摘要:將泊松括號(hào)從分析力學(xué)過(guò)渡到量子力學(xué),其物理意義是很深刻的;進(jìn)一步變換到狹義相對(duì)論四維時(shí)空中,其四維的量子力學(xué)泊松括號(hào)所具有的對(duì)稱性和洛倫茲不變性是非常有趣的,由此給出時(shí)空光錐上四維量子力學(xué)矢量的非對(duì)易泊松括號(hào),推導(dǎo)出新的物理創(chuàng)意和結(jié)果,探索物理量之間新的量子非對(duì)易關(guān)系。以此將量子力學(xué)與狹義相對(duì)論力學(xué)結(jié)合起來(lái),思考近代物理中的對(duì)稱性與守恒量問(wèn)題,并通過(guò)非對(duì)易關(guān)系溝通物質(zhì)與時(shí)空的物理圖像及其聯(lián)系,這些創(chuàng)新性工作在物理層面上具有重要的意義。
關(guān)鍵詞:狹義相對(duì)論;量子泊松括號(hào);四維量子力學(xué)矢量;量子非對(duì)易關(guān)系
中圖分類號(hào):O412文獻(xiàn)標(biāo)志碼:A泊松括號(hào)最先是在哈密頓分析力學(xué)中出現(xiàn),狄拉克將其與量子力學(xué)聯(lián)系起來(lái),引入量子力學(xué)泊松括號(hào),并解釋其量子力學(xué)中深刻的物理意義[1-6]。將量子力學(xué)泊松括號(hào)變換到狹義相對(duì)論四維時(shí)空中是非常有趣的,我們注意到四維時(shí)空中物理量的對(duì)稱性和洛倫茲不變性,愛因斯坦從四維動(dòng)量的對(duì)稱性和洛倫茲不變性推出了質(zhì)量與能量的關(guān)系,給出了著名的質(zhì)能方程[7],其劃時(shí)代的成果指導(dǎo)了人類對(duì)于核能的研發(fā)和應(yīng)用。沿此思路,將量子力學(xué)泊松括號(hào)引入狹義相對(duì)論的四維形式,并探索其對(duì)稱性和洛倫茲不變性,發(fā)現(xiàn)一些有趣的性質(zhì)和有用的結(jié)果,特別是可以從狹義相對(duì)論量子力學(xué)泊松括號(hào)的對(duì)稱性和洛倫茲不變性探索與尋找新的量子非對(duì)易關(guān)系。
1 經(jīng)典泊松括號(hào)
2 量子力學(xué)泊松括號(hào)
3 狹義相對(duì)論量子力學(xué)泊松括號(hào)
4 應(yīng)用
5 總結(jié)
我們構(gòu)建了狹義相對(duì)論四維矢量量子力學(xué)物理量的泊松括號(hào),其中的對(duì)稱性和守恒量在分析與推導(dǎo)過(guò)程中起到重要的作用。 這里從閔可夫斯基空間的四維對(duì)稱性和洛倫茲變換的不變性,通過(guò)狹義相對(duì)論四維矢量量子力學(xué)的非對(duì)易泊松括號(hào),可以給出物理上的很多新內(nèi)容。具體地我們給出了對(duì)應(yīng)物理量的非對(duì)易關(guān)系,并探究了其物理意義和倒易空間的物理圖像;特別是利用非對(duì)易泊松括號(hào)的對(duì)稱性對(duì)比研究了四維矢量前三維一對(duì)物理量的非對(duì)易關(guān)系和第四維一對(duì)物理量的非對(duì)易關(guān)系,并展示了其應(yīng)用領(lǐng)域。上述的探索思路與分析能夠通過(guò)非對(duì)易關(guān)系溝通物質(zhì)與時(shí)空的物理圖像及其聯(lián)系。這在理論物理探索性教學(xué)中也是很有意義的。參考文獻(xiàn):
[1]DIRAC P A M. 狄拉克量子力學(xué)原理[M]. 凌東波, 譯. 北京: 機(jī)械工業(yè)出版社, 2018: 86-99.
[2] П. Д. 朗道, Е. М. 栗弗席茲. 力學(xué)[M]. 李俊峰, 譯. 5版. 北京: 高等教育出版社, 2007: 137-140.
[3] 曾謹(jǐn)言,喀興林. 對(duì)應(yīng)原理在量子論發(fā)展中所起的作用[J]. 大學(xué)物理,1985, 1(9): 10-14.
[4] 林靜, 胡化凱. 對(duì)應(yīng)原理在矩陣力學(xué)建立過(guò)程中的作用[J]. 安徽大學(xué)學(xué)報(bào)(自然科學(xué)版), 1996, 20(4): 99-105.
[5] 黃永義,量子力學(xué)的基本對(duì)易關(guān)系[J]. 物理與工程, 2021, 31(1): 8-15.
[6] 郭艷輝. 對(duì)易關(guān)系在量子力學(xué)中的重要討論[J]. 高等函授學(xué)報(bào)(自然科學(xué)版), 2011, 24(1): 31-33.
[7] 劉遼, 費(fèi)保俊, 張?jiān)手? 狹義相對(duì)論[M]. 北京: 科學(xué)出版社, 2018: 123, 141.
[8] HUANG W Q, HUANG Z M, MIAO X J, et al. An all-silicon laser by coupling between electronic localized states and defect states of photonic crystal[J]. Applied Surface Science, 2012, 258: 3033-3038.
[9] HUANG W Q, HUANG Z M, CHENG H Q,et al. Electronic states and curved surface effect of silicon quantum dots[J]. Applied Physics Letters, 2012, 101: 171601.
[10]HUANG W Q, LIU S R, HUANG Z M, et al. Lasing with pumping levels of si nanocrystals on silicon wafer[J]. Nanoscale Research Letters, 2016, 11: 500.
(責(zé)任編輯:曾晶)
Poisson Brackets in Four-Dimensional Vector of Special Relativity
HUANG Zhongmei HUANG Weiqi
(1.Institute of Nanophotonic Physics, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China;
2.State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures
(Ministry of Education), Department of Physics, Fudan University, Shanghai 200433, China)Abstract: In the special relativity, there is the inherent symmetry of the four-dimensional continuous domain of time and space, which is called Minkowski space. It is of great significance for classical mechanics and quantum mechanics to study the Poisson brackets of four-dimensional vector of special relativity. Classical Poisson bracket is an important operation in Hamiltonian mechanics, which is mainly used in classical mechanics and mathematics. It is more interesting that the symmetry and the Lorentz invariance of the Poisson brackets in four-dimensional vectors occur in the special relativity. We use the correspondence principle to transfer the classical Poisson bracket into the quantum form of Poisson bracket, which leads to the Heisenberg uncertainty relation. The four-dimensional Poisson brackets of special relativity in quantum mechanics will lead to some wonderful physical phenomena, in which some new uncertainty principle will be explored.
Key words: special relativity; Poisson bracket; four-dimensional vector; uncertainty principle