摘 要:【目的】單葉薔薇是薔薇屬唯一的單葉物種,目前已被列為國(guó)家二級(jí)瀕危保護(hù)植物,開(kāi)發(fā)高效的分子標(biāo)記可以為單葉薔薇居群遺傳多樣性分析、克隆生長(zhǎng)格局等研究提供重要的數(shù)據(jù)支撐,為其居群遺傳資源的保育提供理論指導(dǎo)。【方法】利用Krait v1.3軟件對(duì)單葉薔薇全基因組序列中1~6核苷酸重復(fù)的SSR位點(diǎn)進(jìn)行搜索并分析其序列特征,進(jìn)而采用Primer Premier3.0軟件設(shè)計(jì)引物。選取16個(gè)單葉薔薇樣本通過(guò)瓊脂糖凝膠電泳和毛細(xì)管電泳檢驗(yàn)引物的有效性和多態(tài)性。最后用POPGENE32軟件和PowerMarker3.25軟件對(duì)高多態(tài)性引物擴(kuò)增產(chǎn)物數(shù)據(jù)進(jìn)行遺傳參數(shù)分析,利用軟件NTSYS-pc2.10對(duì)16個(gè)單葉薔薇樣本進(jìn)行聚類(lèi)分析?!窘Y(jié)果】單葉薔薇基因組序列上共識(shí)別出142 083個(gè)SSR位點(diǎn),其中二核苷酸重復(fù)類(lèi)型數(shù)目最多,占比46.95%。單核苷酸至六核苷酸重復(fù)型中占比最高的基序類(lèi)型分別為A/T、AT/AT、AAG/CTT、AAAT/ATTT、AAAAT/ATTTT和AAAAAG/CTTTTT,充分表明A/T為優(yōu)勢(shì)堿基。單葉薔薇基因組SSR序列長(zhǎng)度變化范圍為12~1 026 bp,不同的核苷酸重復(fù)類(lèi)型均呈現(xiàn)長(zhǎng)度越長(zhǎng)數(shù)量越少的規(guī)律,區(qū)間長(zhǎng)度為10~15 bp的SSR位點(diǎn)數(shù)量最多,占比47.42%。合成的140對(duì)引物中112對(duì)可以獲得清晰的目的條帶,引物有效率為80%;最后篩選出多態(tài)性高、穩(wěn)定性好的14對(duì)引物在16份單葉薔薇樣本中檢測(cè)到等位基因58個(gè),PIC值在0.314 3~0.675 9之間,等位基因數(shù)(Na)、有效等位基因數(shù)(Ne)、Shannon信息指數(shù)(I)及PIC值平均分別為4.142 9、2.576 9、1.080 8和0.529 2。Pearson相關(guān)分析結(jié)果表明所篩選引物的PIC值與SSR長(zhǎng)度間并無(wú)顯著相關(guān)性。通過(guò)聚類(lèi)分析發(fā)現(xiàn),篩選出的14對(duì)引物能夠?qū)⒒诓煌尤旱膯稳~薔薇進(jìn)行較好地區(qū)分,遺傳相似系數(shù)在0.45~0.86之間。【結(jié)論】利用單葉薔薇全基因組大規(guī)模開(kāi)發(fā)的SSR標(biāo)記數(shù)量豐富且類(lèi)型多樣,篩選出的高多態(tài)性SSR位點(diǎn)將為后續(xù)單葉薔薇居群遺傳多樣性研究發(fā)揮重要作用。
關(guān)鍵詞:?jiǎn)稳~薔薇;SSR;標(biāo)記開(kāi)發(fā);多態(tài)性
中圖分類(lèi)號(hào):S759.95 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-923X(2024)06-0186-11
基金項(xiàng)目:國(guó)家自然科學(xué)基金面上項(xiàng)目(32071820);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1001001);中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)”(QNTD202306);北京高校高精尖學(xué)科建設(shè)項(xiàng)目“城鄉(xiāng)人居生態(tài)環(huán)境學(xué)”。
Development and application of genomic SSR markers in Rosa persica
ZHANG Xueyun, ZHANG Xiaolong, LI Na, KONG Qingyang, YU Chao, PAN Huitang, ZHANG Qixiang, LUO Le
(a. Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding; b. National Engineering Research Center for Floriculture; c. Beijing Laboratory of Urban and Rural Ecological Environment; d. Engineering Research Center of Landscape Environment of Ministry of Education; e. Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education; f. State Key Laboratory of Efficient Production of Forest Resources; g. School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)
Abstract:【Objective】Rosa persica is the only single-leaf species of Rosa genus, which has been classified as the second class of national endangered plants. The development of efficient molecular markers can provide important data support for the analysis of the genetic diversity of R. persica populations and the study of the growth pattern of clones, as well as theoretical guidance for the conservation of genetic resources of its populations.【Method】SSR loci with 1-6 nucleotide repeats in the whole genome sequence of R. persica were searched and analyzed by Krait v1.3 software, and then primers were designed by Primer Premier3.0 software. Sixteen samples of R. persica were selected to test the validity and polymorphism of the primers by agarose gel electrophoresis and capillary electrophoresis. Finally, the data of amplification products of high polymorphism primers were analyzed by POPGENE32 software and PowerMarker3.25 software for genetic parameters, and the 16 R. persica samples were analyzed by clustering using the software NTSYS-pc 2.10.【Result】A total of 142 083 SSR loci were identified on the genome sequence of R. persica, with the largest number of dinucleotide repeat types, accounting for 46.95%. The units with the highest percentage from mononucleotide to hexanucleotide repeat types were A/T, AT/AT, AAG/CTT, AAAT/ATTT, AAAAT/ATTT and AAAAAG/CTTTTTT, which fully indicated that A/T were the dominant unit. The SSR sequence lengths of R. persica genome varied from 12 to 1 026 bp, and the different nucleotide repeat types all showed the pattern of the longer length and the lower number, and the number of SSR loci with interval lengths of 10-15 bp was the largest, accounting for 47.42%. Among the 140 pairs of primers synthesized, 112 pairs of primers could obtain clear bands, and the primer efficiency was 80%; finally, 14 pairs of primers with high polymorphism and good stability were screened out and 58 alleles were detected in 16 R. persica samples. The PIC value ranged from 0.314 3 to 0.675 9. The average allele number (Na), effective alleles (Ne), shannon diversity index (I) and polymorphic information content (PIC) were 4.142 9, 2.576 9, 1.080 8 and 0.529 2, respectively. Pearson correlation analysis showed that there was no significant correlation between the PIC values of the screened primers and the lengths of the SSRs. Cluster analysis revealed that the 14 pairs of primers screened were able to better differentiate R. persica based on different populations, with genetic similarity coefficients ranging from 0.45 to 0.86.【Conclusion】The large-scale development of SSR markers using the whole genome of R. persica is rich in number and diverse in type, and the highly polymorphic SSR loci screened will play an important role in the study of the genetic diversity of R. persica populations.
Keywords: Rose persica; SSR; marker development; polymorphism
單葉薔薇Rosa persica為薔薇科Rosaceae薔薇屬Rosa L.多年生落葉叢生灌木,是薔薇科薔薇屬珍貴種質(zhì),主要分布在我國(guó)新疆西北地區(qū)[1],具備單葉、黃色花瓣和紅褐色花心等獨(dú)特特征[2]。同時(shí),它還具有抗寒、抗旱、耐鹽堿和根系發(fā)達(dá)等優(yōu)點(diǎn)[3],經(jīng)常以建群種的形式生長(zhǎng)于海拔120~950 m的山坡、荒地或路旁等干旱地帶的灌叢群落中,是用于防治水土流失、控制荒漠化和防風(fēng)固沙的優(yōu)良植物[4]。但由于人類(lèi)活動(dòng)的影響以及環(huán)境的改變導(dǎo)致新疆野外單葉薔薇居群的面積在逐年減少,目前已被列為國(guó)家二級(jí)瀕危保護(hù)植物[5],亟待保護(hù)。
在自然狀態(tài)下單葉薔薇居群數(shù)量增長(zhǎng)以發(fā)達(dá)的地下橫走結(jié)構(gòu)進(jìn)行無(wú)性繁殖為主,具備克隆植物的特點(diǎn)[6]。早期克隆結(jié)構(gòu)的研究主要通過(guò)挖掘地下部分,觀察根莖或匍匐莖連接情況來(lái)區(qū)分單個(gè)克隆植物的分布范圍,但存在工作量大、破壞性取樣等問(wèn)題[7]。因此,通過(guò)分子標(biāo)記的手段研究克隆植物的遺傳多樣性及空間遺傳結(jié)構(gòu)等方面具有重要意義[8],可以為單葉薔薇對(duì)環(huán)境的適應(yīng)性策略研究提供科學(xué)依據(jù),為順利開(kāi)展單葉薔薇野外居群的保育工作提供保障。
簡(jiǎn)單重復(fù)序列(Simple sequence repeat,SSR)或微衛(wèi)星標(biāo)記,是一類(lèi)由1~6個(gè)核苷酸為基本重復(fù)單位并在基因組中多次串聯(lián)重復(fù)的一段DNA序列[9],長(zhǎng)度一般在200 bp以下[10],具有多態(tài)性豐富、共顯性、重復(fù)性高和操作方便等特點(diǎn)[11-12],已被廣泛應(yīng)用于植物遺傳資源DNA指紋圖譜分析、遺傳多樣性分析、品種鑒定和分子標(biāo)記輔助育種等方面[13-14]。在薔薇屬植物中,Meng等[15]基于大花香水月季開(kāi)發(fā)出18個(gè)微衛(wèi)星標(biāo)記,并在27個(gè)野生薔薇屬植物中通過(guò)驗(yàn)證;Panwar等[16]從薔薇屬植物的EST序列中鑒定出了668個(gè)微衛(wèi)星標(biāo)記,并設(shè)計(jì)了293對(duì)引物用于后續(xù)研究;楊晨陽(yáng)[17]結(jié)合SSR及其他分子標(biāo)記分析月季組種質(zhì)資源的遺傳背景,將月季組復(fù)合體可分為3類(lèi),即香水月季類(lèi)、月季花類(lèi)和混合類(lèi)群;吳林世等[18]基于高通量測(cè)序的羊躑躅葉綠體基因組及SSR序列分析,構(gòu)建了杜鵑花科物種的系統(tǒng)進(jìn)化樹(shù);董勝君等[19]利用SSR的關(guān)聯(lián)分析,篩選出與野杏重要經(jīng)濟(jì)性狀相關(guān)聯(lián)的優(yōu)異等位變異及聚合優(yōu)異等位變異的典型載體材料。目前,國(guó)內(nèi)外關(guān)于單葉薔薇遺傳多樣性的研究較少,主要集中在育種、系統(tǒng)發(fā)育學(xué)、化學(xué)、藥用成分和生物學(xué)特性等方面,仍缺乏適用于單葉薔薇遺傳分析的SSR特異引物。單葉薔薇全基因組序列的開(kāi)發(fā)為實(shí)現(xiàn)大規(guī)模開(kāi)發(fā)SSR位點(diǎn)提供了條件。本研究利用Krait軟件[20]檢索SSR位點(diǎn)并分析其分布及組成特征,開(kāi)發(fā)并篩選高多態(tài)性引物,為后續(xù)其遺傳多樣性分析、克隆生長(zhǎng)格局研究和分子標(biāo)記輔助育種等工作奠定基礎(chǔ),豐富薔薇屬的SSR標(biāo)記資源。
1 材料與方法
1.1 試驗(yàn)材料
用于篩選SSR位點(diǎn)所需的16個(gè)單葉薔薇樣本部分(R1~R3)來(lái)自實(shí)生苗,由采自野外居群的種子在北京播種發(fā)育而來(lái),剩余樣本來(lái)源于6個(gè)新疆野生單葉薔薇采樣點(diǎn)(R4~R16,表1)。取樣時(shí)選取少量新鮮健康的葉片,液氮速凍后帶回實(shí)驗(yàn)室放入-80℃冰箱中保存。采用新型植物 DNA試劑盒(天根DP320)提取基因組DNA。選擇A260/A280值在1.7~1.9之間且瓊脂糖凝膠電泳檢測(cè)條帶清晰的DNA樣品,并統(tǒng)一用ddH2O將濃度稀釋至25 ng/μL左右,保存至-20 ℃冰箱中備用。
1.2 全基因組SSR位點(diǎn)查找及引物設(shè)計(jì)
根據(jù)單葉薔薇基因組序列數(shù)據(jù),利用Krait v1.3(https://github.com/lmdu/krait)軟件對(duì)單葉薔薇基因組序列中的SSR位點(diǎn)進(jìn)行查找。其中單、二、三、四、五、六核苷酸的最小重復(fù)次數(shù)分別為12、6、5、5、4、4,而且相鄰SSR序列間隔區(qū)域長(zhǎng)度不小于100 bp,其余參數(shù)設(shè)置為默認(rèn)。
利用Krait軟件附帶Primer Premier3.0軟件批量設(shè)計(jì)引物,參數(shù)設(shè)置為:引物長(zhǎng)度18~28 bp,預(yù)期PCR擴(kuò)增產(chǎn)物大小為80~300 bp,變性溫度55~65 ℃,GC含量40%~60%,其余參數(shù)默認(rèn)設(shè)置。
1.3 PCR擴(kuò)增及引物有效性檢測(cè)
每種重復(fù)類(lèi)型的SSR位點(diǎn)在不同染色體上(2n=14)隨機(jī)挑選2~5個(gè),共設(shè)計(jì)并合成140對(duì)引物。為驗(yàn)證引物的有效性,先選取2個(gè)單葉薔薇基因組DNA進(jìn)行PCR擴(kuò)增。PCR擴(kuò)增體系為20 μL:1 μL DNA模板(25 ng/μL),上下引物各1 μL,10 μL 2×Taq Mastermix,7 μL超純水。PCR反應(yīng)程序?yàn)椋?4 ℃變性3 min;94 ℃變性30 s,55 ℃退火30 s,72 ℃延伸30 s,共擴(kuò)增30個(gè)循環(huán);最后72 ℃延伸10 min。3%瓊脂糖凝膠電泳檢測(cè)擴(kuò)增產(chǎn)物[21]。
1.4 引物多態(tài)性篩選
從能夠擴(kuò)增出條帶的引物中繼續(xù)選取8個(gè)單葉薔薇基因組DNA進(jìn)行擴(kuò)增,并用3%的瓊脂糖凝膠檢測(cè)PCR產(chǎn)物。經(jīng)過(guò)兩次篩選,將多態(tài)性較高且穩(wěn)定性較好的引物利用16個(gè)單葉薔薇基因組 DNA模板進(jìn)行毛細(xì)管電泳檢測(cè)。PCR反應(yīng)體系為10 μL:1 μL DNA模板(25 ng/μL),0.3 μL M13F(10 μmol)上游引物序列結(jié)合的熒光標(biāo)記物,0.1 μL(10 μmol)上游引物和0.2 μL(10 μmol)下游引物,5 μL Mix(2×),3.4 μL超純水。其中M13引物序列進(jìn)行的熒光標(biāo)記分別為FAM、HEX、TAMRA、ROX[22]。PCR擴(kuò)增程序?yàn)椋?4 ℃預(yù)變性5 min;然后94 ℃變性30 s,65 ℃退火30 s(每個(gè)循環(huán)降低1 ℃),72 ℃延伸40 s,合計(jì)10個(gè)循環(huán);再94 ℃變性30 s,55 ℃退火30 s,72 ℃延伸40 s,合計(jì)25個(gè)循環(huán);最后72 ℃延伸7 min。PCR反應(yīng)產(chǎn)物送至睿博興科公司進(jìn)行毛細(xì)管電泳檢測(cè)。
1.5 數(shù)據(jù)分析
采用GeneMapper v4.1軟件對(duì)每個(gè)位點(diǎn)擴(kuò)增片段峰值圖進(jìn)行讀取并用Excel表格進(jìn)行統(tǒng)計(jì)[23];采用POPGENE32和PowerMarker 3.25軟件計(jì)算具有多態(tài)性的SSR位點(diǎn)的等位基因數(shù)(Na)、有效等位基因數(shù)(Ne)、Shannon信息指數(shù)(I)以及多態(tài)信息含量值(Polymorphic information content,PIC),采用NTSYS-pc2.10軟件對(duì)16份單葉薔薇試驗(yàn)材料的SSR數(shù)據(jù)進(jìn)行聚類(lèi)分析。
2 結(jié)果與分析
2.1 單葉薔薇基因組SSR位點(diǎn)數(shù)量分布特征
利用Krait軟件對(duì)單葉薔薇基因組序列進(jìn)行識(shí)別,在7對(duì)染色體和若干未匹配序列中共篩選得到142 083個(gè)完美型微衛(wèi)星位點(diǎn),序列總長(zhǎng)度為2 686 480 bp,占基因組長(zhǎng)度的0.74%。對(duì)單葉薔薇全基因組1~6個(gè)核苷酸重復(fù)的SSR位點(diǎn)進(jìn)行特征分析,包括對(duì)數(shù)量、長(zhǎng)度、平均長(zhǎng)度、相對(duì)豐度和相對(duì)密度進(jìn)行統(tǒng)計(jì)(表2),其中二核苷酸重復(fù)型SSR數(shù)目最多,為66 197個(gè),占總數(shù)的46.95%,其次為單核苷酸重復(fù)型,占41.94%,六核苷酸重復(fù)型占0.61%,數(shù)目最少,僅有869個(gè)。
從表3可以看出,在每種核苷酸重復(fù)類(lèi)型中,重復(fù)次數(shù)越多其數(shù)量越少。SSR位點(diǎn)的重復(fù)次數(shù)以12次最多,SSR位點(diǎn)數(shù)為17 670個(gè),占總SSR的 12.44%;其次為重復(fù)次數(shù)6次,共有16 746個(gè),占總SSR的11.79%。其中單核苷酸重復(fù)型中重復(fù)次數(shù)為12次的是所有重復(fù)類(lèi)型最多的,共14 180個(gè)。
SSR基序重復(fù)類(lèi)型(考慮互補(bǔ)系列)共發(fā)現(xiàn)285種,其中六核苷酸重復(fù)基序類(lèi)型數(shù)目最多,共174種。對(duì)重復(fù)基序的分布特征進(jìn)行統(tǒng)計(jì)(表4),發(fā)現(xiàn)單核苷酸重復(fù)型SSRs中A/T的出現(xiàn)頻率最高,重復(fù)次數(shù)12~73次,有55 101個(gè),占所有單核苷酸重復(fù)的92.47%;二核苷酸重復(fù)型SSRs中AT/ AT最多,有30 884個(gè),占所有二核苷酸重復(fù)的46.65%,其次為AG/CT,占比37.87%,重復(fù)次數(shù)多達(dá)201次;三核苷酸重復(fù)中出現(xiàn)最普遍的基序類(lèi)型是AAG/CTT(44.31%)和AAT/ATT(20.32%),出現(xiàn)最少的是CCG/CGG(1.96%),僅有237個(gè);四核苷酸、五核苷酸和六核苷酸重復(fù)型SSRs中占比最高的部分分別為AAAT/ATTT、AAAAT/ ATTTT和AAAAAT/ATTTTT,分別占3種重復(fù)類(lèi)型的32.52%、27.57%和9.67%。
總體來(lái)看,單葉薔薇基因組SSR重復(fù)基序具有偏好性,以A/T堿基為主,C/G堿基出現(xiàn)頻率相對(duì)較低。
2.2 單葉薔薇基因組SSR長(zhǎng)度分布情況
單葉薔薇基因組SSR序列長(zhǎng)度變化區(qū)間為12~1 026 bp,跨度很大,平均長(zhǎng)度為21.61 bp。其中,六核苷酸重復(fù)型SSR序列的平均長(zhǎng)度最大,為26.68 bp;單核苷酸重復(fù)型平均長(zhǎng)度最小,為15.35 bp(表2)。重復(fù)基序中ATAC/GTAT的平均長(zhǎng)度最長(zhǎng),為34.88 bp(表4)。
6種類(lèi)型的核苷酸重復(fù)均呈現(xiàn)長(zhǎng)度越長(zhǎng)數(shù)量越少的趨勢(shì)(圖1)。區(qū)間長(zhǎng)度為10~15 bp的SSR位點(diǎn)數(shù)量最多,具有67 374個(gè),占SSR位點(diǎn)總數(shù)的47.42%,主要以單核苷酸為主;位居第二的是長(zhǎng)度為16~20 bp的SSR位點(diǎn),具有39 642個(gè),占比27.90%,此范圍內(nèi)所占比例最高的為二核苷酸;三核苷酸長(zhǎng)度變化范圍為15~1 026 bp,變化范圍最大;四核苷酸和五核苷酸SSR位點(diǎn)的長(zhǎng)度區(qū)間主要分布于16~20 bp,分別具有1 182和1 078個(gè),占四核苷酸和五核苷酸SSR總數(shù)的58.78%和82.10%;六核苷酸SSR位點(diǎn)的長(zhǎng)度主要集中在21~25 bp的區(qū)間,占六核苷酸SSR總數(shù)的73.76%。
2.3 單葉薔薇基因組SSR引物初步篩選
根據(jù)SSR位點(diǎn)批量設(shè)計(jì)引物,共成功設(shè)計(jì)103 309對(duì)引物,引物設(shè)計(jì)成功率為72.7%。將隨機(jī)選取的140對(duì)引物用2個(gè)單葉薔薇樣本進(jìn)行擴(kuò)增,擴(kuò)增產(chǎn)物經(jīng)3%瓊脂糖凝膠電泳檢測(cè),112對(duì)引物擴(kuò)增出的條帶清晰,且片段大小在預(yù)期擴(kuò)增片段范圍內(nèi),引物有效率為80%。選用8份DNA模板擴(kuò)增篩選有條帶的引物進(jìn)行PCR擴(kuò)增,3%瓊脂糖凝膠電泳檢測(cè),共篩選出20對(duì)多態(tài)性較高且穩(wěn)定性較好的引物。引物RP-131、RP-51和RP-47均可擴(kuò)增出多個(gè)位點(diǎn)的片段,可進(jìn)一步用于毛細(xì)管電泳檢測(cè)(圖2)。
2.4 毛細(xì)管電泳驗(yàn)證引物多態(tài)性
篩選得到的20對(duì)SSR引物在16份單葉薔薇試驗(yàn)材料中可以擴(kuò)增出多態(tài)性產(chǎn)物,其PIC值在0.058 7~0.675 9之間,8對(duì)引物具有高多態(tài)性,PIC值>0.50,8對(duì)引物具有中度多態(tài)性(0.25 進(jìn)一步從中挑選出14對(duì)多態(tài)性高且穩(wěn)定性好的引物(表5),在16份單葉薔薇試驗(yàn)材料中共檢測(cè)到58個(gè)等位基因,每個(gè)位點(diǎn)的等位基因數(shù)在2~6個(gè),平均等位基因數(shù)為4.142 9;有效等位基因數(shù)在1.515 2~3.596 3之間,平均為2.576 9;Shannon信息指數(shù)在0.673 9~1.468 1之間,平均為1.080 8;PIC值在0.314 3~0.675 9之間,平均為0.529 2。 運(yùn)用NTSYS-pc2.10軟件對(duì)16份單葉薔薇樣本進(jìn)行Upgma非加權(quán)算術(shù)平均聚類(lèi)分析,結(jié)果表明,供試材料相似系數(shù)為0.45~0.86。當(dāng)遺傳相似系數(shù)為0.56左右時(shí),來(lái)自同一采集地的樣本R4、R5、R6、R7和R8聚類(lèi)到一起;此外,來(lái)自同一居群的單葉薔薇大多都被聚類(lèi)到一起(R11和R12、R9和10、R13和R14、R4和R5),且遺傳相似系數(shù)均較高。這些結(jié)果反映了單葉薔薇野外居群間存在著明顯的遺傳差異以及居群內(nèi)存在不同的遺傳多樣性水平(圖5)。 3 討 論 高通量測(cè)序技術(shù)成本的降低和組裝策略的不斷完善使得越來(lái)越多的物種完成了全基因組測(cè)序[25],基于全基因組序列開(kāi)發(fā)SSR標(biāo)記也成為一種高效且高通量的便捷途徑[26]。本研究利用Krait軟件從單葉薔薇基因組中共篩選到142 083個(gè)SSR位點(diǎn),利用Primer Premier3.0軟件成功設(shè)計(jì)引物103 309對(duì),從中隨機(jī)選取140對(duì)引物進(jìn)行驗(yàn)證并最終篩選出20對(duì)SSR引物進(jìn)行多態(tài)性分析。單葉薔薇基因組中重復(fù)類(lèi)型以二核苷酸為主,占比46.95%,其次為單核苷酸,占比41.94%,這一結(jié)果和許多植物中二核苷酸重復(fù)類(lèi)型在植物基因組中所占比例最高是一致的[27-28]。然而,棗Ziziphus jujuba基因組SSR位點(diǎn)特征研究中發(fā)現(xiàn)其優(yōu)勢(shì)重復(fù)類(lèi)型為六核苷酸(40.1%)[29];二倍體草莓Fragaria vesca和八倍體草莓Fragaria×ananassa中重復(fù)類(lèi)型為單核苷酸的占比最大,分別占40.92%(62 942個(gè))和38.94%(128 413個(gè))[30],上述結(jié)果表明SSR在不同物種以及相同物種的不同核苷酸重復(fù)類(lèi)型之間存在一定差異[31]。Haydar等[32]研究發(fā)現(xiàn)這可能與基因組大小有關(guān),單核苷酸重復(fù)類(lèi)型在基因組較小的物種中占優(yōu)勢(shì)地位,多核苷酸重復(fù)類(lèi)型可能在基因組較大的物種中占主導(dǎo)。 從SSR重復(fù)基序來(lái)看,不同類(lèi)型SSR位點(diǎn)中的優(yōu)勢(shì)基元略有不同,但存在一定的共性[25]。單核苷酸重復(fù)中以A/T基序?yàn)橹鳎瑯佣塑账嶂幸訟T/AT基序頻率最高,CG/CG出現(xiàn)頻率最低,三核苷酸~六核苷酸優(yōu)勢(shì)重復(fù)基元分別為AAG/ CTT、AAAT/ATTT、AAAAT/ATTTT和AAAAAT/ ATTTTT。這表明單葉薔薇全基因組序列富含堿基A和T,與許多植物中SSR基序的分布規(guī)律一致,比如石榴Punica granatum[33]、毛果楊Populus trichocarpa[34]、杜仲Eucommia ulmoies[35]、棗[29]和向日葵[36]等。植物基因組自身SSR位點(diǎn)信息差異及查找工具的默認(rèn)參數(shù)設(shè)置不同都會(huì)影響SSR優(yōu)勢(shì)基元的分布情況。 多態(tài)信息含量PIC是用來(lái)衡量位點(diǎn)多態(tài)性程度的信息[37],當(dāng)PIC>0.50時(shí),表明該標(biāo)記具有高度豐富的多態(tài)信息;當(dāng)PIC值在0.25~0.50之間時(shí),說(shuō)明該標(biāo)記可以合理地提供多態(tài)信息;當(dāng)PIC<0.25時(shí),說(shuō)明該標(biāo)記具有較低反映多態(tài)信息的能力[38]。研究發(fā)現(xiàn),SSR引物的多態(tài)性與核苷酸重復(fù)類(lèi)型和序列長(zhǎng)度有關(guān),基因組SSR引物多態(tài)性隨著重復(fù)基元長(zhǎng)度增加而降低,但隨著重復(fù)序列長(zhǎng)度的增加而升高[39]。研究表明,重復(fù)序列長(zhǎng)度大于20 bp的SSR位點(diǎn)多態(tài)性顯著高于序列長(zhǎng)度在12~20 bp的SSR位點(diǎn)[40]。本研究發(fā)現(xiàn),通過(guò)瓊脂糖凝膠電泳篩選得到的20對(duì)SSR引物中,二核苷酸重復(fù)類(lèi)型最多,占比65%;且重復(fù)序列長(zhǎng)度>20 bp的SSR位點(diǎn)占比80%,但20對(duì)引物的PIC值與SSR長(zhǎng)度并無(wú)顯著相關(guān)性,可能是引物數(shù)量較少未形成規(guī)律特征。因此,在選擇高多態(tài)性SSR標(biāo)記時(shí)應(yīng)著重考慮二核苷酸重復(fù)類(lèi)型,并選擇序列較長(zhǎng)的SSR位點(diǎn)[33]。 本研究選用16個(gè)不同的單葉薔薇樣本進(jìn)行聚類(lèi)分析,結(jié)果表明可以聚類(lèi)到一起的單葉薔薇個(gè)體大多來(lái)自同一居群或相同地理位置,但位于石河子鎮(zhèn)P6居群的R15和R16并未聚類(lèi)到一起,這可能是因?yàn)镻6居群遺傳變異水平高。鄧童等[41]也曾發(fā)現(xiàn)石河子鎮(zhèn)居群內(nèi)的單葉薔薇葉功能性狀變異系數(shù)較高,其中R15與居群P2的個(gè)體(R6)有更高的遺傳相似性,R16與居群P5的個(gè)體(R13、R14)有更高的遺傳相似性,這在相當(dāng)程度上表明了單葉薔薇具有長(zhǎng)距離的基因流特性。鄭書(shū)星等[42]在歐洲山楊中也得到了類(lèi)似的結(jié)果,居群內(nèi)變異是歐洲山楊遺傳變異的主要來(lái)源,距離超過(guò)100 km的居群遺傳相似性明顯高于相鄰居群。此外,從聚類(lèi)結(jié)果中可以推斷出實(shí)生苗R2和R3的親緣關(guān)系較近,它們的種子可能來(lái)自于P3居群,R1的種子可能來(lái)自于P2居群。 本研究從設(shè)計(jì)合成的103 309對(duì)引物中隨機(jī)挑選出140對(duì)進(jìn)行多態(tài)性分析,試驗(yàn)結(jié)果符合預(yù)期目標(biāo),但仍有大部分引物未進(jìn)行篩選。未來(lái)可進(jìn)一步開(kāi)發(fā)利用,分析引物的PIC值與SSR長(zhǎng)度的關(guān)聯(lián)性,獲取更多的多態(tài)性高的可轉(zhuǎn)移性引物,為薔薇屬植物提供豐富的SSR標(biāo)記資源。 4 結(jié) 論 本研究利用單葉薔薇基因組測(cè)序數(shù)據(jù)開(kāi)發(fā)出的SSR位點(diǎn)數(shù)量多、種類(lèi)豐富,最后篩選出的14對(duì)引物中有8對(duì)屬于高多態(tài)性(PIC>0.50),且能夠?qū)⒉煌尤旱膯稳~薔薇進(jìn)行聚類(lèi),符合地理分布情況,準(zhǔn)確度較高,證實(shí)了開(kāi)發(fā)的多態(tài)性SSR引物的有效性。未來(lái)可利用高多態(tài)性引物進(jìn)行單葉薔薇野外居群遺傳多樣性分析,研究其在不同生境下的克隆結(jié)構(gòu)和克隆多樣性水平的差異,探討形成原因,為開(kāi)展單葉薔薇野外居群保育工作提供科學(xué)依據(jù)。 參考文獻(xiàn): [1] 中國(guó)科學(xué)院中國(guó)植物志委員會(huì).中國(guó)植物志(37卷)[M].北京:科學(xué)出版社,1985. The Flora of China Committee in Chinese Academy of Sciences. Flora of China (Vol.37)[M]. Beijing: Science Press,1985. [2] 惠俊愛(ài),張霞,王紹明.新疆野生單葉薔薇生物學(xué)特性分析[J].山東林業(yè)科技,2013,43(4):61-63. HUI J A, ZHANG X, WANG S M. Analysis of biological characteristics of wild Hulthemia berberifolia (Pall.) Dumort. in Xinjiang[J]. Shandong Forestry Science and Technology,2013,43(4): 61-63. [3] 朱金啟.單葉薔薇生殖生物學(xué)及其繁殖方法研究[D].烏魯木齊:新疆農(nóng)業(yè)大學(xué),2003. ZHU J Q. Studies on the reproductive biology and the propagating methods of Rosa persica[D]. Urumqi: Xinjiang Agricultural University, 2003. [4] 張曉龍,鄧童,劉學(xué)森,等.單葉薔薇幼苗根系對(duì)不同潛水埋深的適應(yīng)機(jī)制[J].生態(tài)學(xué)報(bào),2022,42(15):6137-6149. ZHANG X L, DENG T, LIU X S, et al. Adaptability mechanism of Rosa persica seedlings root in different groundwater levels[J]. Acta Ecologica Sinica,2022,42(15):6137-6149. [5] 國(guó)家林業(yè)和草原局,農(nóng)業(yè)農(nóng)村部.《國(guó)家重點(diǎn)保護(hù)野生動(dòng)物名錄》(2021年2月1日修訂)[J].野生動(dòng)物學(xué)報(bào),2021,42(2): 605-640. National Forestry and Grassland Administration,Ministry of Agriculture and Rural Affairs.List of national key protected wild animals (revised in 2021-2-1)[J].Chinese Journal of Wildlife, 2021,42(2):605-640. [6] 賀海洋.單葉薔薇花形態(tài)建成與繁殖生物學(xué)研究[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2005. HE H Y. Reproductive biology and flora morphogenesis of Rosa persica[D]. Beijing: China Agricultural University,2005. [7] 余鴿.巴山木竹克隆結(jié)構(gòu)及遺傳多樣性研究[D].楊凌:西北農(nóng)林科技大學(xué),2016. YU G. Clonal structure and genetic diversity of Bashania fargesii[D]. Yangling: Northwest A F University,2016. [8] 馬青青,劉建軍,余鴿,等.佛坪國(guó)家級(jí)自然保護(hù)區(qū)秦嶺箭竹克隆結(jié)構(gòu)的SSR分析[J].生態(tài)學(xué)報(bào),2016,36(20):6496-6505. MA Q Q, LIU J J, YU G, et al.Clonal structure of a Fargesia qinlingensis population inferred using simple sequence repeat fingerprints in Foping National Nature Reserve[J]. Acta Ecologica Sinica,2016,36(20):6496-6505. [9] 杜偉,王東航,侯思宇,等.基于苦蕎全長(zhǎng)轉(zhuǎn)錄組測(cè)序開(kāi)發(fā)SSR標(biāo)記及遺傳多樣性分析[J].植物生理學(xué)報(bào),2020,56(7): 1432-1444. DU W, WANG D H, HOU S Y, et al. Development of SSR markers based on full-length transcriptome sequencing and its application for genetic diversity analysis in Fagopyrum tataricum[J]. Plant Physiology Journal,2020,56(7):1432-1444. [10] 宋琳琳,潘佳穎,李夢(mèng)思,等.大葉鐵線蓮Clematis heracleifolia DC.多態(tài)性SSR引物開(kāi)發(fā)[J].分子植物育種,2022,20(2): 448-454. SONG L L, PAN J Y, LI M S, et al. Development of polymorphic SSR primers for Clematis heracifolia DC.[J]. Molecular Plant Breeding,2022,20(2):448-454. [11] 田路明,曹玉芬,董星光,等.SSR分子標(biāo)記在梨種質(zhì)資源研究中的應(yīng)用[J].生物學(xué)雜志,2013,30(6):91-94. TIAN L M, CAO Y F, DONG X G, et al. Application of SSR molecular marker in pear germplasm resources[J]. Journal of Biology,2013,30(6):91-94. [12] 申響保,朱妍潔,徐剛標(biāo).密葉紅豆杉SSR位點(diǎn)分布特征及分子標(biāo)記開(kāi)發(fā)[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2021,41(4): 139-147. SHEN X B, ZHU Y J, XU G B. Distribution characteristics of SSR loci and development of molecular markers in Taxus fuana[J]. Journal of Central South University of Forestry Technology, 2021,41(4):139-147. [13] 賀文瑞,廖保生,沈曉鳳,等.基于黃花蒿低覆蓋度高精度基因組SSR分子標(biāo)記開(kāi)發(fā)[J].分子植物育種,2022,20(18):6087-6096. HE W R, LIAO B S, SHEN X F, et al. Development of genomic SSR molecular markers with low coverage and high precision in Artemisia annua Linn.[J]. Molecular Plant Breeding,2022,20(18): 6087-6096. [14] FANG X M, HUANG K H, NIE J, et al. Genome-wide mining, characterization, and development of microsatellite markers in tartary buckwheat (Fagopyrum tataricum Garetn.)[J]. Euphytica, 2019,215(11):1-10. [15] MENG J, LI D, YI T, et al. Development and characterization of microsatellite loci for Rosa odorata var. gigantea rehder e. h. wilson. (Rosaceae)[J]. Conservation Genetics,2009,10(6): 1973-1976. [16] PANWAR S, SINGH K P, NAMITA N, et al. Identification and characterization of microsatellites in easts of Rosa species: insight in development of SSR markers[J]. Indian Journal of Agricultural Sciences,2015,85(3):429-433. [17] 楊晨陽(yáng).薔薇屬月季組種質(zhì)資源遺傳多樣性和系統(tǒng)進(jìn)化[D].北京:北京林業(yè)大學(xué),2020. YANG C Y. Genetic diversity and phylogeny of Rosa Section Chinenses germplasm resources[D]. Beijing: Beijing Forestry University,2020. [18] 吳林世,廖菊陽(yáng),劉艷,等.基于高通量測(cè)序的羊躑躅葉綠體基因組及SSR序列分析[J].經(jīng)濟(jì)林研究,2022,40(1):123-131. WU L S, LIAO J Y, LIU Y, et al. Chloroplast genome and SSR sequence analysis of Rhododendron molle based on high throughput sequencing[J]. Non-wood Forest Research,2022,40(1): 123-131. [19] 董勝君,溫佳星,盧彩云,等.野杏經(jīng)濟(jì)性狀SSR關(guān)聯(lián)分析及優(yōu)異等位變異挖掘[J].經(jīng)濟(jì)林研究,2022,40(2):71-82. DONG S J, WEN J X, LU C Y, et al. Association analysis with SSR markers and mining elite allelic variation of economic traits of Armeniaca vulgaris[J]. Non-wood Forest Research, 2022,40(2):71-82. [20] DU L, ZHANG C, LIU Q, et al. Krait: an ultrafast tool for genome-wide survey of microsatellites and primer design[J]. Bio informatics,2018,34(4):681-683. [21] 郭磊,寧寧,王玉柱,等. 杏RAPD兩種凝膠電泳指紋特點(diǎn)及PCR擴(kuò)增片段的序列分析[J].遼寧農(nóng)業(yè)科學(xué),2010(3):1-6. GUO L, NING N, WANG Y Z, et al. Chloroplast genome and SSR sequence analysis of Rhododendron molle based on high throughput sequencing[J]. Liaoning Agricultural Sciences, 2010(3):1-6. [22] 洪文娟.石榴種質(zhì)資源SSR分子標(biāo)記遺傳多樣性分析及指紋圖譜構(gòu)建[D].北京:北京林業(yè)大學(xué),2021. HONG W J. Genetic diversity analysis and fingerprints construction of pomegranate germplasm resources based on SSR markers[D]. Beijing: Beijing Forestry University,2021. [23] 戴曉港,房芝馨,胡雪純,等.薄殼山核桃全基因組SSR分析及多態(tài)性引物篩選[J].分子植物育種,2021,19(24):8199-8207. DAI X G, FANG Z X, HU X C, et al. Whole genome SSR analysis and polymorphic primer screening in Carya illinoinensis[J]. Molecular Plant Breeding,2021,19(24):8199-8207. [24] BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980,32(3):314-331. [25] 杜磊,蒙秋伊,尚昆,等.薏苡基因組SSR標(biāo)記開(kāi)發(fā)與應(yīng)用[J].分子植物育種,2022,20(3):887-894. DU L, MENG Q Y, SHANG K, et al. Development and application of genomic SSR markers in Coix lacrymajobi L.[J]. Molecular Plant Breeding,2022,20(3):887-894. [26] LI N, ZHENG Y Q, DING H M, et al. Development and validation of SSR markers based on transcriptome sequencing of Casuarina equisetifolia[J]. Tree,2018,32(1):41-49. [27] DETTORI M T, MICALI S, GIOVINZZI J, et al. Mining microsatellites in the the peach genome: development of new long-core SSR markers for genetic analyses in five Prunus species[J]. Springerplus,2015,4(1):337. [28] ZHU H Y, SONG P Y, KOO D H, et al. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis[J]. BMC Genomics,2016,17(1):557. [29] 馬秋月,戴曉港,陳贏男,等.棗基因組的微衛(wèi)星特征[J].林業(yè)科學(xué),2013,49(12):81-87. MA Q Y, DAI X G, CHEN Y N, et al. Characterization of microsatellites in genome of Ziziphus jujuba[J]. Scientia Silvae Sinicae,2013,49(12):81-87. [30] 苗立祥,楊肖芳,張?jiān)コ?,?基于草莓全基因組SSR標(biāo)記的開(kāi)發(fā)和應(yīng)用[J].分子植物育種,2021,19(4):1210-1222. MIAO L X, YANG X F, ZHANG Y C, et al. Development of genome-wide SSR marker and application in strawberry[J]. Molecular Plant Breeding,2021,19(4):1210-1222. [31] 揭應(yīng)碧,盧迎春,宋婉玲,等.三七基因組SSR位點(diǎn)分析和多態(tài)性引物開(kāi)發(fā)[J].熱帶作物學(xué)報(bào),2018,39(7):1351-1358. JIE Y B, LU Y C, SONG W L, et al. Analysis of SSR loci in the genome of Panax notoginseng and development of polymorphic primers[J]. Journal of Tropical Crops,2018,39(7):1351-1358. [32] HAYDAR K, YING L C M, WIELAND M. Survey of simple sequence repeats in completed fungal genomes[J]. Molecular Biology Evolution,2005,22(3):639. [33] 洪文娟,郝兆祥,劉康佳,等.基于石榴全基因組序列的SSR標(biāo)記開(kāi)發(fā)及鑒定[J].北京林業(yè)大學(xué)學(xué)報(bào),2019,41(8):38-47. HONG W J, HAO Z X, LIU K J, et al. Development and identification of SSR molecular markers based on whole genomic sequences of Punica granatum[J]. Journal of Beijing Forestry University,2019,41(8):38-47. [34] TUSKAN G A, GUNTER L E, YANG Z K, et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa[J].Canadian Journal of Forest Research,2004,34: 85-93. [35] 吳敏,杜紅巖,烏云塔娜,等.杜仲基因組微衛(wèi)星特征及SSR標(biāo)記開(kāi)發(fā)[J].林業(yè)科學(xué)研究,2015,28(3):387-393. WU M, DU H Y, WUYUN T N, et al. Microsatellite characteristics and SSR marker development of Eucommia ulmoides genome[J]. Forest Research,2015,28(3):387-393. [36] 張曼,田娟,孫墨可,等.基于向日葵全基因組序列的SSR標(biāo)記開(kāi)發(fā)及鑒定[J].分子植物育種,2022,20(10):3294-3299. ZHANG M, TIAN J, SUN M K, et al. Development and identification of SSR markers based on the entire genome sequence of sunflowers [J]. Molecular Plant Breeding,2022,20(10): 3294-3299. [37] 呂寶忠.多態(tài)信息量(PIC)等于雜合度嗎?[J].遺傳,1994,16(4): 31-33. LYU B Z. Does the polymorphism information content equal the heterozygosity?[J]. Hereditas,1994,16(4):31-33. [38] AMOANIMAA-DEDE H, ZHANG J, SU C, et al. Development and characterization of simple sequence repeat (SSR) markers from the genomic sequence of sweet potato [Ipomoea batatas L.(Lam)][J]. Biocell,2021,45(4):1095-1105. [39] 李淑嫻,張新葉,王英亞,等.桉樹(shù) EST 序列中微衛(wèi)星含量及相關(guān)特征[J].植物學(xué)報(bào),2010,45(3):363-371. LI S X, ZHANG X Y, WANG Y Y, et al. Content and characteristics of microsatellites detected in expressed sequences in Eucalyptus[J]. Chinese Bulletin of Botany,2010,45(3):363-371. [40] TEMNYKH S, DECLERCK G, LUKASHOVA A. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential[J]. Genome Research,2001,11(8): 1441-1452. [41] 鄧童,張曉龍,劉學(xué)森,等.單葉薔薇居群葉功能性狀變異特征分析[J/OL].分子植物育種,http://kns.cnki.net/kcms/detail/46. 1068.S.20220304.1000.002.html. DENG T, ZHANG X L, LIU X S, et al. Variation characteristics of leaf functional trait in Rosa persica populations[J/OL]. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.S.20220304. 1000.002.html. [42] 鄭書(shū)星,張建國(guó),何彩云,等.新疆額爾齊斯河流域白楊派植物居群遺傳多樣性分析[J].林業(yè)科學(xué)研究,2015,28(2): 222-229. ZHENG S X, ZHANG J G, HE C Y, et al. Genetic diversity of section leuce in Populus along the Erqis river[J]. Forest Research, 2015,28(2):222-229. [本文編校:吳 彬]