殷晨 田路明 曹玉芬 董星光 張瑩 霍宏亮 齊丹 徐家玉 劉超
摘? ? 要:可溶性糖酸含量是影響梨果品質(zhì)的經(jīng)濟(jì)性狀,是人類長期馴化選擇的重要性狀。在梨果實生長發(fā)育、成熟與衰老過程中,糖酸代謝發(fā)生一系列生理生化反應(yīng),果實中的糖酸含量以及組分變化存在一些規(guī)律性。梨果肉主要可溶性糖包括蔗糖、果糖、葡萄糖、山梨醇等,主要可溶性酸包括蘋果酸、檸檬酸等,糖酸含量及組分和糖酸比顯著影響果實風(fēng)味。影響梨果肉糖酸含量及組分的因素主要包括品種、光照、激素、肥料、采后技術(shù)及砧木等。果實糖酸代謝是十分復(fù)雜的生理生化代謝網(wǎng)絡(luò)的一部分,糖酸是一個由多個基因控制的數(shù)量性狀,許多關(guān)鍵的功能基因已被驗證。目前梨果糖酸研究已在相關(guān)酶、糖轉(zhuǎn)運體、轉(zhuǎn)錄因子、QTLs分子標(biāo)記、基因組學(xué)、蛋白組學(xué)等方面取得重要的研究進(jìn)展。圍繞上述研究,綜述了糖酸的主要研究進(jìn)展,并進(jìn)行總結(jié)和展望,以期為梨果糖酸含量及組分評價、功能基因挖掘和指導(dǎo)梨育種提供參考。
關(guān)鍵詞:梨;糖;酸;基因
中圖分類號:S661.2 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2023)12-2610-14
收稿日期:2023-09-22 接受日期:2023-11-02
基金項目:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-28-01);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(CAAS-ASTIP-RIP);國家科技資源共享服務(wù)平臺項目(NHGRC2023-NH02-1)
作者簡介:殷晨,女,在讀碩士研究生,研究方向為梨種質(zhì)資源。E-mail:yinchen4869@163.com
*通信作者 Author for correspondence. E-mail:tianluming@caas.cn;E-mail:yfcaas@263.net
Research progress in sugar and acid in pear fruit
YIN Chen, TIAN Luming*, CAO Yufen*, DONG Xingguang, ZHANG Ying, HUO Hongliang, QI Dan, XU Jiayu, LIU Chao
(Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crop Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, Liaoning, China)
Abstract: Pears are the third temperate fruit crop in the world and are widely popular due to their unique taste. The contents of soluble sugars and organic acids in pear fruits are very important to fruit quality. The differences in the content and composition of soluble sugars and organic acids in the fruit contribute to the different flavors of different pear varieties. During the growth, development, maturation and aging of pear fruits, a series of physiological and biochemical reactions occur through sugar and acid metabolism, and there are some patterns in the sugar and acid content and component changes in the fruit. Research on the contents of soluble sugars and organic acids in pear fruits has emerged endlessly, and a significant progress has been made. This article will provide an overview of the research on the sugar and acid contents in pear fruits. It mainly consists of four aspects: research progress in sugar and acid contents during fruit growth and development, sugar and acid content in post harvest pear fruits, factors affecting sugar and acid content and molecular mechanisms of sugar and acid change. During fruit growth and development, organic acids are formed in the early stages of fruit development and gradually decrease as the fruits mature. The organic acid components in pear fruits mainly include malic acid, citric acid, quinic acid, oxalic acid, shikimic acid and tartaric acid. Pear varieties are divided into malic acid dominant and citric acid dominant varieties based on the content of each organic acid component in the fruit. With Asian pear varieties, the main organic acid found in most pear varieties is malic acid, while with European pear varieties, the main organic acid found in most pear varieties is citric acid. Malic acid shows a first increasing and then decreasing trend throughout the entire growth and development process, while citric acid dominant varieties will undergo a transition of malic acid decreasing and citric acid increasing in the middle stage of fruit development. Malic acid is the main factor causing significant differences between varieties. The total soluble sugar content is relatively low in the early stage of fruit development and gradually increases with fruit maturity. The soluble sugar components present in pear fruits mainly include sorbitol, fructose, glucose and sucrose. Most pear varieties have sorbitol as the main sugar in the young fruit, while fructose is the main sugar in the mature fruit. There are significant differences in the proportion of sugar components at different developmental stages, with an increase in fructose content and a significant decrease in sorbitol content during maturity. Sucrose is an important factor causing differences among varieties. Pears belong to the respiratory climacteric type of fruit. During storage, fructose and glucose contents in the fruit gradually increase, sorbitol and malic acid contents gradually decrease, and sucrose first increase and then decrease. Under low temperature storage conditions, the contents of fructose, glucose and sucrose increase until they gradually decrease after 90 days. The organic acid contents show a trend of first decreasing and then stabilizing. Although the total soluble sugar content of refrigerated fruits is higher than that of unfrozen fruits, long-term refrigeration can lead to a deterioration and decrease in sucrose content in the fruits. Bagging treatment could reduce the content of total soluble sugar and reduce the content of malic acid. The application of different plant hormones or growth regulators could affect the sugar and acid contents in pear fruits. Ethylene treatment could increase the soluble sugar content and reduce the titratable acid content. GA treatment could increase the contents of sucrose and malic acid. IAA and ABA treatment could promote the accumulation of sorbitol, while MT treatment could increase the content of sucrose and sorbitol. Applying potassium and calcium fertilizers could increase the accumulation of glucose, fructose, sorbitol and sucrose in fruits. 1-MCP treatment could delay and inhibit the downward trend of organic acids, but also delay the increase of total soluble sugar content. The sugar and acid contents in pear fruits are a quantitative trait controlled by multiple genes. With the rapid development of genomics, many key gene functions has been verified. PbCPK28 promotes the phosphorylation of PbTST4 and PbVHA-A1, promoting sugar transport and storage in vacuoles. PbrAc-Inv1 and PbrII5 are involved in the degradation of sucrose. Overexpression of PbPH5 can significantly increase the malic acid content. The sugar transporter family genes involved in sugar transport in pear fruits include PbSWEETs, PbSOTs, PbTMTs, PbSUTs, PbPLTs and PbTSTs. Overexpression of PuSWEET15 increases sucrose content, while silencing PuSWEET15 reduces sucrose content. PbTMT4 is an important contributor to the accumulation of fructose, glucose and sucrose in pear fruits. By developing sugar related QTL markers, two individual sugar content regions associated with acid invertase genes have been identified in linkage groups LG1 and LG7. This article has mainly summarized and reviewed the research papers related to the sugar and acid contents of pear fruit in recent years around these four parts, in order to provide reference for the study on sugar and acid contents in the pear fruit, component evaluation, functional gene mining and new variety breeding, and to propose prospects for future research directions.
Key words: Pear; Sugar; Acid; Gene
梨(Pyrus L.)是世界第三大溫帶水果,有著悠久的栽培歷史,是廣受歡迎的水果。梨栽培品種果實性狀與野生種果實性狀的差異是人類選擇的結(jié)果[1],梨品種果實糖酸含量是長期馴化的性狀[2-3]??扇苄蕴窃诶婀纳L、發(fā)育和果實品質(zhì)中起著重要的作用[4],果實糖酸比的差異嚴(yán)重影響梨果實風(fēng)味[1]。梨果中可溶性糖酸種類較多,在庫爾勒香梨果肉初生代謝中共檢測到蔗糖、果糖、葡萄糖、山梨醇等共17種糖以及蘋果酸、檸檬酸等共8種有機酸,總糖酸比為71.49[5]。在比較可溶性糖組分含量時,栽培梨和野生梨成熟時果糖含量差異最大[4]??偺呛蛡€別糖含量是形成果肉甜味的原因,果肉的單個糖含量代表了風(fēng)味方面的重要信息[6]。果實中糖酸含量和糖酸比是影響梨果實風(fēng)味品質(zhì)的重要因素,也是梨新品種選育的重要評價指標(biāo)[7]。在梨的雜交育種實踐中,多數(shù)個體因表現(xiàn)出低糖高酸的特征而被淘汰。日本梨品種成熟果實中的個體含糖量有很大的差異,提高總糖含量和甜度高的糖組分含量是日本梨育種計劃的主要目標(biāo)[8]。
高等植物中的果實糖積累是一個復(fù)雜的過程,涉及酶對糖代謝的調(diào)節(jié),這些酶受激素的調(diào)節(jié);已知酶和激素調(diào)節(jié)因環(huán)境因素和基因型而異[9]。山梨醇屬于糖醇類,是梨屬植物主要的光合產(chǎn)物,也是梨糖運輸?shù)闹饕问?,由葉片轉(zhuǎn)運到果實的山梨醇大部分轉(zhuǎn)化合成為果糖和葡萄糖,可溶性糖的轉(zhuǎn)運由糖轉(zhuǎn)運體蛋白介導(dǎo)[10-11]。三羧酸(TCA)循環(huán)和糖酵解為果實中有機酸提供了所必需的成分,幾種酶參與TCA循環(huán),包括磷酸烯醇式丙酮酸羧化酶(PEPC)、蘋果酸脫氫酶(MDH)、蘋果酸酶(NADP-ME)、烏頭酸酶(ACO)、NAD依賴型異檸檬酸脫氫酶(NAD-IDH)和琥珀酸脫氫酶(SDH)等[3]。梨果中的有機酸主要儲存在液泡中,有機酸的轉(zhuǎn)運由許多蛋白質(zhì)介導(dǎo)[12]。糖酸含量是由多個基因控制的數(shù)量性狀,是一個復(fù)雜的代謝網(wǎng)絡(luò)的一部分[3-4]。梨品種果實糖酸組分含量形成的差異,以及與野生種間的差異,仍需要更深入的分子機制研究去解釋。
隨著現(xiàn)代化儀器的快速發(fā)展,研究人員利用高效液相色譜(HPLC)等精準(zhǔn)測定果實可溶性糖酸組分,加之分子生物學(xué)和基因組測序等技術(shù)的迅速更新,對果實糖酸表型和基因型的精準(zhǔn)評價成為可能。近年來關(guān)于梨果實糖酸的相關(guān)研究已經(jīng)取得重要成果,主要涉及梨果實發(fā)育過程中糖酸含量研究、梨果采后室溫和低溫糖酸含量研究、影響梨果糖酸含量的因素研究,以及相關(guān)基因組、轉(zhuǎn)錄組、蛋白組、基因和分子標(biāo)記開發(fā)等分子機制研究。筆者在本文中圍繞以上所述的幾個方面進(jìn)行綜述分析,并進(jìn)行總結(jié)和展望,以期為未來梨果實糖酸研究和梨新品種選育提供參考。
1 梨果實生長發(fā)育過程中糖酸含量研究
大多數(shù)研究表明,在梨果實生長發(fā)育過程中,果實中的有機酸通常在果實發(fā)育早期形成,隨著果實成熟逐漸減少;而可溶性總糖含量在果實發(fā)育前期較少,發(fā)育后期呈增加趨勢。在玉露香梨果實生長發(fā)育過程中,總糖含量呈現(xiàn)出“慢-快-慢-快”的上升趨勢[10]。大部分梨品種幼果期果實中的糖以山梨醇為主,成熟果實中的糖以果糖為主[10,13-16],而成熟的云紅梨1號果實中山梨糖醇仍是含量最多的糖,其次為果糖、蔗糖和葡萄糖[13]。楊志軍等[17]研究鴨梨×京白梨雜交后代高糖個體和低糖個體的果實糖動態(tài)變化,發(fā)現(xiàn)發(fā)育前期總糖含量逐漸升高,其中果糖含量最高,山梨醇含量次之,蔗糖含量相對較低。成熟時,高糖個體的果糖含量顯著低于低糖個體,并且蔗糖、葡萄糖、山梨醇乃至總糖含量均顯著高于低糖個體。潘儼等[18]研究庫爾勒香梨果實發(fā)育過程中糖含量變化,分別測定果心、果肉和果皮的4種可溶性糖組分含量,發(fā)現(xiàn)不同發(fā)育階段糖組分比例有明顯差異,成熟期均表現(xiàn)為果糖含量比例升高,山梨醇含量比例明顯下降。南紅梨是南果梨的一個紅色芽變品種,南紅梨果實發(fā)育過程中蔗糖含量普遍高于南果梨,采收期南紅梨果實中蔗糖含量約為南果梨果實的2倍[14]。采用黃冠梨和鴨梨對比發(fā)現(xiàn),黃冠梨果實中的糖代謝過程為典型的“山梨醇-淀粉-可溶性糖”中間模式,鴨梨果實中糖代謝過程為典型的“山梨醇-蔗糖-淀粉-可溶性糖”中間模式[19]。
在梨果實發(fā)育過程中有機酸含量呈先上升后逐漸下降的趨勢[10,20-22]?;粼虑嗟萚23]研究4個砂梨(P. pyrifolia Nakai)品種有機酸含量,總有機酸含量隨果實增長呈下降趨勢,主要是奎尼酸下降幅度很大,蘋果酸呈先上升后下降的拋物線變化趨勢,而以檸檬酸占優(yōu)勢型的品種,在果實發(fā)育的中期會發(fā)生蘋果酸下降而檸檬酸升高的轉(zhuǎn)變。庫爾勒香梨果實在不同階段的有機酸含量變化差異明顯,在5月份時蘋果酸含量(ρ)最高,達(dá)到1.198 g·L-1,檸檬酸含量達(dá)到0.476 g·L-1,酒石酸達(dá)到0.382 g·L-1 [22]。李甲明等[24]研究鴨梨×京白梨雜交后代高酸個體和低酸個體的果實有機酸動態(tài)變化,高酸個體屬于蘋果酸優(yōu)勢型,低酸個體屬于檸檬酸優(yōu)勢型,且成熟時兩者在總酸含量上表現(xiàn)出的差異主要是蘋果酸含量的差異所致。劉清鶴等[25]研究魯秀梨果實的有機酸動態(tài)變化,果心、果肉、果皮不同部位有機酸組分含量不同,有機酸含量隨著果實成熟逐漸下降,果皮部位有機酸含量低于果肉和近果心部位,后二者相似。Wu等[26]對193種梨成熟果實進(jìn)行研究,發(fā)現(xiàn)各有機酸組分在梨果實中含量從高到低依次為蘋果酸>檸檬酸>奎尼酸>草酸>莽草酸,總酸含量分別與蘋果酸、檸檬酸含量存在顯著的正相關(guān)性。果實中糖酸含量之間呈顯著的負(fù)相關(guān)性[1]。
2 采后梨果實糖酸含量研究
2.1 室溫貯藏
果實在貯藏過程中的成熟與衰老以及糖酸含量變化是一系列生理生化反應(yīng)所共同調(diào)控的結(jié)果。梨是呼吸躍變型果實,采后貯藏期間的糖損失是果實自身呼吸消耗和蔗糖酶活性變化的結(jié)果[27]。Wang等[28]研究早紅考密斯成熟梨果實采后糖含量,采后果實中果糖是主要的糖,其次是葡萄糖、蔗糖和山梨醇;隨著后熟過程推進(jìn),果實中果糖和葡萄糖含量逐漸增加,山梨醇含量逐漸減少,蔗糖含量先升高后降低。Wang等[29]研究豐水梨亦發(fā)現(xiàn),蘋果酸含量在貯藏期間下降。豐水梨在室溫貯藏過程中,果糖和葡萄糖逐漸積累;蔗糖、山梨醇和蘋果酸含量呈下降趨勢[30]。Xu等[31]研究早熟山梨(P. ussuriensis)在室溫下0~8 d后熟過程中的代謝產(chǎn)物,認(rèn)為可溶性糖類含量的變化不是影響梨果實后熟的原因,果膠、脂質(zhì)代謝物和一些激素如脫落酸(ABA)等變化影響梨果實的后熟和軟化。
2.2 低溫貯藏
低溫環(huán)境有利于延緩水果各種生理代謝,延緩果實品質(zhì)變化,從而延長水果的保質(zhì)期。Zhao等[27]研究冷藏中7個梨品種果實糖代謝發(fā)現(xiàn),果糖是主要的糖,占總糖的60%以上,其次是葡萄糖和蔗糖;在冷藏過程中,果糖、葡萄糖、蔗糖和可溶性固形物含量增加,至90 d后逐漸下降。Lwin等[32]比較圓黃梨大果(550~950 g)和小果(250~350 g)的糖含量,在冷藏和貨架期,大果的葡萄糖和果糖含量高于小果,而蔗糖和山梨醇含量低于小果。Dias等[33]比較Rocha梨果實低溫貯藏1周和1個月后的糖酸含量,兩批果實之間的蔗糖和果糖存在顯著差異,第2批的可溶性糖含量較高,葡萄糖和山梨醇含量幾乎沒有隨時間的變化;第2批樣品中的蘋果酸含量顯著升高,且在貨架期的開始和結(jié)束之間略有增加。黃麗等[34]以玉露香梨、紅香酥梨和酥梨為試材,研究冷藏期(0~240 d)糖酸含量變化,3種梨的可溶性糖含量均表現(xiàn)為先升高后降低趨于穩(wěn)定的趨勢,紅香酥梨和酥梨60 d達(dá)到最高,玉露香梨于180 d達(dá)到最高,不同糖組分含量變化不同;玉露香梨和酥梨總有機酸含量變化動態(tài)一致,均先下降后趨于穩(wěn)定,紅香酥梨總有機酸含量先上升后下降,蘋果酸是3種梨果實中含量最高的有機酸,其變化動態(tài)與總有機酸相似。在低溫貯藏期(0~180 d)魯秀梨果實可溶性總糖含量整體呈先上升后下降趨勢,在貯藏30 d時可溶性總糖含量最高,不同糖組分含量的變化不同[25]。在低溫(1 ℃)貯藏時魯秀梨果實有機酸含量呈先下降后穩(wěn)定趨勢,有機酸組分含量變化有所不同;在貯藏60 d時,有機酸含量最低,之后隨著貯藏期延長,有機酸含量輕微上升后趨于穩(wěn)定[25]。Wang等[35]研究發(fā)現(xiàn),(0±0.5) ℃、85%~90% RH低溫貯藏可有效延長南果梨采后貯藏期,冷藏果實的可溶性總糖含量高于未冷藏果實,但長期冷藏會導(dǎo)致果實中的蔗糖含量下降。
3 影響梨果糖酸含量的因素
3.1 品種
梨果實中糖酸含量及其組分的不均勻分布,造就了不同品種果實的風(fēng)味差異。不同栽培品種梨果實中總糖和總酸及其組分含量不同[25,36-38],根據(jù)蘋果酸和檸檬酸比值可將不同品種劃分為蘋果酸優(yōu)勢型和檸檬酸優(yōu)勢型[8,10,39]?;粼虑嗟萚23]研究70個砂梨成熟果實的有機酸含量,將砂梨品種分為蘋果酸優(yōu)勢型和檸檬酸優(yōu)勢型兩類,其中選育品種基本上是蘋果酸型的,檸檬酸型的基本是地方品種;選育品種的蘋果酸含量與比率變化幅度較地方品種小,且含量顯著高于地方品種,選育品種的檸檬酸含量與比率都顯著低于地方品種。姚改芳等[40]對10個不同栽培種的梨果進(jìn)行糖酸分析,發(fā)現(xiàn)白梨(P. bretschneideri Rehd.)和砂梨的總糖和總酸含量都較低,秋子梨(P. ussuriensis Maxim)的總糖和總酸含量都較高,新疆梨(P. sinkiangensis Yu)的總糖含量相對較高,總酸含量居中,西洋梨(P. communis L.)的總糖含量較高,總酸含量最高。姚改芳等[41]分析5個栽培種的98個梨品種果實糖酸含量,發(fā)現(xiàn)西洋梨的總酸含量最高,其次是秋子梨、白梨和砂梨,含量最低的是新疆梨,大部分西洋梨品種是檸檬酸優(yōu)勢型。李甲明等[20]將茌梨、鴨梨和八里香這3個品種進(jìn)行對比,發(fā)現(xiàn)在果實成熟時,茌梨的總酸含量最高,鴨梨居中,八里香最低,蘋果酸是引起品種間顯著差異的主要因素。Akagi?等[6]測定10個西洋梨品種成熟果實可溶性糖含量,結(jié)果表明果糖含量最高,其次是山梨醇和葡萄糖含量,蔗糖含量最低。Gao等[42]以翠冠梨為試材,發(fā)現(xiàn)含有較高的檸檬酸是造成果實核心酸的原因。張瑩等[15]研究發(fā)現(xiàn),秋子梨栽培品種南果梨和野生資源東寧山梨1果實之間糖和淀粉的積累規(guī)律存在差異。安景舒等[43]研究發(fā)現(xiàn),不同品種間,果糖和葡萄糖的含量相對穩(wěn)定,蔗糖和山梨醇含量變化較大。
3.2 光照
光照是影響梨樹光合作用的重要因素,果實套袋可改變果實生長發(fā)育的微環(huán)境,影響果實糖酸代謝[44-45]??路簿萚46]研究套紙袋對翠冠梨和黃金梨果實的糖組分含量變化,兩個品種的套袋果實在發(fā)育過程中糖組分變化趨勢與對照基本一致,套袋果實可溶性糖含量均低于對照但差異不顯著,對不同糖組分影響有差異。李芳芳等[44]研究兩種果袋對庫爾勒香梨可溶性糖含量的影響,套袋降低了庫爾勒香梨果實可溶性糖含量,但不影響其變化規(guī)律,在果實成熟時,套紫色膜袋對蔗糖、葡萄糖和山梨醇含量的影響比套紙袋大。李芳芳等[47]研究表明,庫爾勒香梨果實套紫色塑料膜袋后,各可溶性糖及總糖含量均無顯著變化,總酸和蘋果酸含量顯著減少,其他有機酸含量變化差異不顯著;果實套紙袋后,蔗糖和山梨醇含量顯著減少,檸檬酸含量顯著增加,其他酸含量變化差異不顯著??准丫萚48]利用紅、橙、綠、藍(lán)、紫色濾光膜單層果袋處理碭山酥梨,套袋果實可溶性糖含量均顯著低于對照,紅色套袋果實可溶性糖含量最低,相比對照減少31.27%,且紫色和橙色果袋內(nèi)果實的可溶性糖含量較高。李剛波等[49-50]對蘇翠1號研究發(fā)現(xiàn),不同時期套袋,果實中可溶性固形物含量和糖酸比明顯低于對照,套袋果實的山梨醇含量并沒有顯著差異,但蔗糖、葡萄糖、果糖含量明顯降低,同時對蘋果酸、奎尼酸和總酸含量影響較大,對檸檬酸含量影響不大[51]。不同果袋的效果亦有差別,套黃白紙袋果實的可溶性固形物含量、糖酸比和總糖含量都高于復(fù)合紙袋果實,果實綜合品質(zhì)更好[49-51]。徐鍇等[52]以紅色梨為試材,研究發(fā)現(xiàn)套袋后果實中的可溶性固形物含量增加,褐色和藍(lán)色果袋處理降低了果實糖酸比。Wang等[45]對茌梨研究發(fā)現(xiàn),與未套袋果實相比,聚乙烯袋和無紡布袋處理都不利于可溶性糖積累。吳瑞媛等[53]研究表明,鋪設(shè)反光膜可以提高翠冠梨果實單果質(zhì)量,促進(jìn)果實糖積累。
3.3 激素
梨果實中糖酸代謝是一個復(fù)雜的過程,植物激素參與相關(guān)的調(diào)控[54],外用激素可以調(diào)節(jié)果實糖酸含量[55-57]。韓彥肖等[55]利用不同生長調(diào)節(jié)劑處理黃冠梨,果實成熟時,赤霉素(GA3和GA4+7)處理果實的蔗糖含量顯著高于對照;GA3處理果實的蘋果酸和有機酸含量顯著高于對照,萘乙酸(NAA)、生長素(IAA)和GA4 + 7處理果實與對照無顯著差異,不同類型生長調(diào)節(jié)劑處理對果實中莽草酸含量無顯著影響。李節(jié)法等[58]用2.7% GA3+4處理花后25 d的翠冠梨,果實膨大前期,果實以山梨糖醇為主,顯著高于對照;后期果糖含量上升,山梨糖醇含量下降,GA處理果實的總糖含量顯著高于對照。施春暉等[56]對翠冠梨噴施適宜濃度的NAA、NAA-Na兩種調(diào)節(jié)劑,與對照相比,具有高效疏果作用,提高了果實中蔗糖含量,但是NAA與NAA-Na調(diào)節(jié)劑之間差異不顯著。Gu等[54]對翠冠梨施用10 mg·L?1 IAA或1 mg·L?1 ABA,促進(jìn)梨果實中山梨醇積累。Tian等[59]研究庫爾勒香梨和其芽變早美香梨的激素、糖含量與果實大小的關(guān)系,發(fā)育過程中葡萄糖和山梨糖醇的差異較大,早美香梨在整個細(xì)胞分裂過程中積累了大量的山梨糖醇,葡萄糖、山糖醇含量與細(xì)胞數(shù)呈正相關(guān),葡萄糖、山梨醇、玉米素、脫落酸及內(nèi)源激素的比例可能與庫爾勒香梨和早美香梨的細(xì)胞分裂有關(guān)。Liu等[9]利用100 μmol·L?1褪黑素(MT)處理早酥梨,發(fā)現(xiàn)在果實成熟期間,MT增加了可溶性糖含量,特別是蔗糖和山梨糖醇含量,而MT對果實的有機酸含量沒有影響。Wang等[60]利用100 μmol·L?1 MT處理接種輪紋病菌(Botryosphaeria dothidea)的翠冠梨,外源褪黑素處理能提高梨果實中可溶性糖和有機酸含量,增強輪紋病抗性。Wang等[61]利用10 mmol·L?1甜菜堿(GB)處理南果梨,與對照相比,低溫貯藏后果實蔗糖含量升高,果糖和葡萄糖含量降低。邵白俊杰等[62]在大蕾期用300 mg·L-1乙烯利處理庫爾勒香梨對果實品質(zhì)影響最大,使脫萼果的可溶性固形物和可溶性糖含量與對照相比分別顯著提高12.03%和10.22%,可滴定酸含量則顯著降低19.75%。韓春紅等[57]對3個紅皮梨品種葉面噴施0.5、1.0、2.0 mmol·L-1的茉莉酸甲酯(MeJA)和二氫茉莉酸內(nèi)酯(PDJ),結(jié)果表明成熟期果實果糖、葡萄糖、山梨醇、總糖含量及糖酸比上升,但果實總酸含量下降。
3.4 肥料
在梨樹上施用有機肥和礦質(zhì)營養(yǎng)能顯著提高果實品質(zhì)和產(chǎn)量,有助于改善糖酸含量比例[63-64]。Shen等[63]利用不同濃度梯度氧化鉀(K2O)肥處理黃冠梨,連續(xù)兩年與對照相比,增加鉀的施用量促進(jìn)了葡萄糖、果糖、山梨醇和蔗糖在果實中積累。高鉀促進(jìn)光合作用,增加果實中山梨醇、蔗糖、果糖含量。果實成熟時,低鉀會抑制蔗糖和有機酸代謝,但能促進(jìn)果糖和葡萄糖積累[65]。周君等[66-67]在黃金梨幼果期進(jìn)行噴鈣處理,與對照相比,氨基酸鈣和硝酸鈣[Ca(NO3)2]處理的果實均能提高可溶性固形物含量和糖酸比,氨基酸鈣效果更好。魏樹偉等[68]利用4%氯化鈣(CaCl2)處理南果梨,結(jié)果顯示,鈣處理提高了南果梨果實中可溶性糖含量,其中商熟期前5 d時鈣處理總糖含量較對照提高了4.68%,果實中有機酸含量較對照提高了49.93%;商熟期可溶性糖含量較對照提高了8.43%,后熟5 d時可溶性糖含量較對照提高了10.97%,而果實中的有機酸含量低于對照。Pessoa等[69]以不同濃度Ca(NO3)2和CaCl2噴施Rocha梨,與對照相比,采收時鈣處理梨果中蔗糖、葡萄糖、果糖和山梨醇含量不受影響,貯藏后鈣處理果實中可溶性糖含量保持較高水平。Xu等[70]以愛甘水梨為試材,研究發(fā)現(xiàn),與普通復(fù)合肥料相比,緩釋肥增加了果實可溶性固形物含量,袋控緩釋肥顯著提高了糖酸比。Wang等[64]以砂梨新品種初夏綠為試材,發(fā)現(xiàn)與普通化肥相比,生物有機肥和有機肥處理均可以增加梨果實中蔗糖含量,降低果糖和葡萄糖含量,并促進(jìn)檸檬酸的降解。劉松忠等[71]研究表明,施用堆肥+葉片噴施氨基酸肥或腐熟動物廢棄料,可顯著提高黃金梨果實總糖、蔗糖、果糖和葡萄糖含量。邵微等[72]利用不同有機酸+氮磷鉀肥配施處理紅寶石梨,以單獨用氮磷鉀肥為對照處理,結(jié)果表明,不同濃度蘋果酸、檸檬酸及草酸與氮磷鉀肥配施處理的可溶性糖含量顯著高于對照,其中5%蘋果酸+氮磷鉀肥配施顯著提高了梨的可溶性固形物含量與糖酸比,果實品質(zhì)的提升效果最佳。丁易飛等[73]設(shè)置4個氮素水平(165、330、660和990 kg·hm-2)處理壽新水梨,梨果實可溶性固形物、可溶性糖含量及糖酸比隨施氮量提高呈先增加后降低的趨勢,最大值均出現(xiàn)在330 kg·hm-2處理,果實中山梨醇含量比對照分別提高了25.3%和90.9%。張海棠等[74]研究不同鉀鎂配比對早酥梨果實糖酸組分含量的影響,鉀鎂配比為10.76時,糖酸比最高,早酥梨果實中果糖含量最高,占總糖含量的52.52%,為果糖積累型;早酥梨為檸檬酸優(yōu)勢型,隨鉀鎂配比的提高,蘋果酸含量先增加后降低,檸檬酸含量的變化趨勢與蘋果酸完全相反。
3.5 1-MCP處理
1-甲基環(huán)丙烯(1-MCP)是一種有效的乙烯拮抗劑,在貯藏過程中具有保持果實質(zhì)量的潛力,已被用于維持許多呼吸躍變果實的儲存質(zhì)量和延長其保質(zhì)期[75-76]。1-MCP處理南果梨延緩了可溶性固形物和可滴定酸的損失,并顯著抑制可滴定酸含量的下降,但也延緩了總可溶性固形物含量的增加[76]。Lwin等[77]采前1周用1-MCP處理圓黃梨,與對照相比,采收時蔗糖含量上升,山梨醇含量降低,冷藏3個月后果實可溶性固形物含量高于未處理的對照,不同糖組分含量變化不一致。Lwin等[78]利用1-MCP采前處理Chuhwangbae梨,1-MCP處理的果實的蔗糖水平高于未處理的果實,冷藏后及貨架期果實可溶性固形物含量高于未處理對照。Lwin等[79]利用1-MCP采后處理圓黃梨,冷藏6個月后與未處理的對照組相比,果糖、葡萄糖和蘋果酸含量降低,但在儲存的后半段保持了更高的蔗糖和山梨醇含量。Tokala等[75]以1-MCP處理Gold Rush梨果實,冷藏后發(fā)現(xiàn),1-MCP處理的果實可溶性固形物含量較高,并且果糖和山梨醇含量高,而蔗糖含量低;有機酸含量沒有明顯變化。Latt等[80]利用1-MCP處理新品種Greensis梨,發(fā)現(xiàn)與對照相比果實中果糖、葡萄糖含量減少,而果實中蔗糖含量的提高。Wang等[29]利用1-MCP處理成熟豐水梨,與對照相比,熏蒸顯著抑制了豐水梨的質(zhì)量惡化,保持了較高的蘋果酸含量。Bai等[76]用1-MCP處理成熟南果梨,室溫貨架期1-MCP處理果實檸檬酸含量高于對照,兩者均呈降低趨勢。
3.6 其他
矮化砧木影響接穗的生長,對提高果實質(zhì)量和產(chǎn)量很重要[81]。Wang等[82]研究發(fā)現(xiàn),嫁接云南榅桲(Cydonia oblonga Mill.)的成熟早酥梨果實含糖量高于嫁接杜梨(P. betulifolia)。徐文清等[83]利用川梨(P. pashia)、豆梨(P. calleryana)和杜梨為砧木嫁接豐水梨,結(jié)果表明不同砧木對接穗品種豐水梨果實中有機酸代謝具有調(diào)控作用,杜梨可以降低豐水梨果實中檸檬酸的含量,導(dǎo)致蘋果酸含量與檸檬酸含量的比值升高。Liu等[7]連續(xù)2 a(年)測定碭山酥梨與豐水梨正反交后代群體果實糖酸含量,大部分個體的酸和糖含量、總酸含量和總糖含量均高于碭山酥梨,而低于豐水梨,趨于平均水平;母系親本的選擇對酸的含量有重要影響,父母本對糖組分含量和總糖含量沒有顯著影響。Duan等[84]研究發(fā)現(xiàn),0.8 mmol·L-1 ATP處理可以抑制南果梨果實中可溶性總糖含量的下降。Wang等[85]以10% CO2處理鮮切翠冠梨,發(fā)現(xiàn)可以促進(jìn)可溶性固形物的積累,加速貯藏末期葡萄糖、果糖、山梨醇和蔗糖的積累,分別比對照提高12.58%、13.86%、24.7%和13.9% 。
4 梨果糖酸分子機制研究
4.1 基因研究
糖含量是一個由多個基因控制的數(shù)量性狀,許多關(guān)鍵的基因功能已被驗證。李節(jié)法等[58]研究表明,外源赤霉素(GA)處理翠冠梨后,GA處理顯著提高梨果肉和果心組織中的可溶性糖含量,GA誘導(dǎo)糖代謝相關(guān)酶基因的表達(dá),如促進(jìn)S6PDH、SS、SI和SPS基因表達(dá)上調(diào),而前期抑制NAD依賴型山梨醇脫氫酶基因(NAD-SDH)的表達(dá),并在果心和果肉中存在空間表達(dá)差異。丁易飛等[73]研究表明,成熟期330 kg·hm-2氮素水平處理顯著上調(diào)果實中NAD-SDH3基因的表達(dá),有利于山梨醇的分解,提高成熟期果實糖含量。Liu等[9]研究表明,轉(zhuǎn)化酶基因Pbinvertase1/2在MT處理的果實中的表達(dá)水平較低,導(dǎo)致酶活性較低,PbSPS1/2/3表達(dá)提高促進(jìn)蔗糖磷酸合成酶(SPS)的活性提高。Wang等[45]研究表明,茌梨果實套袋處理降低了光照度,SPS基因表達(dá)水平降低,抑制蔗糖的合成。Abdullah等[86]報道了30個蔗糖合酶(SS)基因,其中PbSS30、PbSS24和PbSS15在梨果實發(fā)育階段具有潛在的作用。Li等[4]研究鈣依賴性蛋白激酶(PbCPK28),PbCPK28表達(dá)量的升高導(dǎo)致了梨果實中果糖水平的顯著升高。Ma等[30]研究發(fā)現(xiàn),酸性轉(zhuǎn)化酶1(PbrAc-Inv1)和轉(zhuǎn)化酶抑制劑5(PbrII5)參與蔗糖降解,PbrII5可以與液泡中的PbrAc-Inv1相互作用,調(diào)節(jié)液泡轉(zhuǎn)化酶活性,從而改變梨果實的糖組成。Shen等[65]研究表明,高濃度鉀肥能提高葉片的光合效率,而低濃度鉀肥誘導(dǎo)參與山梨醇代謝的3個SDH和2個S6PDH基因表達(dá)上調(diào),促進(jìn)果糖的積累。
糖轉(zhuǎn)運體(ST)有不同類型,梨相關(guān)的糖轉(zhuǎn)運家族基因如PbSOTs[87]、PbSWEETs[11,88-89]、PbTMTs[90-91]、PbSUTs[92]、PbPLTs[93]、PbTSTs[4]等。Li等[88]研究表明,PbSWEET5表達(dá)下調(diào),與蔗糖水平呈負(fù)相關(guān),說明PbSWEET5可能對蔗糖外排和調(diào)節(jié)果實糖含量起關(guān)鍵作用。Ni等[89]研究表明,PbSWEET4可以促進(jìn)糖從葉片流向其他器官,過表達(dá)PbSWEET4可顯著降低葉片中蔗糖的含量。Li等[94]發(fā)現(xiàn)PuSWEET15在梨果實中運輸蔗糖,過表達(dá)PuSWEET15會增加蔗糖含量,而沉默PuSWEET15則會降低蔗糖含量。Qin等[95]研究證實了液泡質(zhì)體單糖轉(zhuǎn)運體相關(guān)基因PbrTMT1的功能,該基因負(fù)責(zé)促進(jìn)梨果實中果糖的積累。Yu等[11]研究表明,PbSOT6/20的表達(dá)模式與梨果實中山梨醇積累模式的相關(guān)性更強,低質(zhì)量分?jǐn)?shù)(100 mg·g-1)的外源山梨醇誘導(dǎo)了PbSOT6/20的表達(dá),而在葉片中不表達(dá)。Li等[93]研究表明5個糖轉(zhuǎn)運體基因(PbTMT2、PbTMT3、PbTMT4、PbPLT9和PbPLT22)與梨果實發(fā)育和成熟過程中的糖積累水平密切相關(guān),可能比其他基因發(fā)揮更重要的作用。Cheng等[90]研究表明,PbTMT4被認(rèn)為是梨果中果糖、葡萄糖和蔗糖積累的重要貢獻(xiàn)者,轉(zhuǎn)此基因的成熟番茄的葡萄糖和果糖含量比對照植株增加了約32%和21%。Wang等[64]研究表明,施用有機肥和生物有機肥后,糖轉(zhuǎn)運體基因的轉(zhuǎn)錄豐度均顯著增加,如SOT、SUT14、UDP-GLUT4、UDP-SUT、SUC4、SUT7、SWEET10和SWEET15,促進(jìn)糖的運輸,兩種肥料均促進(jìn)果實中蔗糖積累和檸檬酸降解。Wang等[82]研究發(fā)現(xiàn),嫁接榅桲的早酥梨基因PbSWEET6表達(dá)量高于嫁接杜梨的,過表達(dá)基因PbSWEET6的轉(zhuǎn)基因番茄果實和梨果實愈傷組織中蔗糖和葡萄糖含量增加。
大多數(shù)梨品種果實中主要的有機酸是蘋果酸和檸檬酸,目前相關(guān)功能基因的研究明顯少于糖的研究。Wang等[29]研究發(fā)現(xiàn),1-MCP熏蒸可上調(diào)基因cyNAD-MDH的表達(dá)和cyNAD-MDH活性,抑制cyNADP-ME活性,從而使儲藏的豐水梨保持更高的蘋果酸豐度。Song等[12]選擇5個梨品種研究,發(fā)現(xiàn)PbPH5過表達(dá)顯著增加了蘋果酸含量,相比之下,通過RNA干擾沉默基因PbPH5則顯著降低了其轉(zhuǎn)錄水平和梨果實中蘋果酸含量。Li等[3]比較研究高酸和低酸兩個梨品種,結(jié)果表明,三羧酸循環(huán)(TCA)相關(guān)通路和轉(zhuǎn)運蛋白基因在有機酸積累中發(fā)揮重要作用,12個TCA相關(guān)基因和3個轉(zhuǎn)運體被篩選為候選基因。
4.2 轉(zhuǎn)錄因子研究
轉(zhuǎn)錄因子(TF)在調(diào)節(jié)碳水化合物的分配和糖酸的代謝中發(fā)揮重要作用,調(diào)控梨果糖酸的部分轉(zhuǎn)錄因子功能已被驗證。Lü等[96]研究發(fā)現(xiàn),高蔗糖含量參與了C2H2、BZIP、GRAS、MADS和WRKY的上調(diào),它們與蔗糖生物合成相關(guān)的靶基因啟動子上的特定結(jié)合位點相互作用。Li等[94]研究發(fā)現(xiàn),轉(zhuǎn)錄因子PuWRKY31與PuSWEET15基因啟動子結(jié)合,誘導(dǎo)其表達(dá),PuWRKY31的高表達(dá)導(dǎo)致南果梨芽變品種的蔗糖含量高于南果梨。Li等[97]利用外源性蔗糖處理南果梨,蔗糖激活PuWRKY31表達(dá),PuWRKY31的表達(dá)增強了PuACS1a和PuACO1的表達(dá),從而導(dǎo)致梨果實中乙烯產(chǎn)量的增加,表明蔗糖調(diào)節(jié)梨果中乙烯生物合成。Li等[3]研究高酸梨果酸代謝TCA通路相關(guān)的轉(zhuǎn)錄因子中,8個MYB、6個bHLH和6個NAC調(diào)控作用突出。Lin等[98]從杜梨中篩選到轉(zhuǎn)錄調(diào)控基因PbWRKY40,通過超表達(dá)和沉默該基因,研究表明,PbWRKY40至少部分地通過調(diào)控PbVHA-B1的表達(dá),在耐鹽性和有機酸積累方面發(fā)揮作用。
4.3 基因組學(xué)研究
基因組測序和基因組學(xué)的快速發(fā)展為大規(guī)模梨基因組測序和分析提供了便利,使表型和基因型的比較分析研究取得了重要進(jìn)展。Li等[93]研究ST基因家族的染色體分布和基因復(fù)制,對梨基因組的研究發(fā)現(xiàn)了75個糖轉(zhuǎn)運體基因,其中有6個基因?qū)儆谡崽寝D(zhuǎn)運體(SUT)家族,表達(dá)分析顯示,大多數(shù)ST基因在果實發(fā)育過程中表達(dá)。Wu等[2]從基因組水平上分析63個亞洲梨和50個歐洲梨,發(fā)現(xiàn)了許多糖相關(guān)基因,對于亞洲梨,在選定的區(qū)域共鑒定出45個糖相關(guān)基因,在歐洲梨中只鑒定出11個糖相關(guān)基因;但發(fā)現(xiàn)參與有機酸代謝的基因較少,亞洲梨和歐洲梨中存在不同優(yōu)勢酸成分。Zhang等[99]對312個砂梨品種開展GWAS關(guān)聯(lián)分析,獲得大量與可溶性糖和有機酸等代謝相關(guān)的基因。Nishio等[8]對106個日本梨和1112個雜交后代開展基因組GWAS關(guān)聯(lián)分析,基因組最佳線性無偏預(yù)測(GBLUP)對蔗糖、果糖和葡萄糖的基因組選擇的準(zhǔn)確性相對較高(0.67~0.75),這表明選擇蔗糖和果糖含量高、葡萄糖含量低的個體是可能的。
4.4 其他研究
Wu等[100]研究證明,miRNAs廣泛參與調(diào)控果實的發(fā)育和果實品質(zhì)的形成,9個miRNAs被鑒定參與酥梨果糖和酸代謝。Reuscher等[101]基于定量蛋白質(zhì)組學(xué),為梨果實發(fā)育過程中的糖積累以及關(guān)鍵反應(yīng)和轉(zhuǎn)運步驟的候選基因提供了新的見解。Nishio等[102]利用砂梨秋月后代群體開發(fā)糖相關(guān)QTL標(biāo)記,在連鎖群LG1和LG7上發(fā)現(xiàn)了兩個與個體糖含量相關(guān)的區(qū)域,認(rèn)為側(cè)翼區(qū)域的酸性轉(zhuǎn)化酶基因PPAIV3和PPAIV1很可能是控制個體糖含量的候選基因。Jiang等[16]研究獲得與總糖含量相關(guān)的2個QTLs標(biāo)記(LG12-Chr3和LG6-Chr7),鑒定了幾個與果實糖積累相關(guān)的差異表達(dá)基因,在甜梨后代中,PpS6PDH和ATP-PpPFK表達(dá)上調(diào),蔗糖轉(zhuǎn)運體PpSUT表達(dá)下調(diào)。
5 小結(jié)與展望
梨品種果實糖酸含量及組分因其不同發(fā)育階段、不同品種、采后不同階段而不同,不同的糖酸含量及組分差異形成了豐富多樣的酸甜風(fēng)味。關(guān)于糖酸含量及組分差異的研究成果已經(jīng)相當(dāng)豐富,各種調(diào)控糖酸含量的措施研究已經(jīng)具有很強的指導(dǎo)性,基于采前采后的相關(guān)研究,針對具體梨品種可開展調(diào)控果實糖酸的生產(chǎn)實踐應(yīng)用。關(guān)于梨品種果實糖酸含量及組分差異的分子機制研究,在功能基因、轉(zhuǎn)錄調(diào)控、QTLs分子標(biāo)記、基因組學(xué)和蛋白組學(xué)方面也已經(jīng)取得一系列成果,但是果實糖酸代謝是十分復(fù)雜的生理生化代謝網(wǎng)絡(luò)的一部分,依然有巨大的研究空間?,F(xiàn)有梨果實糖酸分子生物學(xué)的研究成果已經(jīng)闡釋了梨果糖酸代謝的部分現(xiàn)象,并已在梨雜交群體后代評價中進(jìn)行探索研究,這將有助于開展不同糖酸比的梨新品種選育。
梨屬植物是高度雜合的物種,有著漫長的進(jìn)化過程。梨栽培品種是人類長期馴化選擇的產(chǎn)物,許多果實經(jīng)濟(jì)性狀優(yōu)于梨野生種。關(guān)于梨果實糖酸的研究,應(yīng)從以下幾方面加強探索:一是開展梨品種和野生型之間的比較研究,探索糖酸代謝的關(guān)鍵功能基因和調(diào)控因子,從而更清晰地闡釋梨品種果實糖酸性狀馴化的分子機制;二是開展雜交群體梨果實糖酸遺傳規(guī)律的研究,進(jìn)行相關(guān)功能基因定位,以開發(fā)相關(guān)糖酸分子標(biāo)記,指導(dǎo)梨新品種選育;三是利用基因編輯技術(shù)完善梨品種果實糖酸代謝,以期實現(xiàn)果實糖酸含量的精準(zhǔn)調(diào)控,從而指導(dǎo)梨新品種選育。伴隨人類科技的日新月異和各種高科技技術(shù)的綜合應(yīng)用,將使有目的地改造梨品種果實糖酸含量和精準(zhǔn)調(diào)控梨果實酸甜風(fēng)味成為可能。
參考文獻(xiàn) References:
[1] LI X L,LIU L,MING M L,HU H J,ZHANG M Y,F(xiàn)AN J,SONG B B,ZHANG S L,WU J. Comparative transcriptomic analysis provides insight into the domestication and improvement of pear (P. pyrifolia) fruit[J]. Plant Physiology,2019,180(1):435-452.
[2] WU J,WANG Y T,XU J B,KORBAN S S,F(xiàn)EI Z J,TAO S T,MING R,TAI S S,KHAN A M,POSTMAN J D,GU C,YIN H,ZHENG D M,QI K J,LI Y,WANG R Z,DENG C H,KUMAR S,CHAGN? D,LI X L,WU J Y,HUANG X S,ZHANG H P,XIE Z H,LI X,ZHANG M Y,LI Y H,YUE Z,F(xiàn)ANG X D,LI J M,LI L T,JIN C,QIN M F,ZHANG J Y,WU X,KE Y Q,WANG J,YANG H,ZHANG S L. Diversification and independent domestication of Asian and European pears[J]. Genome Biology,2018,19(1):77.
[3] LI Q H,QIAO X,JIA L T,ZHANG Y X,ZHANG S L. Transcriptome and resequencing analyses provide insight into differences in organic acid accumulation in two pear varieties[J]. International Journal of Molecular Sciences,2021,22(17):9622.
[4] LI J M,ZHU R X,ZHANG M Y,CAO B B,LI X L,SONG B B,LIU Z C,WU J. Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear[J]. The Plant Journal,2023,114(1):124-141.
[5] 劉園,向思敏,王江波,吳翠云,唐章虎,龔涵,張雪,徐娟. 庫爾勒香梨揮發(fā)性物質(zhì)及初生代謝物的GC-MS分析[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報,2020,39(1):44-52.
LIU Yuan,XIANG Simin,WANG Jiangbo,WU Cuiyun,TANG Zhanghu,GONG Han,ZHANG Xue,XU Juan. GC-MS analyses of volatiles and primary metabolites in Korla Pear fruit[J]. Journal of Huazhong Agricultural University,2020,39(1):44-52.
[6] AKAGI? A,ORAS A,GA?I F,MELAND M,DRKENDA P,MEMI? S,SPAHO N,?ULJEVI? S O,JERKOVI? I,MUSI? O,HUDINA M. A comparative study of ten pear (Pyrus communis L.) cultivars in relation to the content of sugars,organic acids,and polyphenol compounds[J]. Foods,2022,11(19):3031.
[7] LIU L,CHEN C X,ZHU Y F,XUE L,LIU Q W,QI K J,ZHANG S L,WU J. Maternal inheritance has impact on organic acid content in progeny of pear (Pyrus spp.) fruit[J]. Euphytica,2016,209(2):305-321.
[8] NISHIO S,HAYASHI T,SHIRASAWA K,SAITO T,TERAKAMI S,TAKADA N,TAKEUCHI Y,MORIYA S,ITAI A. Genome-wide association study of individual sugar content in fruit of Japanese pear (Pyrus spp.)[J]. BMC Plant Biology,2021,21(1):378.
[9] LIU J L,YUE R R,SI M,WU M,CONG L,ZHAI R,YANG C Q,WANG Z G,MA F W,XU L F. Effects of exogenous application of melatonin on quality and sugar metabolism in ‘Zaosu pear fruit[J]. Journal of Plant Growth Regulation,2019,38(3):1161-1169.
[10] 楊盛,白牡丹,郝國偉,張曉偉,杜海燕,高鵬,郭黃萍. ‘玉露香梨果實發(fā)育過程中糖、酸積累特性研究[J]. 果樹學(xué)報,2019,36(8):1013-1019.
YANG Sheng,BAI Mudan,HAO Guowei,ZHANG Xiaowei,DU Haiyan,GAO Peng,GUO Huangping. Study on sugar and organic acid accumulation during fruit development in ‘Yulu-
xiang pear[J]. Journal of Fruit Science,2019,36(8):1013-1019.
[11] YU C Y,CHENG H Y,CHENG R,QI K J,GU C,ZHANG S L. Expression analysis of sorbitol transporters in pear tissues reveals that PbSOT6/20 is associated with sorbitol accumulation in pear fruits[J]. Scientia Horticulturae,2019,243:595-601.
[12] SONG J X,CHEN Y C,LU Z H,ZHAO G P,WANG X L,ZHAI R,WANG Z G,YANG C Q,XU L F. PbPH5,an H+ P-ATPase on the tonoplast,is related to malic acid accumulation in pear fruit[J]. Journal of Integrative Agriculture,2022,21(6):1645-1657.
[13] 黃春輝,俞波,蘇俊,舒群,滕元文. ‘美人酥和‘云紅梨1號紅皮砂梨果實的著色生理[J]. 中國農(nóng)業(yè)科學(xué),2010,43(7):1433-1440.
HUANG Chunhui,YU Bo,SU Jun,SHU Qun,TENG Yuanwen. A study on coloration physiology of fruit in two red Chinese sand pear cultivars ‘Meirensu and ‘Yunhongli No. 1[J]. Scientia Agricultura Sinica,2010,43(7):1433-1440.
[14] 袁暉,韋云,李馨玥,李俊才,王愛德. ‘南果梨及其芽變‘南紅梨果實中糖分積累與相關(guān)基因表達(dá)差異分析[J]. 果樹學(xué)報,2017,34(5):534-540.
YUAN Hui,WEI Yun,LI Xinyue,LI Juncai,WANG Aide. Differences in sugar accumulation and the related gene expression in fruit development between ‘Nanguo and its mutant ‘Nanhong pears[J]. Journal of Fruit Science,2017,34(5):534-540.
[15] 張瑩,郭瑞,曹玉芬,楊祥. 2021年遼寧興城梨種質(zhì)資源果實生長發(fā)育動態(tài)觀測數(shù)據(jù)集[J]. 農(nóng)業(yè)大數(shù)據(jù)學(xué)報,2022,4(2):40-47.
ZHANG Ying,GUO Rui,CAO Yufen,YANG Xiang. Dynamic dataset of fruit growth and development of pear germplasm resources[J]. Journal of Agricultural Big Data,2022,4(2):40-47.
[16] JIANG S,LI S G,LUO J,WANG X Q,SHI C H. QTL mapping and transcriptome analysis of sugar content during fruit ripening of Pyrus pyrifolia[J]. Frontiers in Plant Science,2023,14:1137104.
[17] 楊志軍,樂文全,張紹鈴,姚改芳,張虎平,馬翠云,吳俊. ‘鴨梨ב京白梨雜交后代果實可溶性糖積累差異以及相關(guān)酶活性研究[J]. 園藝學(xué)報,2012,39(6):1055-1063.
YANG Zhijun,YUE Wenquan,ZHANG Shaoling,YAO Gaifang,ZHANG Huping,MA Cuiyun,WU Jun. The difference of soluble sugar accumulation and related enzymes activities in pear fruit from hybrid offspring[J]. Acta Horticulturae Sinica,2012,39(6):1055-1063.
[18] 潘儼,孟新濤,車鳳斌,薛素琳,張婷,趙世榮,廖康. 庫爾勒香梨果實發(fā)育成熟的糖代謝和呼吸代謝響應(yīng)特征[J]. 中國農(nóng)業(yè)科學(xué),2016,49(17):3391-3412.
PAN Yan,MENG Xintao,CHE Fengbin,XUE Sulin,ZHANG Ting,ZHAO Shirong,LIAO Kang. Metabolic profiles of sugar metabolism and respiratory metabolism of Korla pear (Pyrus sinkiangensis Yu) throughout fruit development and ripening[J]. Scientia Agricultura Sinica,2016,49(17):3391-3412.
[19] KOU X H,LI Y F,ZHANG Y,JIANG B L,XUE Z H. Gene expression and activity of enzymes involved in sugar metabolism and accumulation during ‘Huangguan and ‘Yali pear fruit development[J]. Transactions of Tianjin University,2018,24(2):101-110.
[20] 李甲明,楊志軍,張紹鈴,黃小三,曹玉芬,吳俊. 不同梨品種果實有機酸含量變化與相關(guān)酶活性的研究[J]. 西北植物學(xué)報,2013,33(10):2024-2030.
LI Jiaming,YANG Zhijun,ZHANG Shaoling,HUANG Xiaosan,CAO Yufen,WU Jun. Change of organic acid contents and related enzyme activities in different pear cultivars[J]. Acta Botanica Boreali-Occidentalia Sinica,2013,33(10):2024-2030.
[21] 孫新菊,齊開杰,張紹鈴. ‘鴨梨 ‘新高梨果實發(fā)育中果肉及種子有機酸含量的變化[J]. 中國南方果樹,2018,47(6):115-120.
SUN Xinju,QI Kaijie,ZHANG Shaoling. Dynamic changes of organic acid content in sarcocarp and seeds during fruit development of Yali and Niitaka[J]. South China Fruits,2018,47(6):115-120.
[22] 張軍,姚虹. 庫爾勒香梨果實發(fā)育過程中有機酸代謝規(guī)律研究[J]. 中州大學(xué)學(xué)報,2021,38(2):107-111.
ZHANG Jun,YAO Hong. Study on organic acid metabolism during fruit development of Korla fragrant pear[J]. Journal of Zhongzhou University,2021,38(2):107-111.
[23] 霍月青,胡紅菊,彭抒昂,陳啟亮. 砂梨品種資源有機酸含量及發(fā)育期變化[J]. 中國農(nóng)業(yè)科學(xué),2009,42(1):216-223.
HUO Yueqing,HU Hongju,PENG Shuang,CHEN Qiliang. Contents and changes of organic acid in sand pears from different germplasm resources[J]. Scientia Agricultura Sinica,2009,42(1):216-223.
[24] 李甲明,楊志軍,樂文全,姚改芳,黃小三,張紹鈴,吳俊. ‘鴨梨ב京白梨雜交后代果實有機酸積累差異及相關(guān)酶活性的研究[J]. 西北植物學(xué)報,2014,34(2):318-324.
LI Jiaming,YANG Zhijun,YUE Wenquan,YAO Gaifang,HUANG Xiaosan,ZHANG Shaoling,WU Jun. Difference of acidity accumulation and related enzyme activities of pear from hybrid offspring of ‘Yali × ‘Jingbaili[J]. Acta Botanica Boreali-Occidentalia Sinica,2014,34(2):318-324.
[25] 劉清鶴,荊琳,王成榮,宋健坤,楊英杰,李鼎立,王然. 魯秀梨果實在生長發(fā)育中后期及貯藏過程中糖酸累積的變化[J]. 果樹學(xué)報,2022,39(5):743-751.
LIU Qinghe,JING Lin,WANG Chengrong,SONG Jiankun,YANG Yingjie,LI Dingli,WANG Ran. Changes in accumulation of sugars and acids in the fruits of Luxiu pear during the mid to late period of growth and development and postharvest storage[J]. Journal of Fruit Science,2022,39(5):743-751.
[26] WU J Y,F(xiàn)AN J B,LI Q H,JIA L T,XU L L,WU X,WANG Z W,LI H X,QI K J,QIAO X,ZHANG S L,YIN H. Variation of organic acids in mature fruits of 193 pear (Pyrus spp.) cultivars[J]. Journal of Food Composition and Analysis,2022,109:104483.
[27] ZHAO Y N,GENG J H,ZHANG Y,NAM K,XUE Z H,KOU X H. Changes in sugar metabolism and fruit quality of different pear cultivars during cold storage[J]. Transactions of Tianjin University,2019,25(4):389-399.
[28] WANG L,CHEN Y,WANG S K,XUE H B,SU Y L,YANG J,LI X G. Identification of candidate genes involved in the sugar metabolism and accumulation during pear fruit post-harvest ripening of ‘Red Clapps Favorite (Pyrus communis L.) by transcriptome analysis[J]. Hereditas,2017,155:11.
[29] WANG L B,MA M,ZHANG Y R,WU Z F,GUO L,LUO W Q,WANG L,ZHANG Z,ZHANG S L. Characterization of the genes involved in malic acid metabolism from pear fruit and their expression profile after postharvest 1-MCP/ethrel treatment[J]. Journal of Agricultural and Food Chemistry,2018,66(33):8772-8782.
[30] MA M,WANG L B,ZHANG S L,GUO L,ZHANG Z,LI J,SUN L Q,ZHANG S L. Acid vacuolar invertase 1 (PbrAc-Inv1) and invertase inhibitor 5 (PbrII5) were involved in sucrose hydrolysis during postharvest pear storage[J]. Food Chemistry,2020,320:126635.
[31] XU J Y,ZHANG Y,QI D,HUO H L,DONG X G,TIAN L M,ZHANG X S,LIU C,CAO Y F. Postharvest metabolomic changes in Pyrus ussuriensis Maxim. wild accession ‘Zaoshu Shanli[J]. Journal of Separation Science,2018,41(21):4001-4013.
[32] LWIN H P,LEE J. Fruit quality and major metabolites in cold-stored ‘Wonhwang Asian pears are differentially affected by fruit size[J]. Journal of the Science of Food and Agriculture,2020,100(14):5117-5125.
[33] DIAS C,RIBEIRO T,RODRIGUES A C,F(xiàn)ERRANTE A,VASCONCELOS M W,PINTADO M. Cold storage demand for ‘Rocha pear ripening:A comparison between a shorter and longer cold period[J]. Scientia Horticulturae,2022,299:111033.
[34] 黃麗,王亮,趙迎麗,張微,陳會燕,張立新,楊志國. 3種梨貯藏期間果實品質(zhì)、可溶性糖和有機酸含量變化[J]. 食品研究與開發(fā),2023,44(10):46-52.
HUANG Li,WANG Liang,ZHAO Yingli,ZHANG Wei,CHEN Huiyan,ZHANG Lixin,YANG Zhiguo. Changes in fruit quality,soluble sugar and organic acid content of three pear species during storage[J]. Food Research and Development,2023,44(10):46-52.
[35] WANG J W,DONG S Z,JIANG Y G,HE H S,LIU T,LV M,JI S J. Influence of long-term cold storage on phenylpropanoid and soluble sugar metabolisms accompanied with peel browning of ‘Nanguo pears during subsequent shelf life[J]. Scientia Horticulturae,2020,260:108888.
[36] KIRCA L,KIRCA S,AYG?N A. Organic acid,phenolic compound and antioxidant contents of fresh and dried fruits of pear (Pyrus communis L.) cultivars[J]. Erwerbs-Obstbau,2023,65(4):677-691.
[37] H?C P,KO???KOV? J,OMASTOV? P,BAL?K J,GOLI?? J,HOR?K M. Physiochemical changes of European pear cv. Conference and Asian pear cv. Yali during cold storage[J]. Horticulturae,2023,9(3):378.
[38] GAN X J,MA Q Y,WANG L W,LIU W H,CHEN Z Z,WANG W X,WANG J,MU J L. Physicochemical,sensory characterisation and volatile components of 16 NFC pear juice[J]. Journal of Food Measurement and Characterization,2023,17(4):3534-3547.
[39] LIU Y,WEN H,YANG X P,WU C Y,MING J Q,ZHANG H Y,CHEN J J,WANG J B,XU J. Metabolome and transcriptome profiling revealed the enhanced synthesis of volatile esters in Korla pear[J]. BMC Plant Biology,2023,23(1):264.
[40] 姚改芳,張紹鈴,吳俊,曹玉芬,劉軍,韓凱,楊志軍. 10個不同系統(tǒng)梨品種的可溶性糖與有機酸組分含量分析[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報,2011,34(5):25-31.
YAO Gaifang,ZHANG Shaoling,WU Jun,CAO Yufen,LIU Jun,HAN Kai,YANG Zhijun. Analysis of components and contents of soluble sugars and organic acids in ten cultivars of pear by high performance liquid chromatography[J]. Journal of Nanjing Agricultural University,2011,34(5):25-31.
[41] 姚改芳,楊志軍,張紹鈴,曹玉芬,劉軍,吳俊. 梨不同栽培種果實有機酸組分及含量特征分析[J]. 園藝學(xué)報,2014,41(4):755-764.
YAO Gaifang,YANG Zhijun,ZHANG Shaoling,CAO Yufen,LIU Jun,WU Jun. Characteristics of components and contents of organic acid in pear fruits from different cultivated species[J]. Acta Horticulturae Sinica,2014,41(4):755-764.
[42] GAO Z,ZHANG C J,LUO M,WU Y S,DUAN S Y,LI J F,WANG L,SONG S R,XU W P,WANG S P,ZHANG C X,MA C. Proteomic analysis of pear (Pyrus pyrifolia) ripening process provides new evidence for the sugar/acid metabolism difference between core and mesocarp[J]. Proteomics,2016,16(23):3025-3041.
[43] 安景舒,關(guān)曄晴,關(guān)軍鋒,牟德華. 不同品種和產(chǎn)地梨果實可溶性糖組分比較[J]. 食品安全質(zhì)量檢測學(xué)報,2018,9(23):6124-6129.
AN Jingshu,GUAN Yeqing,GUAN Junfeng,MOU Dehua. Comparison of soluble sugar components in pear fruit of different varieties and producing areas[J]. Journal of Food Safety & Quality,2018,9(23):6124-6129.
[44] 李芳芳,何子順,陶書田,張紹鈴,張虎平. 套袋對‘庫爾勒香梨果實發(fā)育過程中可溶性糖含量的影響[J]. 果樹學(xué)報,2014,31(6):1072-1078.
LI Fangfang,HE Zishun,TAO Shutian,ZHANG Shaoling,ZHANG Huping. Effects of bagging on soluble sugars contents during fruit development of ‘Korla fragrant pear[J]. Journal of Fruit Science,2014,31(6):1072-1078.
[45] WANG Y L,ZHANG X F,WANG R,BAI Y X,LIU C L,YUAN Y B,YANG Y J,YANG S L. Differential gene expression analysis of ‘Chili (Pyrus bretschneideri) fruit pericarp with two types of bagging treatments[J]. Horticulture Research,2017,4:17005.
[46] 柯凡君,張虎平,陶書田,張紹鈴. 套袋對梨果實發(fā)育過程中糖組分及其相關(guān)酶活性的影響[J]. 西北植物學(xué)報,2011,31(7):1422-1427.
KE Fanjun,ZHANG Huping,TAO Shutian,ZHANG Shaoling. Sugar component contents and metabolism-related enzyme activities in developing pear fruits after bagging[J]. Acta Botanica Boreali-Occidentalia Sinica,2011,31(7):1422-1427.
[47] 李芳芳,張虎平,何子順,陶書田,李格,張紹鈴. 套袋對‘庫爾勒香梨果實糖酸組分與香氣成分的影響[J]. 園藝學(xué)報,2014,41(7):1443-1450.
LI Fangfang,ZHANG Huping,HE Zishun,TAO Shutian,LI Ge,ZHANG Shaoling. Effects of bagging on soluble sugars,organic acids,and aroma compounds in Pyrus sinkiangensis ‘Korla Xiangli fruit[J]. Acta Horticulturae Sinica,2014,41(7):1443-1450.
[48] 孔佳君,曹鵬,吳瀟,袁亞洲,余珮嘉,陶書田,張紹鈴. 不同顏色濾光膜套袋對‘碭山酥梨果實品質(zhì)及礦質(zhì)元素含量的影響[J]. 園藝學(xué)報,2018,45(6):1173-1184.
KONG Jiajun,CAO Peng,WU Xiao,YUAN Yazhou,YU Peijia,TAO Shutian,ZHANG Shaoling. Effects of light quality on fruit quality and absorption of mineral elements in‘Dangshan Suli pear fruit development[J]. Acta Horticulturae Sinica,2018,45(6):1173-1184.
[49] 李剛波,樊繼德,趙林,張婷,張梅,楊艷,董玲霞,王福建,楊峰. 不同時期套袋對早熟梨果實品質(zhì)及有機氯菊酯類農(nóng)藥殘留的影響[J]. 西北農(nóng)業(yè)學(xué)報,2018,27(2):220-227.
LI Gangbo,F(xiàn)AN Jide,ZHAO Lin,ZHANG Ting,ZHANG Mei,YANG Yan,DONG Lingxia,WANG Fujian,YANG Feng. Effect of bagging time on fruit quality and organochlorine pesticides residues of early maturing pear[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2018,27(2):220-227.
[50] 李剛波,樊繼德,趙林,張婷,張梅,常有宏,藺經(jīng),楊峰. 套袋微環(huán)境特征及其對早熟梨果實品質(zhì)的影響[J]. 西南農(nóng)業(yè)學(xué)報,2018,31(9):1882-1890.
LI Gangbo,F(xiàn)AN Jide,ZHAO Lin,ZHANG Ting,ZHANG Mei,CHANG Youhong,LIN Jing,YANG Feng. Changes of microenvironment in different bagging time and their effects on fruit quality of early-maturing pear[J]. Southwest China Journal of Agricultural Sciences,2018,31(9):1882-1890.
[51] 李剛波,樊繼德,趙林,張婷,張梅,楊艷,楊峰. 五種套袋對早熟梨果實糖酸和毒死蜱農(nóng)藥殘留的影響[J]. 浙江農(nóng)業(yè)學(xué)報,2018,30(8):1363-1368.
LI Gangbo,F(xiàn)AN Jide,ZHAO Lin,ZHANG Ting,ZHANG Mei,YANG Yan,YANG Feng. Effects of 5 bagging treatments on sugar and acid content and chlorpyrifos pesticide residues in early maturing pears[J]. Acta Agriculturae Zhejiangensis,2018,30(8):1363-1368.
[52] 徐鍇,趙德英,袁繼存,閆帥,張少瑜. 不同果袋對紅色梨果實品質(zhì)的影響[J]. 浙江農(nóng)業(yè)學(xué)報,2019,31(12):2011-2018.
XU Kai,ZHAO Deying,YUAN Jicun,YAN Shuai,ZHANG Shaoyu. Effect of different types of fruit bag on fruit quality of red pear[J]. Acta Agriculturae Zhejiangensis,2019,31(12):2011-2018.
[53] 吳瑞媛,陳露露,王濤,黃雪燕,蔡丹英,滕元文. 反光膜對大棚‘翠冠梨果實糖積累及蔗糖代謝相關(guān)酶活性的影響[J]. 果樹學(xué)報,2013,30(3):427-432.
WU Ruiyuan,CHEN Lulu,WANG Tao,HUANG Xueyan,CAI Danying,TENG Yuanwen. Effects of reflective film on sugar accumulation and sucrose-metabolizing enzymes in fruit of ‘Cuiguan pear cultivated in plastic tunnel[J]. Journal of Fruit Science,2013,30(3):427-432.
[54] GU C,WU R F,YU C Y,QI K J,WU C,ZHANG H P,ZHANG S L. Spatio-temporally expressed sorbitol transporters cooperatively regulate sorbitol accumulation in pear fruit[J]. Plant Science,2021,303:110787.
[55] 韓彥肖,王亞茹,劉樹海,王永博,李曉,李勇,王迎濤. 植物生長調(diào)節(jié)劑處理對黃冠梨糖、酸含量的影響[J]. 華北農(nóng)學(xué)報,2012,27(S1):149-153.
HAN Yanxiao,WANG Yaru,LIU Shuhai,WANG Yongbo,LI Xiao,LI Yong,WANG Yingtao. Effects of plant growth regulators on contents of sugar and acid in Huangguan pear fruits[J]. Acta Agriculturae Boreali-Sinica,2012,27(S1):149-153.
[56] 施春暉,王曉慶,張學(xué)英,陳繼平,駱軍. 植物生長調(diào)節(jié)劑對‘翠冠梨的疏果效應(yīng)及對果實品質(zhì)的影響[J]. 上海農(nóng)業(yè)學(xué)報,2018,34(5):84-90.
SHI Chunhui,WANG Xiaoqing,ZHANG Xueying,CHEN Jiping,LUO Jun. Effect of plant growth regulators on fruit thinning and fruit quality of ‘Cuiguan pear[J]. Acta Agriculturae Shanghai,2018,34(5):84-90.
[57] 韓春紅,李博,楊英軍,姜偉,張向展,王倩,陳迪新,薛華柏. MeJA和PDJ對3個紅皮梨品種果實著色及糖酸含量的影響[J]. 中國果樹,2022(12):14-19.
HAN Chunhong,LI Bo,YANG Yingjun,JIANG Wei,ZHANG Xiangzhan,WANG Qian,CHEN Dixin,XUE Huabai. Effects of MeJA and PDJ on fruit coloration,sugar and acid content of three red pear cultivars[J]. China Fruits,2022(12):14-19.
[58] 李節(jié)法,楊琪,虞秀明,王磊,王世平,許文平,張才喜. 赤霉素對梨糖代謝及其關(guān)鍵酶基因表達(dá)的影響[J]. 上海交通大學(xué)學(xué)報(農(nóng)業(yè)科學(xué)版),2015,33(3):21-28.
LI Jiefa,YANG Qi,YU Xiuming,WANG Lei,WANG Shiping,XU Wenping,ZHANG Caixi. Influence of gibberellins on sugar metabolism and related gene expression in fruit of pear (Pyrus pyrifolia)[J]. Journal of Shanghai Jiao Tong University (Agricultural Science),2015,33(3):21-28.
[59] TIAN J A,WEN Y E,ZHANG F,SAI J Y,ZHANG Y,LI W S. Effects of endogenous hormones and sugars on fruit size driven by cell division between Korla fragrant pear and its bud mutation[J]. HortScience,2021,56(8):881-888.
[60] WANG Y,WANG G M,XU W Y,ZHANG Z W,SUN X,ZHANG S L. Exogenous melatonin improves pear resistance to Botryosphaeria dothidea by increasing autophagic activity and sugar/organic acid levels[J]. Phytopathology,2022,112(6):1335-1344.
[61] WANG J W,LV M,HE H S,JIANG Y G,YANG J Y,JI S J. Glycine betaine alleviated peel browning in cold-stored ‘Nanguo pears during shelf life by regulating phenylpropanoid and soluble sugar metabolisms[J]. Scientia Horticulturae,2020,262:109100.
[62] 邵白俊杰,田嘉,郝志超,王乾,張峰,溫玥. 乙烯利對庫爾勒香梨果實發(fā)育進(jìn)程和品質(zhì)的影響[J]. 西北植物學(xué)報,2023,43(2):265-275.
SHAO-Bai Junjie,TIAN Jia,HAO Zhichao,WANG Qian,ZHANG Feng,WEN Yue. Effects of ethephon on fruit developmental process and quality of Korla fragrant pear[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(2):265-275.
[63] SHEN C W,WANG J,JIN X,LIU N,F(xiàn)AN X S,DONG C X,SHEN Q R,XU Y C. Potassium enhances the sugar assimilation in leaves and fruit by regulating the expression of key genes involved in sugar metabolism of Asian pears[J]. Plant Growth Regulation,2017,83(2):287-300.
[64] WANG Z H,YANG H,MA Y W,JIANG G F,MEI X L,LI X G,YANG Q S,KAN J L,XU Y C,YANG T J,LIN J,DONG C X. WGCNA analysis revealing molecular mechanism that bio-organic fertilizer improves pear fruit quality by increasing sucrose accumulation and reducing citric acid metabolism[J]. Frontiers in Plant Science,2022,13:1039671.
[65] SHEN C W,WANG J,SHI X Q,KANG Y L,XIE C Y,PENG L R,DONG C X,SHEN Q R,XU Y C. Transcriptome analysis of differentially expressed genes induced by low and high potassium levels provides insight into fruit sugar metabolism of pear[J]. Frontiers in Plant Science,2017,8:938.
[66] 周君,肖偉,陳修德,高東升,李玲. 外源鈣對‘黃金梨葉片光合特性及果實品質(zhì)的影響[J]. 植物生理學(xué)報,2018,54(3):449-455.
ZHOU Jun,XIAO Wei,CHEN Xiude,GAO Dongsheng,LI Ling. Effect of exogenous calcium on leaf photosynthetic characteristics and fruit quality of ‘Whangkeumbae pear[J]. Plant Physiology Journal,2018,54(3):449-455.
[67] 周君,肖偉,陳修德,高東升,李玲. 噴施氨基酸鈣對黃金梨光合性能、果實鈣含量及品質(zhì)的影響[J]. 山東農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2018,49(4):551-555.
ZHOU Jun,XIAO Wei,CHEN Xiude,GAO Dongsheng,LI Ling. Effect of spraying amino acid-Ca on photosynthetic characteristics,calcium content and quality of ‘Whangkeumbae pear[J]. Journal of Shandong Agricultural University (Natural Science Edition),2018,49(4):551-555.
[68] 魏樹偉,王少敏,童瑤,王宏偉,冉昆,董冉,董肖昌,張勇. 鈣處理對‘南果梨果實香氣合成底物及關(guān)鍵酶活性的影響[J]. 植物生理學(xué)報,2020,56(12):2745-2754.
WEI Shuwei,WANG Shaomin,TONG Yao,WANG Hongwei,RAN Kun,DONG Ran,DONG Xiaochang,ZHANG Yong. Effects of calcium treatment on substrates and key enzyme activities related to aroma synthesis in ‘Nanguoli pear fruits[J]. Plant Physiology Journal,2020,56(12):2745-2754.
[69] PESSOA C C,LIDON F C,DACCAK D,LU?S I C,MARQUES A C,COELHO A R F,LEGOINHA P,RAMALHO J C,LEIT?O A E,GUERRA M,LEIT?O R G,CAMPOS P S,PAIS I P,SILVA M M,REBOREDO F H,PESSOA M F,SIM?ES M. Calcium biofortification of Rocha pear fruits:Implications on mineral elements,sugars and fatty acids accumulation in tissues[J]. Scientia Horticulturae,2022,4(4):35.
[70] XU Y H,XIONG B,WANG Z H,QIU X A. Effects of different fertilization methods on growth and fruit quality of ‘Aiganshui pear tree[J]. IOP Conference Series:Earth and Environmental Science,2018,186:012031.
[71] 劉松忠,劉軍,朱青青,張強,王小偉,魏欽平. 肥料種類對不同采收期‘黃金梨糖酸含量和風(fēng)味的影響[J]. 果樹學(xué)報,2012,29(5):804-808.
LIU Songzhong,LIU Jun,ZHU Qingqing,ZHANG Qiang,WANG Xiaowei,WEI Qinping. Effects of manure types on sugar and acid contents and flavor of pear (Pyrus pyrifolia ‘Hwangkumbae) at different mature stages[J]. Journal of Fruit Science,2012,29(5):804-808.
[72] 邵微,徐國益,于會麗,高登濤,劉遠(yuǎn),司鵬. 低分子有機酸水溶肥提升梨葉片光合、養(yǎng)分吸收及果實品質(zhì)[J]. 果樹學(xué)報,2022,39(6):992-1003.
SHAO Wei,XU Guoyi,YU Huili,GAO Dengtao,LIU Yuan,SI Peng. Low molecular weight organic acid water-soluble fertilizer improves leaf photosynthesis,nutrient absorption and fruit quality of pear[J]. Journal of Fruit Science,2022,39(6):992-1003.
[73] 丁易飛,申長衛(wèi),王潔,謝昶琰,彭莉潤,金昕,董彩霞,徐陽春. 不同施氮水平對棚架栽培‘壽新水梨生長及山梨醇代謝的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報,2017,40(2):242-250.
DING Yifei,SHEN Changwei,WANG Jie,XIE Changyan,PENG Lirun,JIN Xin,DONG Caixia,XU Yangchun. Effects of different supply of N levels on tree growth and sorbitol metabolism in leaf and fruit of trellis trained ‘Kotobuki Shinsui pear[J]. Journal of Nanjing Agricultural University,2017,40(2):242-250.
[74] 張海棠,趙德英,閆帥,徐鍇,張艷珍. 不同鉀鎂配比對‘早酥梨果實品質(zhì)的影響[J]. 果樹學(xué)報,2020,37(11):1667-1675.
ZHANG Haitang,ZHAO Deying,YAN Shuai,XU Kai,ZHANG Yanzhen. Effect of potassium-magnesium ratio on ‘Zaosu pear fruit quality[J]. Journal of Fruit Science,2020,37(11):1667-1675.
[75] TOKALA V Y,SINGH Z,KYAW P N. 1H-cyclopropabenzene and 1H-cyclopropa[b]naphthalene fumigation suppresses climacteric ethylene and respiration rates and modulates fruit quality in long-term controlled atmosphere-stored ‘Gold Rush pear fruit[J]. Journal of Plant Growth Regulation,2021,40(6):2276-2285.
[76] BAI L,ZHANG L,LV J Y,ZHANG Y Z,SUN M Y,CHEN J X,GE Y H. Effects of 1-methylcyclopropene (1-MCP) treatment on ethanol fermentation of Nanguo pear fruit during ripening[J]. Journal of Food Biochemistry,2022,46(5):e14035.
[77] LWIN H P,LEE J. Preharvest 1-methylcyclopropene treatment effects on fruit quality attributes and targeted metabolites in ‘Wonhwang pears stored at room temperature after cold storage[J]. Scientia Horticulturae,2021,289:110480.
[78] LWIN H P,LEE J. Differential effects of preharvest sprayable 1-methylcyclopropene application on fruit quality attributes and major targeted metabolites in cold-stored ‘Chuhwangbae pears[J]. Horticulture,Environment,and Biotechnology,2021,62(1):53-61.
[79] LWIN H P,LEE J. Differential effects of postharvest 1-MCP treatment on fruit quality and targeted major metabolites in long-term cold-stored ‘Wonhwang pears[J]. Horticulture,Environment,and Biotechnology,2022,63(4):499-513.
[80] LATT T T,LWIN H P,SEO H J,LEE J. 1-Methylcyclopropene delays degradation of peel greenness but induces internal physiological disorders in cold-stored fruit of interspecific pears[J]. Scientia Horticulturae,2023,312:111852.
[81] OU C Q,WANG F,WANG J H,LI S,ZHANG Y J,F(xiàn)ANG M,MA L,ZHAO Y N,JIANG S L. A de novo genome assembly of the dwarfing pear rootstock Zhongai 1[J]. Scientific Data,2019,6:281.
[82] WANG X L,CONG L,PANG J W,CHEN Y,WANG Z G,ZHAI R,YANG C Q,XU L F. Dwarfing rootstock ‘Yunnan quince promoted fruit sugar accumulation by influencing assimilate flow and PbSWEET6 in pear scion[J]. Horticulturae,2022,8(7):649.
[83] 徐文清,何永紅,王維,伊成勇,韋軍. 砧木對‘豐水梨果實有機酸組分和含量變化的影響[J]. 中國南方果樹,2017,46(1):16-19.
XU Wenqing,HE Yonghong,WANG Wei,YI Chengyong,WEI Jun. Effects of rootstocks on components and content changes of organic acids in ‘Hosui' pear fruits[J]. South China Fruits,2017,46(1):16-19.
[84] DUAN B,GE Y H,LI C Y,GAO X N,TANG Q,LI X,WEI M L,CHEN Y R. Effect of exogenous ATP treatment on sucrose metabolism and quality of Nanguo pear fruit[J]. Scientia Horticulturae,2019,249:71-76.
[85] WANG D,MA Q,BELWAL T,LI D,LI W X,LI L,LUO Z S. High carbon dioxide treatment modulates sugar metabolism and maintains the quality of fresh-cut pear fruit[J]. Molecules,2020,25(18):4261.
[86] ABDULLAH M,CAO Y,CHENG X,MENG D D,CHEN Y,SHAKOOR A,GAO J S,CAI Y P. The sucrose synthase gene family in Chinese pear (Pyrus bretschneideri Rehd.):Structure,expression,and evolution[J]. Molecules,2018,23(5):1144.
[87] 戴美松,徐飛,施澤彬,徐昌杰. 砂梨山梨醇轉(zhuǎn)運蛋白(SOT)基因家族成員表達(dá)特性及在果實糖積累中的作用初探[J]. 園藝學(xué)報,2015,42(8):1457-1466.
DAI Meisong,XU Fei,SHI Zebin,XU Changjie. Preliminary study on expression characteristics of sorbitol transporter (SOT) gene family and the role in sugar accumulation in Pyrus pyrifolia fruits[J]. Acta Horticulturae Sinica,2015,42(8):1457-1466.
[88] LI J M,QIN M F,QIAO X,CHENG Y S,LI X L,ZHANG H P,WU J. A new insight into the evolution and functional divergence of SWEET transporters in Chinese White pear (Pyrus bretschneideri)[J]. Plant and Cell Physiology,2017,58(4):839-850.
[89] NI J P,LI J M,ZHU R X,ZHANG M Y,QI K J,ZHANG S L,WU J. Overexpression of sugar transporter gene PbSWEET4 of pear causes sugar reduce and early senescence in leaves[J]. Gene,2020,743:144582.
[90] CHENG R,CHENG Y S,L? J H,CHEN J Q,WANG Y Z,ZHANG S L,ZHANG H P. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit[J]. Physiologia Plantarum,2018,164(3):307-319.
[91] 程寅勝,陳健秋,陳丹,呂佳紅,張俊,張紹鈴,伍濤,張虎平. 梨糖轉(zhuǎn)運相關(guān)基因PbTMT4啟動子克隆及功能分析[J]. 園藝學(xué)報,2019,46(1):25-36.
CHENG Yinsheng,CHEN Jianqiu,CHEN Dan,L? Jiahong,ZHANG Jun,ZHANG Shaoling,WU Tao,ZHANG Huping. Cloning and functional analysis of the promoter of PbTMT4 gene related sugar transport in pear[J]. Acta Horticulturae Sinica,2019,46(1):25-36.
[92] WANG L F,QI X X,HUANG X S,XU L L,JIN C,WU J,ZHANG S L. Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri,enhances sucrose content in Solanum lycopersicum fruit[J]. Plant Physiology and Biochemistry,2016,105:150-161.
[93] LI J M,ZHENG D M,LI L T,QIAO X,WEI S W,BAI B,ZHANG S L,WU J. Genome-wide function,evolutionary characterization and expression analysis of sugar transporter family genes in pear (Pyrus bretschneideri Rehd.)[J]. Plant and Cell Physiology,2015,56(9):1721-1737.
[94] LI X Y,GUO W,LI J C,YUE P T,BU H D,JIANG J,LIU W T,XU Y X,YUAN H,LI T,WANG A D. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit[J]. Plant Physiology,2020,182(4):2035-2046.
[95] QIN M F,LI L T,SINGH J,SUN M Y,BAI B,LI S W,NI J P,ZHANG J Y,ZHANG X,WEI W L,ZHANG M Y,LI J M,QI K J,ZHANG S L,KHAN A,WU J. Construction of a high-density bin-map and identification of fruit quality-related quantitative trait loci and functional genes in pear[J]. Horticulture Research,2022,9:uhac141.
[96] L? J H,TAO X,YAO G F,ZHANG S L,ZHANG H P. Transcriptome analysis of low- and high-sucrose pear cultivars identifies key regulators of sucrose biosynthesis in fruits[J]. Plant & Cell Physiology,2020,61(8):1493-1506.
[97] LI X Y,GUO W,XU M Y,ZHAO J M,WANG G,YUAN H,WANG A D. PuWRKY31 affects ethylene production in response to sucrose signal in pear fruit[J]. Horticulture Research,2022,9:uhac156.
[98] LIN L K,YUAN K L,HUANG Y D,DONG H Z,QIAO Q H,XING C H,HUANG X S,ZHANG S L. A WRKY transcription factor PbWRKY40 from Pyrus betulaefolia functions positively in salt tolerance and modulating organic acid accumulation by regulating PbVHA-B1 expression[J]. Environmental and Experimental Botany,2022,196:104782.
[99] ZHANG M Y,XUE C,HU H J,LI J M,XUE Y S,WANG R Z,F(xiàn)AN J,ZOU C,TAO S T,QIN M F,BAI B,LI X L,GU C,WU S,CHEN X,YANG G Y,LIU Y Y,SUN M Y,F(xiàn)EI Z J,ZHANG S L,WU J. Genome-wide association studies provide insights into the genetic determination of fruit traits of pear[J]. Nature Communications,2021,12(1):1144.
[100] WU J,WANG D F,LIU Y F,WANG L,QIAO X,ZHANG S L. Identification of miRNAs involved in pear fruit development and quality[J]. BMC Genomics,2014,15(1):953.
[101] REUSCHER S,F(xiàn)UKAO Y,MORIMOTO R,OTAGAKI S,OIKAWA A,ISUZUGAWA K,SHIRATAKE K. Quantitative proteomics-based reconstruction and identification of metabolic pathways and membrane transport proteins related to sugar accumulation in developing fruits of pear (Pyrus communis)[J]. Plant and Cell Physiology,2016,57(3):505-518.
[102] NISHIO S,SAITO T,TERAKAMI S,TAKADA N,KATO H,ITAI A,YAMAMOTO T. Identification of QTLs associated with conversion of sucrose to hexose in mature fruit of Japanese pear[J]. Plant Molecular Biology Reporter,2018,36(4):643-652.