wax formation by epidermal cells[J]. Annual Review of Plant Biology,2008,59:683-707.
[2] LARA I,BELGE B,GOULAO L F. A focus on the biosynthesis and composition of cuticle in fruits[J]. Journal of Agricultural and Food Chemistry,2015,63(16):4005-4019.
[3] BECKER M,KERSTIENS G,SCH?NHERR J. Water permeability of plant cuticles:Permeance,diffusion and partition coefficients[J]. Trees,1986,1(1):54-60.
[4] BUSCHHAUS C,JETTER R. Composition differences between epicuticular and intracuticular wax substructures:How do plants seal their epidermal surfaces?[J]. Journal of Experimental Botany,2011,62(3):841-853.
[5] VAN MAARSEVEEN C,JETTER R. Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves[J]. Phytochemistry,2009,70(7):899-906.
[6] LEE S B,SUH M C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species[J]. Plant Cell Reports,2015,34(4):557-572.
[7] GUO N,GAO J H,HE Y J,GUO Y J. Compositae plants differed in leaf cuticular waxes between high and low altitudes[J]. Chemistry & Biodiversity,2016,13(6):710-718.
[8] WANG M L,WU H Q,XU J,LI C L,WANG Y,WANG Z H. Five fatty acyl-coenzyme A reductases are involved in the biosynthesis of primary alcohols in Aegilops tauschii leaves[J]. Frontiers in Plant Science,2017,8:1012.
[9] WU X,YIN H,CHEN Y Y,LI L,WANG Y Z,HAO P P,CAO P,QI K J,ZHANG S L. Chemical composition,crystal morphology and key gene expression of cuticular waxes of Asian pears at harvest and after storage[J]. Postharvest Biology and Technology,2017,132:71-80.
[10] SALADI? M,MATAS A J,ISAACSON T,JENKS M A,GOODWIN S M,NIKLAS K J,REN X L,LABAVITCH J M,SHACKEL K A,F(xiàn)ERNIE A R,LYTOVCHENKO A,O'NEILL M A,WATKINS C B,ROSE J K C. A reevaluation of the key factors that influence tomato fruit softening and integrity[J]. Plant Physiology,2007,144(2):1012-1028.
[11] CURRY E. Effects of 1-MCP applied postharvest on epicuticular wax of apples (Malus domestica Borkh.) during storage[J]. Journal of the Science of Food and Agriculture,2008,88(6):996-1006.
[12] WU X,YIN H,SHI Z B,CHEN Y Y,QI K J,QIAO X,WANG G M,CAO P,ZHANG S L. Chemical composition and crystal morphology of epicuticular wax in mature fruits of 35 pear (Pyrus spp.) cultivars[J]. Frontiers in Plant Science,2018,9:679.
[13] CHU W J,GAO H Y,CAO S F,F(xiàn)ANG X J,CHEN H J,XIAO S Y. Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits[J]. Food Chemistry,2017,219:436-442.
[14] ARRENDALE R F,SEVERSON R F,CHORTYK O T,STEPHENSON M G. Isolation and identification of the wax esters from the cuticular waxes of green tobacco leaf[J]. Beitr?ge Zur Tabakforschung International,1988,14(2):67-84.
[15] YIN Y,BI Y,CHEN S J,LI Y C,WANG Y,GE Y H,DING B,LI Y C,ZHANG Z. Chemical composition and antifungal activity of cuticular wax isolated from Asian pear fruit (cv. Pingguoli)[J]. Scientia Horticulturae,2011,129(4):577-582.
[16] 李珍慈,江英,秦婕,陶海燕,王陳強. 庫爾勒香梨表皮蠟質(zhì)提取條件研究及成分分析[J]. 中國釀造,2016,35(4):158-162.
LI Zhenci,JIANG Ying,QIN Jie,TAO Haiyan,WANG Chenqiang. Extraction conditions and component analysis of epicuticular wax of Korla fragrant pears[J]. China Brewing,2016,35(4):158-162.
[17] 張微,趙迎麗,楊志國,王亮,陳會燕. ‘玉露香梨果皮蠟質(zhì)含量提取方法及成分研究[J]. 食品科技,2022,47(1):34-40.
ZHANG Wei,ZHAO Yingli,YANG Zhiguo,WANG Liang,CHEN Huiyan. Extraction method and analysis of waxy components from‘Yuluxiang pear pericarp[J]. Food Science and Technology,2022,47(1):34-40.
[18] 蒙小玉,穆悅,胡楊,吳瀟,朱辰,王慧敏,陶書田,張紹鈴,殷豪. 幾種果實表面積的三維激光掃描測定[J]. 園藝學報,2022,49(9):1998-2006.
MENG Xiaoyu,MU Yue,HU Yang,WU Xiao,ZHU Chen,WANG Huimin,TAO Shutian,ZHANG Shaoling,YIN Hao. Determination of fruit surface area of several fruit by 3D laser scanning technology[J]. Acta Horticulturae Sinica,2022,49(9):1998-2006.
[19] STAMMITTI L,DERRIDJ S,GARREC J P. Leaf epicuticular lipids of Prunus laurocerasus:Importance of extraction methods[J]. Phytochemistry,1996,43(1):45-48.
[20] 龔成勝,劉文革. 蔬菜作物果實和葉片表皮蠟質(zhì)研究進展[J]. 中國瓜菜,2019,32(5):1-6.
GONG Chengsheng,LIU Wenge. Research progress on epidermis wax in fruits and leaves of vegetable crops[J]. China Cucurbits and Vegetables,2019,32(5):1-6.
[21] 王敏力,劉德春,楊莉,曾瓊,王玥辰,吳啟,劉山蓓,劉勇. 不同種類柑橘的蠟質(zhì)結(jié)構(gòu)與成分比較[J]. 園藝學報,2014,41(8):1545-1553.
WANG Minli,LIU Dechun,YANG Li,ZENG Qiong,WANG Yuechen,WU Qi,LIU Shanbei,LIU Yong. Comparative analysis of different Citrus wax morphological structure and composition[J]. Acta Horticulturae Sinica,2014,41(8):1545-1553.
[22] 王雨菲,呂云皓,宋昕昕,江英. 木納格葡萄表皮蠟質(zhì)提取工藝優(yōu)化及其成分分析[J]. 食品工業(yè)科技,2023,44(3):221-229.
WANG Yufei,L? Yunhao,SONG Xinxin,JIANG Ying. Optimization on extraction technology and component analysis of wax from munage grapes pericarp[J]. Science and Technology of Food Industry,2023,44(3):221-229.
[23] 郭焰,董成虎,白羽嘉,馮作山. 玫瑰花蠟質(zhì)提取工藝的研究[J]. 保鮮與加工,2012,12(3):34-37.
GUO Yan,DONG Chenghu,BAI Yujia,F(xiàn)ENG Zuoshan. Study on the extraction technology of rose wax[J]. Storage and Process,2012,12(3):34-37.
[24] 馮秀靜,陸海勤,陳淋轉(zhuǎn),李凱. 亞臨界丁烷提取甘蔗濾泥中蔗蠟的工藝優(yōu)化[J]. 中國調(diào)味品,2020,45(9):73-76.
FENG Xiujing,LU Haiqin,CHEN Linzhuan,LI Kai. Optimization of extraction process of sugarcane wax from sugarcane filter mud by subcritical butane[J]. China Condiment,2020,45(9):73-76.
[25] 楊愛梅,吳古飛,杜靜,李春雷,袁惠君,王麗麗. 枸杞表皮蠟質(zhì)層成分及顯微結(jié)構(gòu)的研究[J]. 食品工業(yè)科技,2011,32(12):112-114.
YANG Aimei,WU Gufei,DU Jing,LI Chunlei,YUAN Huijun,WANG Lili. Study on component and microscopic structure of wax of Lycium barbarum L.[J]. Science and Technology of Food Industry,2011,32(12):112-114.