国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于轉(zhuǎn)錄組測(cè)序的巴馬香豬和杜洛克豬骨骼肌差異IncRNA分析

2024-01-01 00:00:00胡夢(mèng)靈范新浩姚一龍閆超謝炳坤蘭干球梁晶唐中林

摘要:【目的】通過對(duì)巴馬香豬和杜洛克豬背最長(zhǎng)肌組織進(jìn)行轉(zhuǎn)錄組測(cè)序鑒定差異表達(dá)lncRNA,篩選與骨骼肌發(fā)育形成相關(guān)的候選基因,為明確lncRNA對(duì)骨骼肌生長(zhǎng)發(fā)育的調(diào)控機(jī)制提供理論基礎(chǔ)?!痉椒ā坎杉?2月齡的巴馬香豬 和杜洛克豬背最長(zhǎng)肌組織進(jìn)行轉(zhuǎn)錄組測(cè)序,以錯(cuò)誤發(fā)現(xiàn)率(FDR)lt;0.05且|log2Fold Change|gt;1為標(biāo)準(zhǔn)篩選差異表達(dá)基 因(DEGs)和差異表達(dá)lncRNA,并進(jìn)行實(shí)時(shí)熒光定量PCR驗(yàn)證,預(yù)測(cè)差異表達(dá)lncRNA靶基因并進(jìn)行GO功能注釋和 KEGG信號(hào)通路富集分析,選取表達(dá)差異最大的IncRNA構(gòu)建其與靶基因互作網(wǎng)絡(luò)。【結(jié)果】在巴馬香豬和杜洛克豬背 肌間共鑒定出6316個(gè)DEGs和675個(gè)差異表達(dá)lncRNA;GO功能注釋分析結(jié)果表明,差異表達(dá)IncRNA靶基因主要涉及代謝過程、肌肉組織發(fā)育及骨骼肌細(xì)胞增殖和分化等生物過程;KEGG信號(hào)通路富集分析結(jié)果表明,差異表達(dá) lncRNA靶基因在Hippo和Wnt信號(hào)通路顯著富集(Plt;0.05),說明差異表達(dá)lncRNA與骨骼肌細(xì)胞的增殖、自噬和分化 相關(guān);對(duì)表達(dá)差異最大的lncRNA-MSTRG.16703進(jìn)行實(shí)時(shí)熒光定量PCR驗(yàn)證,發(fā)現(xiàn)其在巴馬香豬中的相對(duì)表達(dá)量極顯著高于杜洛克豬(Plt;0.01),與轉(zhuǎn)錄組測(cè)序結(jié)果一致。lncRNA-MSTRG.16703與靶基因互作網(wǎng)絡(luò)分析結(jié)果表明,上 調(diào)靶基因包括QKI、MBNLI和YBX2,QKI和MBNLI在均與可變剪接相關(guān)。【結(jié)論】在巴馬香豬和杜洛克豬間發(fā)現(xiàn)的差異表達(dá)lncRNA是調(diào)控骨骼肌發(fā)育的候選基因,其靶基因主要富集在Hippo和Wnt等骨骼肌發(fā)育相關(guān)信號(hào)通路。lncRNA-MSTRG.16703的表達(dá)差異最大且在巴馬香豬中上調(diào),其靶基因在骨骼肌細(xì)胞增殖分化和肌纖維形成中有重 要調(diào)控作用。

關(guān)鍵詞:巴馬香豬;杜洛克豬;背最長(zhǎng)??;轉(zhuǎn)錄組測(cè)序;lncRNA

中圖分類號(hào):S828.89

文章編號(hào):2095-1191(2024)03-0650-10

文獻(xiàn)標(biāo)志碼:A

Differential IncRNA analysis of skeletal muscles in Bama Xiang pig and Duroc pig based on transcriptome sequencing

HU Meng-ling1.2.3.4, FAN Xin-hao2.3, YAO Yi-long2.3, YAN Chao2, XIE Bing-kun5,

LAN Gan-qiu1, LIANG Jing1, TANG Zhong-lin1.2.3.

(1College of Animal Science and Technology, Guangxi University/Guangxi Key Laboratory of Animal Breeding amp; Disease Control and Prevention, Nanning, Guangxi 530004, China; 2Kunpeng Institute of Modern Agriculture of Foshan, Foshan, Guangdong 528226, China; 3Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences/Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, Guangdong 518124, China; 4Guangxi Engineering Research Centre for Resource Development of Bama Xiang Pig, Hechi, Guangxi 547599, China; 5Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture/Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, Guangxi 530001, China; 6Key Laboratory of Livestock and Poultry MultiOmics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen,Guangdong 518124, China)

Abstract:[Objective ]The aim of this study was to provide a theoretical basis for clarifying the regulatory mechanism of IncRNA on skeletal muscle growth and development, by conducting transcriptome sequencing on the longest dorsal muscle tissues of Bama Xiang pigs and Duroc pigs to identify differential expression of IncRNA and screening candidate genes related to skeletal muscle development. 【Method】Transcriptome sequencing was performed on the longest dorsal muscle tissues of 12 months-old Bama Xiang pigs and Duroc pigs. Using 1 discovery rate (FDR)lt;0.05 and |log2 Fold Change|gt;1 as the standard, differentially expressed genes (DEGs) and differentially expressed IncRNA were screened, and real-time fluorescence quantitative PCR validation was performed, in order to predict differentially expressed IncRNA target genes and to perform GO functional annotation and KEGG signaling pathway enrichment analysis. The IncRNA with the greatest differential expression was selected to construct its interaction network with target genes. 【Result]The re- sults showed that a total of 6316 DEGs and 675 differentially expressed IncRNA were identified in the dorsal muscles of Bama Xiang pigs and Duroc pigs. GO functional annotation analysis showed that differentially expressed IncRNA target genes mainly involved biological processes such as metabolism process, muscle tissue development, and skeletal muscle cell proliferation and differentiation. KEGG signaling pathway enrichment analysis showed that differentially expressed In- cRNA target genes were significantly enriched in the Hippo and Wnt signaling pathways (Plt;0.05), indicating that diffe- rentially expressed IncRNA was associated with proliferation, autophagy, and differentiation of skeletal muscle cells.

Real time fluorescence quantitative PCR validation was performed on IncRNA-MSTRG.16703, which had the largest expression difference. It was found that its relative expression level in Bama Xiang pigs was extremely significantly higher than that in Duroc pigs (Plt;0.01), which was consistent with the result of transcriptom sequencing. Analysis of the interaction network between IncRNA-MSTRG.16703 and target genes showed that the up-regulated target genes including QKI, MBNL1, and YBX2. QKI and MBNLI were related to alternative splicing. 【Conclusion】The differentially expressed IncRNA found between Bama Xiang pig and Duroc pig is a candidate gene for regulating skeletal muscle development, its target genes mainly enrich on skeletal muscle development related signaling pathways such as Hippo and Wnt. The expres- sion difference of IncRNA-MSTRG.16703 is the largest and up-regulates in Bama Xiang pigs. Its target gene plays an im- portant regulatory role in the proliferation and differentiation of skeletal muscle cells and muscle fiber formation.

Key words: Bama Xiang pig; Duroc pig; the longest dorsal muscle; transcriptome sequencing; IncRNA

Foundation items: National Natural Science Foundation of China (31830090); Guangxi Major Research and Development Plan project (Guike AB21196060) ; Major Scientific Research Project of Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ZDRW202006) ; Shenzhen Sustainable Development of Science and Technology Project(KCXFZ20201221173213037)

0 引言

【研究意義】我國(guó)養(yǎng)豬歷史悠久,豬種遺傳資源 豐富,與西方瘦肉型豬種資源相比,地方豬種具有肉 質(zhì)細(xì)嫩多汁、口感好等優(yōu)點(diǎn),這些優(yōu)秀的肉質(zhì)性狀是 遺傳基礎(chǔ)和環(huán)境互作的結(jié)果,但其也存在生長(zhǎng)緩慢、 瘦肉率低等不足。因此,探究我國(guó)地方豬和西方瘦 肉型豬產(chǎn)肉性狀差異的遺傳基礎(chǔ),有助于我國(guó)地方 豬的資源保護(hù)、開發(fā)利用及新品種(配套系)培育。 【前人研究進(jìn)展】廣西巴馬香豬屬于華南型豬,體型 矮小,生長(zhǎng)速度緩慢。對(duì)巴馬香豬肉質(zhì)性狀的研究 顯示,其優(yōu)良性狀特別是肌內(nèi)脂肪含量高與背最長(zhǎng) 肌的肌纖維類型有關(guān)(潘鵬丞,2021)。有關(guān)巴馬香 豬骨骼肌調(diào)控的差異表達(dá)基因(DEGs)已有報(bào)道,胡 海龍(2021)對(duì)30和180日齡的巴馬香豬和長(zhǎng)白豬背 最長(zhǎng)肌組織進(jìn)行轉(zhuǎn)錄組測(cè)序,鑒定出9個(gè)與肌間脂 肪含量、肌肉剪切力和導(dǎo)電率等肉質(zhì)性狀顯著相關(guān)的關(guān)鍵候選基因,NDUFS3、NDUFABI、IDH3A、 NU6M、ATP5B、ATP5H、HUMMLC2B、MYL1和ADPN。

骨骼肌發(fā)育是一個(gè)復(fù)雜的過程,受一系列因素控制, 如肌原調(diào)節(jié)因子(Mygenic regulatory factors,MRFs) (Blais et al.,2005;Zammit et al.,2017)和非編碼小分 子 RNA(miRNA)(Williams et al.,2009;Mok et al., 2017)。長(zhǎng)鏈非編碼RNA(lncRNA)是一類長(zhǎng)度超過200nt的非編碼RNA,主要由真核生物中的RNA聚合酶Ⅱ轉(zhuǎn)錄(Wilusz et al.,2009)。近年來,相關(guān)研 究發(fā)現(xiàn)lncRNA在家畜骨骼肌生長(zhǎng)發(fā)育中起關(guān)鍵作用 (Simionescu-Bankston and Kumar, 2016; Li et al., 2018)。Zhao等(2015)通過對(duì)胎豬骨骼肌的轉(zhuǎn)錄組分析,發(fā)現(xiàn)570個(gè)lncRNA。Xing等(2017)構(gòu)建了閹 割和非閹割的淮南公豬背最長(zhǎng)肌轉(zhuǎn)錄組圖譜,發(fā)現(xiàn) 其中有385個(gè)差異表達(dá)lncRNA可能參與骨骼和肌 肉發(fā)育過程。潘鵬丞(2021)對(duì)不同生長(zhǎng)速度的杜 陸豬背最長(zhǎng)肌進(jìn)行轉(zhuǎn)錄組測(cè)序,發(fā)現(xiàn)115個(gè)DEGs和16個(gè)差異表達(dá)lncRNA,且部分DEGs和差異表達(dá) lncRNA靶基因富集在AMPK、PPAR和PI3K-Akt信 號(hào)通路,對(duì)肌肉生長(zhǎng)發(fā)育和脂肪沉積有一定影響。

【本研究切入點(diǎn)】有關(guān)我國(guó)地方豬種與西方豬種間差 異表達(dá)lncRNA的報(bào)道較少,關(guān)于lncRNA參與巴馬 香豬骨骼發(fā)育的遺傳基礎(chǔ)研究也十分有限?!緮M解決 的關(guān)鍵問題】對(duì)巴馬香豬和杜洛克豬背最長(zhǎng)肌組織 進(jìn)行轉(zhuǎn)錄組測(cè)序,鑒定DEGs和差異表達(dá)lncRNA并 進(jìn)行生物信息學(xué)分析,篩選與骨骼肌發(fā)育形成相關(guān) 的候選基因,為明確lncRNA對(duì)骨骼肌生長(zhǎng)發(fā)育的調(diào) 控機(jī)制提供理論基礎(chǔ)。

1材料與方法

1.1試驗(yàn)材料

雄性巴馬香豬和杜洛克豬各3頭,均購(gòu)自廣水 市廣惠農(nóng)牧有限公司,在相同條件下飼養(yǎng)至12月 齡,采集背最長(zhǎng)肌組織作為試驗(yàn)材料,巴馬香豬代號(hào) 為BMA,杜洛克豬代號(hào)為DRC,動(dòng)物試驗(yàn)經(jīng)廣西大學(xué)動(dòng)物實(shí)驗(yàn)倫理委員會(huì)批準(zhǔn),批準(zhǔn)號(hào)GXU2015-003。 TRIzol?試劑購(gòu)自美國(guó)Invitrogen公司;RNA Nano 6000試劑盒購(gòu)自美國(guó)Agilent Technologies公司; NEBNext?UltraTM定向RNA文庫(kù)制備試劑盒購(gòu)自美 國(guó)NEB公司;Qubit?RNA檢測(cè)試劑盒購(gòu)自美國(guó) ThermoFisher Scientific 公司; PrimeScriptTM IⅡ cDNA第一鏈合成試劑盒購(gòu)自寶生物工程(大連)有限公 司;AceQ qPCR SYBR Green Master Mix購(gòu)自南京諾 唯贊生物科技股份有限公司。主要儀器設(shè)備: K5500超微量分光光度計(jì)(北京凱奧科技發(fā)展有限 公司)、Agilent 2100生物分析儀(美國(guó)Agilent Tech- nologies公司)、StepOnePlus實(shí)時(shí)熒光定量PCR系統(tǒng)(美國(guó)Applied Biosystems公司)。

1.2總RNA提取、文庫(kù)構(gòu)建和轉(zhuǎn)錄組測(cè)序

使用TRIzol?試劑提取總RNA,并以1%瓊脂糖凝膠電泳檢測(cè)其質(zhì)量,采用K5500超微量分光光度計(jì)檢測(cè)總RNA純度,使用Agilent 2100生物分析儀和RNANano6000試劑盒檢測(cè)RNA完整性及濃度,檢測(cè)合格后每個(gè)樣本提取3ug總RNA,委托北京諾 禾致源科技股份有限公司進(jìn)行cDNA文庫(kù)構(gòu)建及測(cè)序。根據(jù)NEBNext?UltraTM定向RNA文庫(kù)制備試劑盒說明構(gòu)建文庫(kù),采用Qubit?RNA檢測(cè)試劑盒檢測(cè)文庫(kù)濃度,使用Agilent 2100生物分析儀檢測(cè)插入片段大小。文庫(kù)質(zhì)量檢測(cè)合格后,通過Illumina Hiseq4000測(cè)序平臺(tái)進(jìn)行測(cè)序。轉(zhuǎn)錄組原始序列(Raw reads)上傳至NCBI網(wǎng)站的SRA數(shù)據(jù)庫(kù)(登錄號(hào)PRJNA597666)。

1.3質(zhì)量控制

使用Perl腳本對(duì)Raw reads進(jìn)行過濾,去除接頭污染、低質(zhì)量和N比例占5%以上的Reads,獲得高質(zhì)

量的有效序列(Clean reads)。從Ensemble數(shù)據(jù)庫(kù) (http://www.ensembl.org/index.html)下載豬參考基 因組(Sscrofa11.1)和注釋文件,使用Bowtie2 v2.2.3構(gòu)建基因組索引(Langmead and Salzberg,2012),利 用HISAT2 v2.0.5將Clean reads 比對(duì)到參考基因組(Kim et al.,2015)。

1.4 IncRNA鑒定

使用StringTie v1.3b以比對(duì)到參考基因組的 Clean reads進(jìn)行轉(zhuǎn)錄本重構(gòu)(Pertea et al.,2015),利 用GffCompare篩選已知mRNA和其他非編碼RNA (rRNA、tRNA、snoRNA和snRNA),并通過對(duì)比分析篩選已知lncRNA。根據(jù)轉(zhuǎn)錄本長(zhǎng)度(≥200bp)、外顯子數(shù)量(≥2)和Reads覆蓋度(≥5),篩選潛在lncRNA,使用編碼非編碼索引(CNCI)(Sun et al.,2013)、編 碼潛能計(jì)算器(CPC)(Kong et al.,2007)、PFAM數(shù)據(jù) 庫(kù)(Bateman et al.,2002;Mistry et al.,2007)和編碼潛 能評(píng)估工具(CPAT)(Wang et al.,2013)預(yù)測(cè)轉(zhuǎn)錄本蛋白質(zhì)編碼潛力,以鑒定新lncRNA。對(duì)新鑒定的lncRNA和已知lncRNA進(jìn)行特征分析。

1.5差異表達(dá)分析

使用HTseq v0.6.0計(jì)算每個(gè)基因和IncRNA的 Read count(Anders et al.,2015),采用TPM(Tran- scripts per kilobase millon)對(duì)基因和lncRNA表達(dá)量 進(jìn)行標(biāo)準(zhǔn)化處理。利用DESeq v1.16鑒定巴馬香豬 和杜洛克豬背最長(zhǎng)肌間DEGs和差異表達(dá)lncRNA (Wang et al.,2010;Love et al.,2014),采用Benjamini amp; Hochberg法校正P值,以錯(cuò)誤發(fā)現(xiàn)率(FDR)lt;0.05且|log2Fold Changegt;1作為篩選標(biāo)準(zhǔn)。

1.6實(shí)時(shí)熒光定量PCR驗(yàn)證

隨機(jī)選取6個(gè)差異表達(dá)lncRNA(ENSSSCG00000016655、ENSSSCG00000048099、ENSSSCG00000038429、ENSSSCG00000050649、ENSSSCG00000048719和ENSSSCG00000049013)進(jìn)行實(shí)時(shí)熒光定量PCR檢測(cè),以GAPDH為內(nèi)參基因,引物信息見表1。采用PrimeScriptTMIⅡ cDNA第一鏈合成試劑盒將提 取的總RNA反轉(zhuǎn)錄合成cDNA第一鏈,使用AceQ qPCR SYBR Green Master Mix和 StepOnePlus實(shí)時(shí) 熒光定量PCR系統(tǒng)進(jìn)行檢測(cè)。用2-AAa法計(jì)算基因相對(duì)表達(dá)量(Livak and Schmittgen,2001)。

1.7生物信息學(xué)分析

計(jì)算DEGs與差異表達(dá)lncRNA間的Spearman 相關(guān)系數(shù)(r),以rgt;0.90或rlt;-0.90篩選差異表達(dá) lncRNA的靶基因,將位于差異表達(dá)lncRNA上、下游50kb范圍內(nèi)的DEGs鑒定為順式靶基因(Guttmanet al.,2009;Wang et al.,2019)。對(duì)篩選出的差異表 達(dá)lncRNA靶基因進(jìn)行GO(http://geneontology.org/) 功能注釋分析和KEGG(http://www.kegg.jp/)信號(hào)通路富集分析。選取表達(dá)差異最大的lncRNA-MSTRG.16703進(jìn)行分析,實(shí)時(shí)熒光定量PCR驗(yàn)證方法同1.6。構(gòu)建lncRNA-MSTRG.16703與靶基因互作網(wǎng)絡(luò),使用Cytoscape 3.7.0對(duì)互作網(wǎng)絡(luò)進(jìn)行可視 化。從Animal QTL4(https://www.animalgenome.org/ QTLdb)下載QTL數(shù)據(jù),采用BEDTools 2.17.0分析QTL與IncRNA-MSTRG.16703的重疊區(qū)域。

1.8統(tǒng)計(jì)分析

使用GraphPad Prism 7.0對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,采用雙尾非配對(duì)t檢驗(yàn)、單因素方差分析(One- way ANOVA)和Duncan's法進(jìn)行差異顯著性分析。

2結(jié)果與分析

2.1巴馬香豬和杜洛克豬背最長(zhǎng)肌轉(zhuǎn)錄組測(cè)序 結(jié)果

如表2所示,利用巴馬香豬和杜洛克豬背最 長(zhǎng)肌樣本構(gòu)建了6個(gè)cDNA文庫(kù)(BMA1、BMA2、BMA3、DRC1、DRC2和DRC3),經(jīng)質(zhì)控后獲得74673126~103609002條Clean reads。各樣本Q20均在97%左右,Q30均在90%以上。將Clean reads比 對(duì)到豬參考基因組,各樣本總比對(duì)率均在85.00%以上,表明轉(zhuǎn)錄組測(cè)序數(shù)據(jù)質(zhì)量較好,可用于后續(xù)分析。

2.2差異表達(dá)分析結(jié)果

通過轉(zhuǎn)錄組測(cè)序,在巴馬香豬和杜洛克豬背最 長(zhǎng)肌中發(fā)現(xiàn)大量轉(zhuǎn)錄本。其中,在巴馬香豬和杜洛 克豬背最長(zhǎng)肌間共篩選出6316個(gè)DEGs(圖1-A)。 在巴馬香豬和杜洛克豬背最長(zhǎng)肌間篩選出675個(gè)差 異表達(dá)lncRNA,與杜洛克豬相比,巴馬香豬中有374個(gè)上調(diào)表達(dá),301個(gè)下調(diào)表達(dá);其中已知lncRNA有647個(gè),未知lncRNA有28個(gè)(圖1-B),它們是調(diào)控骨 骼肌發(fā)育的關(guān)鍵候選基因。

2.3IncRNA特征分析結(jié)果

對(duì)新鑒定的未知lncRNA、已知lncRNA和所有mRNA的特征進(jìn)行比較。結(jié)果如圖2所示,新鑒定的未知lncRNA平均外顯子數(shù)量(2.80個(gè))低于mRNA的平均外顯子數(shù)量(13.02個(gè))(圖2-A),平均轉(zhuǎn)錄本長(zhǎng)度(2022.7nt)短于mRNA的平均轉(zhuǎn)錄本長(zhǎng)度(4038.7nt)(圖2-B),表達(dá)量(TPM=13.31)低于mRNA的表達(dá)量(TPM=15.19)(圖2-C)。

2.4差異表達(dá)IncRNA的實(shí)時(shí)熒光定量PCR驗(yàn)證 結(jié)果

為驗(yàn)證轉(zhuǎn)錄組測(cè)序結(jié)果,隨機(jī)選取6個(gè)差異表 達(dá)lncRNA,通過實(shí)時(shí)熒光定量PCR驗(yàn)證其在巴馬香 豬和杜洛克豬背最長(zhǎng)肌中的表達(dá)差異。結(jié)果如圖3所示,巴馬香豬ENSSSCG00000016655和ENSSSCG00000048099相對(duì)表達(dá)量較杜洛克豬極顯著下降(Plt;0.01,下同),巴馬香豬ENSSSCG00000038429、ENSSSCG00000050649、ENSSSCG00000048719和ENSSSCG00000049013相對(duì)表達(dá)量較杜洛克豬極顯著上 升。差異表達(dá)lncRNA在巴馬香豬和杜洛克豬中的 表達(dá)趨勢(shì)與轉(zhuǎn)錄組測(cè)序結(jié)果一致,表明轉(zhuǎn)錄組測(cè)序 結(jié)果可靠。

2.5差異表達(dá)IncRNA靶基因GO功能注釋分析 結(jié)果

為了解巴馬香豬和杜洛克豬間差異表達(dá)lncRNA 的功能,對(duì)其靶基因進(jìn)行GO功能注釋分析。結(jié)果如圖4所示,下調(diào)表達(dá)的lncRNA靶基因主要涉及代 謝過程正調(diào)控、細(xì)胞增殖正調(diào)控、有機(jī)代謝和肌肉細(xì) 胞遷移等生物過程,而上調(diào)表達(dá)的lncRNA靶基因主 要涉及代謝過程、肌肉細(xì)胞分化、肌肉組織發(fā)育、骨 骼肌細(xì)胞增殖和分化及骨骼肌收縮等生物過程。

2.6差異表達(dá)IncRNA靶基因KEGG信號(hào)通路富集 分析結(jié)果

巴馬香豬和杜洛克豬間差異表達(dá)lncRNA靶基因的KEGG信號(hào)通路富集分析結(jié)果顯示,下調(diào)表達(dá)的lncRNA靶基因在PI3K-Akt和MAPK信號(hào)通路顯著富集(Plt;0.05,下同)(圖5-A)。而上調(diào)表達(dá)的lncRNA靶基因在Hippo和Wnt信號(hào)通路顯著富集, 這些通路在骨骼肌發(fā)育過程中起重要作用,上調(diào)表 達(dá)的lncRNA靶基因在三羧酸循環(huán)、能量代謝、氧化 磷酸化、肌萎縮側(cè)索硬化和胰高血糖素信號(hào)通路也 有富集(圖5-B)。

2.7 IncRNA-MSTRG.16703與靶基因互作網(wǎng)絡(luò) 分析結(jié)果

為進(jìn)一步篩選能調(diào)控骨骼肌發(fā)育的lncRNA,選擇表達(dá)差異最大的lncRNA-MSTRG.16703進(jìn)一步研究。對(duì)lncRNA-MSTRG.16703進(jìn)行實(shí)時(shí)熒光定量PCR驗(yàn)證,結(jié)果顯示如圖6-A所示,巴馬香豬背最長(zhǎng)肌lncRNA-MSTRG.16703的相對(duì)表達(dá)量極顯著高于杜洛克豬,與轉(zhuǎn)錄組測(cè)序結(jié)果一致。lncRNA-MSTRG.16703與靶基因互作網(wǎng)絡(luò)如圖6-B所示,1ncRNA-MSTRG.16703靶向的下調(diào)基因?yàn)镻TBPI、NOVA2、 NONO、NCL、KHSRP、KHDRBS3和YBXI,上調(diào)基因 包括QKI、MBNL1和YBX2。IncRNA-MSTRG.16703可能是調(diào)控骨骼肌發(fā)育的候選基因。

2.8 IncRNA-MSTRG.16703的QTL分析結(jié)果

通過比較QTL和lncRNA-MSTRG.16703在全基因組中的位置預(yù)測(cè)其功能。結(jié)果表明lncRNA-MSTRG.16703與多種重要的經(jīng)濟(jì)性狀相關(guān),包括火 腿重量、腰肌面積、板油重量、體質(zhì)量、臀部背膘厚 度、蹄重量和腸道脂肪重量(表3)。

3討論

豬骨骼肌相關(guān)lncRNA在調(diào)節(jié)表型差異中發(fā)揮 關(guān)鍵作用,Yu等(2018)研究表明,lncRNA-MEG3的 SNP與豬背膘標(biāo)準(zhǔn)厚度和體質(zhì)量100kg以上豬的年 齡顯著相關(guān)。lncRNA能調(diào)節(jié)豬骨骼肌的纖維類型 轉(zhuǎn)化,Dou等(2020)研究表明,IncRNA MyHC IIA/X-AS通過在豬骨骼肌中吸附miR-130b上調(diào)MyHCIIx的表達(dá),從而促進(jìn)快速型纖維形成;Li等(2020) 通過轉(zhuǎn)錄組測(cè)序鑒定出豬慢抽搐骨骼?。ū饶眶~肌) 和快抽搐骨骼?。ü啥^?。╅g92個(gè)差異表達(dá) lncRNA,篩選出調(diào)節(jié)肌纖維類型轉(zhuǎn)化的候選基因。目前,豬骨骼肌相關(guān)lncRNA研究已取得部分進(jìn)展,但lncRNA的機(jī)制尚未完全明確,對(duì)豬骨骼肌lncRNA功能的研究具有重要意義。本研究分析了巴馬香豬和杜洛克豬間lncRNA的表達(dá)差異,與杜洛克豬相比,在巴馬香豬中有374個(gè)lncRNA上調(diào)表達(dá),301個(gè)lncRNA下調(diào)表達(dá),隨機(jī)選取6個(gè)差異表達(dá)lncRNA進(jìn)行實(shí)時(shí)熒光定量PCR驗(yàn)證,結(jié)果表明測(cè)序結(jié)果準(zhǔn)確,上述結(jié)果表明lncRNA可能調(diào)節(jié)骨骼肌表型的變化,與雞(Li et al.,2012)和山羊(Zhan et al., 2016)不同生長(zhǎng)階段骨骼肌lncRNA圖譜存在差異的 研究結(jié)果一致。

KEGG信號(hào)通路富集分析結(jié)果表明,差異表達(dá)lncRNA靶基因在Hippo信號(hào)通路顯著富集。Hippo信號(hào)通路的關(guān)鍵成員是下游蛋白Yap,其作為一種轉(zhuǎn)錄輔助因子在多種細(xì)胞中均有表達(dá)。Hippo信號(hào)通路的重要組件蛋白Yap和Taz在人與小鼠的骨骼 肌衛(wèi)星細(xì)胞及成肌細(xì)胞中均有表達(dá),對(duì)2種細(xì)胞的 增殖和分化有重要調(diào)控作用(蘇銳,2015);Yap蛋白 參與腸道祖細(xì)胞、肝卵圓細(xì)胞及神經(jīng)干細(xì)胞等多種成體干細(xì)胞或祖細(xì)胞的增殖和分化(趙莉娟等, 2020)。Wnt信號(hào)通路中的基因Cyclin B、Cyclin D、 Cyclin E、CDK4、CDK2、P2和LC3在骨骼肌細(xì)胞增殖、自噬和凋亡過程中發(fā)揮重要調(diào)控作用(Clevers,2006)。此外,差異表達(dá)lncRNA靶基因還在三羧酸 循環(huán)、能量代謝和氧化磷酸化等信號(hào)通路富集,表明 lncRNA可能通過間接影響能量代謝相關(guān)信號(hào)通路 調(diào)控骨骼肌的生長(zhǎng)和發(fā)育。通過GO功能注釋分析發(fā)現(xiàn),差異表達(dá)lncRNA靶基因主要涉及代謝、肌肉 組織發(fā)育及骨骼肌細(xì)胞增殖和分化等生物過程,表 明差異表達(dá)lncRNA可通過調(diào)節(jié)細(xì)胞增殖和分化等 生物過程影響骨骼肌生長(zhǎng)。

對(duì)表達(dá)差異最大且在巴馬香豬背最長(zhǎng)肌中上調(diào) 的IncRNA-MSTRG.16703進(jìn)行深入研究,構(gòu)建IncRNA-MSTRG.16703與其靶基因互作網(wǎng)絡(luò),發(fā)現(xiàn)IncRNA- MSTRG.16703上調(diào)靶基因?yàn)镼KI、MBNL1和YBX2,而QKI和MBNLI均與可變剪接相關(guān),在骨骼肌細(xì)胞的增殖分化及肌纖維的形成中有重要調(diào)控作用。QKI可通過調(diào)控早期肌原纖維形成(Hall et al.,2013)和可變剪接(Wu et al.,2017)等方式參與肌生成過程; QKI還參與平滑肌和骨骼肌細(xì)胞的增殖與分化等生物過程,miR-155通過靶向QKI抑制心肌細(xì)胞凋亡(Guo et al.,2019),QKI家族基因通過參與肌衛(wèi)星細(xì) 胞的維持,促使肌肉細(xì)胞進(jìn)入靜息期,從而抑制骨骼 肌細(xì)胞的增殖分化(薛亞男等,2021)。QKI直接或間接參與骨骼肌生長(zhǎng)與發(fā)育的生物過程,而MBNLI負(fù)責(zé)調(diào)控RNA剪接工作。MBNLI的作用不僅體現(xiàn)在RNA分子剪切上,MBNL1還可調(diào)控神經(jīng)干細(xì)胞的增殖,促進(jìn)神經(jīng)突觸的生長(zhǎng),小鼠MBNLI缺失會(huì)出現(xiàn)出肌肉萎縮癥狀,而MBNL1的過表達(dá)可顯著改 善強(qiáng)直性肌營(yíng)養(yǎng)不良1型(Myotonic dystrophy type 1) 骨骼肌衛(wèi)星細(xì)胞的增殖能力,提高mTOR磷酸化 水平,降低自噬水平(宋開義,2020)。本研究結(jié)果顯 示,lncRNA-MSTRG.16703在巴馬香豬中高表達(dá),推測(cè)IncRNA-MSTRG.16703可能通過QKI或MBNLI調(diào)控可變剪接影響骨骼肌發(fā)育。此外,預(yù)測(cè)的 lncRNA-MSTRG.16703下調(diào)靶基因包括PTBPI,雖然PTBP1在骨骼肌發(fā)育中的作用未見報(bào)道,但許多研究表明PTBP1的主要功能是作為剪接因子,通過結(jié)合靶基因前體mRNA特定序列,選擇性地剪接外顯子或內(nèi)含子從而產(chǎn)生不同的mRNA亞型,進(jìn)而在 細(xì)胞分化、細(xì)胞周期與凋亡、細(xì)胞運(yùn)動(dòng)、細(xì)胞代謝和 免疫響應(yīng)等多個(gè)生物過程中發(fā)揮重要調(diào)控作用(Makeyev et al.,2007;Zhang et al.,2017)。 綜上所 述,lncRNA-MSTRG.16703可能通過直接或間接方 式影響可變剪接相關(guān)基因的表達(dá),調(diào)控骨骼肌發(fā)育, 但仍需進(jìn)一步驗(yàn)證。

4結(jié)論

在巴馬香豬和杜洛克豬間發(fā)現(xiàn)的差異表達(dá) lncRNA是調(diào)控骨骼肌發(fā)育的候選基因,其靶基因主 要富集在Hippo和Wnt等骨骼肌發(fā)育相關(guān)信號(hào)通 路。lncRNA-MSTRG.16703的表達(dá)差異最大且在巴 馬香豬中上調(diào),其靶基因在骨骼肌細(xì)胞增殖分化和 肌纖維形成中有重要調(diào)控作用。

參考文獻(xiàn)(References):

胡海龍.2021.陸川豬與杜洛克豬背最長(zhǎng)肌組織的轉(zhuǎn)錄組與 翻譯組比較分析[D].南寧:廣西大學(xué).[Hu HL.2021.

Comparative analysis of translatome and transcriptome of the longest dorsi muscle tissue of Luchuan pig and Duroc pigs[D]. Nanning: Guangxi University.] doi: 10.27034/d.

cnki.ggxiu.2021.000137.

潘鵬丞.2021.豬不同生長(zhǎng)速度差異1ncRNA的篩選及其功能 鑒定[D].南寧:廣西大學(xué).[Pan P C.2021.Screening and functional identification of IncRNAs with different growth rates in pigs [D]. Nanning: Guangxi University.] doi: 10.27034/d.cnki.ggxiu.2021.000207.

宋開義.2020.MBNL1在強(qiáng)直性肌營(yíng)養(yǎng)不良1型骨骼肌衛(wèi)星

細(xì)胞增殖中的作用及機(jī)制研究[D].重慶:重慶醫(yī)科大學(xué).[Song K Y. 2020.The role and mechanism of MBNL1 in the proliferation of myotonic dystrophy type 1 skeletal muscle satellite cells [D]. Chongqing: Chongqing Medical University.] doi:10.27674/d.cnki.gcyku.2020.001653.

蘇銳.2015.Hippo-YAP1通路參與調(diào)控湖羊肌肉生長(zhǎng)、發(fā)育機(jī)理的研究[D].揚(yáng)州:揚(yáng)州大學(xué).[Su R.2015.Study on Hippo-YAP1 pathway involved in the regulation of Hu sheep muscle growth and development [D]. Yangzhou: Yangzhou University.] doi: 10.7666/d.Y2908328.

薛亞男,翟泓帆,唐敏,楊辰宇,周欣怡,李利,張紅平,占思 遠(yuǎn).2021.山羊QKI基因家族克隆及其在骨骼肌發(fā)育中的表達(dá)模式[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),29(8):1546-1556. [Xue Y N,Zhai H F,Tang M,Yang C Y,Zhou X Y,Li L, Zhang H P,Zhan S Y. 2021. Cloning of QKI gene family in goat(Capra hircus)and its expression pattern in skeletal

muscle development [J]. Journal of Agricultural Biotechnology,29(8):1546-1556.] doi: 10.3969/j.issn.1674-7968.

2021.08.011.

趙莉娟,張宏,張國(guó)輝,栗雅芳.2020.Hippo信號(hào)通路在骨骼

肌損傷修復(fù)中作用的研究進(jìn)展[J].山東醫(yī)藥,60(1):

109-112. [Zhao L J, Zhang H, Zhang G H, Li Y F. 2020. Research progress on the role of Hippo signaling pathway in the repair of skeletal muscle injury [J]. Shandong Medical Journal,60(1):109-112.] doi:10.3969/j.issn.1002-266X.

2020.01.030.

Anders S, Pyl P T, Huber W. 2015. HTSeq—A Python frame- work to work with high-throughput sequencing data[J].

Bioinformatics, 31(2) : 166-169. doi: 10.1093/bioinformatics/btu638.

Bateman A,Birney E, Cerruti L, Durbin R,Etwiller L,Eddy S

R, Griffiths-Jones S, Howe K L, Marshall M, Sonnhammer

E L. 2002. The Pfam protein families database [J]. Nucleic Acids Research,30(1):276-280. doi: 10.1093/nar/30.1.276.

Blais A, Tsikitis M, Acosta-Alvear D, Sharan R,Kluge Y,Dynlacht B D. 2005. An initial blueprint for myogenic differentiation [J]. Genes amp; Development, 19: 553-569. doi: 10.

1101/gad.1281105.

Clevers H. 2006. Wnt/?-catenin signaling in development and disease[J]. Cell, 127(3):469-480. doi: 10.1016/j.cell.2006.

10.018.

Dou M L,Yao Y,Ma L,Wang X Y,Shi X E,Yang G S,Li X.

2020. The long noncoding RNA MyHC IIA/X-AS contributes to skeletal muscle myogenesis and maintains the fast fiber phenotype [J]. Journal of Biological Chemistry, 295

(15):4937-4949. doi:10.1074/jbc.RA119.010498.

Guo J,Liu H B,Sun C, Yan X Q,Hu J, Yu J, Yuan Y,Du Z M.

2019. MicroRNA-155 promotes myocardial infarctioninduced apoptosis by targeting RNA-binding protein QKI [J]. Oxidative Medicine and Cellular Longevity, 2019: 4579806. doi:10.1155/2019/4579806.

Guttman M, Amit I, Garber M, French C, Lin M F,F(xiàn)eldser D, Huarte M, Zuk O, Carey B W, Cassady J P, Cabili M N, Jaenisch R, Mikkelsen T S,Jacks T, Hacohen N, Bernstein B E,Kellis M,Regev A,Rinn J L, Lander E S. 2009. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J]. Nature,458: 223227. doi: 10.1038/nature07672.

Hall M P,Nagel R J,F(xiàn)agg W S, Shiue L, Cline M S, Perriman R J,Donohue J P,Ares M Jr. 2013. Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation[J]. RNA, 19(5) :627-638. doi:

10.1261/rna.038422.113.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements [J]. Nature Methods,12:357-360. doi:10.1038/nmeth.3317.

Kong L,Zhang Y, Ye Z Q,Liu X Q,Zhao S Q, Wei L, Gao G.

2007. CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine [J]. Nucleic Acids Research. 35(S2) : W345-W349. doi: 10.

1093/nar/gkm391.

Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with Bowtie 2 [J]. Nature Methods, 9: 357-359. doi: 10.

1038/nmeth.1923.

Li R Y,Li B J,Jiang A W,Cao Y,Hou L M,Zhang Z K,Zhang X Y, Liu H L, Kim K H, Wu W J. 2020. Exploring the lncRNAs related to skeletal muscle fiber types and meat quality traits in pigs[J]. Genes, 11 (8): 883. doi: 10.3390/ genes11080883.

Li T T, Wang S Y, Wu R M, Zhou X Y,Zhu D H, Zhang Y.

2012. Identification of long non-protein coding RNAs in chicken skeletal muscle using next generation sequencing [J]. Genomics,99(5):292-298. doi:10.1016/j.ygeno.2012.

02.003.

Li Y Y, Chen X N, Sun H, Wang H T. 2018. Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases[J]. Cancer Letters,417:58-64. doi: 10.1016/j.canlet.2017.12.015.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-Aact method[J]. Methods, 25(4) : 402-408. doi: 10.1006/ meth.2001.1262.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2 [J]. Genome Biology, 15: 550. doi: 10.1186/s13059-014-0550-8.

Makeyev E V,Zhang J W,Carrasco M A,Maniatis T. 2007. The microRNA miR-124 promotes neuronal differentiation by

triggering brain-specific alternative pre-mRNA splicing [J]. Molecular Cell, 27 (3) : 435-448. doi: 10.1016/j. molcel.2007.07.015.

Mistry J, Bateman A, Finn R D. 2007. Predicting active site residue annotations in the Pfam database[J]. BMC Bioinformatics,8:298. doi:10.1186/1471-2105-8-298.

Mok G F, Lozano-Velasco E, Münsterberg A. 2017. micro- RNAs in skeletal muscle development[J]. Seminars in Cell amp; Developmental Biology, 72: 67-76. doi: 10.1016/j.

semcdb.2017.10.032.

Pertea M,Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads [J]. Nature Biotechnology,33:290-295. doi: 10.1038/nbt.3122.

Simionescu-Bankston A, Kumar A. 2016. Noncoding RNAs in the regulation of skeletal muscle biology in health and disease[J]. Journal of Molecular Medicine, 94:853-866. doi:

10.1007/s00109-016-1443-y.

Sun L,Luo H T,Bu D C,Zhao G G,Yu K T,Zhang C H,Liu Y N, Chen R S, Zhao Y. 2013. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts[J]. Nucleic Acids Research,41(17) : e166. doi: 10.1093/nar/gkt646.

Wang L G,Park H J,Dasari S,Wang S Q,Kocher J P, Li W.

2013. CPAT: Coding-potential assessment tool using an alignment-free logistic regression model[J]. Nucleic Acids Research,41(6):e74. doi: 10.1093/nar/gkt006.

Wang L J,Yang X,Zhu Y H,Zhan S Y,Chao Z,Zhong T,Guo

J Z, Wang Y, Li L,Zhang H P. 2019. Genome-wide identification and characterization of long noncoding RNAs of brown to white adipose tissue transformation in goats[J].

Cells, 8(8): 904. doi: 10.3390/cells8080904.

Wang L K,F(xiàn)eng Z X, Wang X, Wang X W,Zhang X G. 2010. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 26

(1): 136-138. doi: 10.1093/bioinformatics/btp612.

Williams A H, Liu N , van Rooij E, Olson E N. 2009. MicroRNA control of muscle development and disease[J].

Current Opinion in Cell Biology, 21 (3) :461-469. doi: 10.

1016/j.ceb.2009.01.029.

Wilusz J E, Sunwoo H, Spector D L. 2009. Long noncoding

RNAs:Functional surprises from the RNA world[J]. Genes amp; Development,23:1494-1504. doi:10.1101/gad.1800909.

Wu Y T,Li Z B,Yang M,Dai B,Hu F,Yang F,Zhu J H, Chen T,Zhang L. 2017. MicroRNA-214 regulates smooth muscle cell differentiation from stem cells by targeting RNAbinding protein QKI[J]. Oncotarget, 8(12) : 19866-19878.

doi: 10.18632/oncotarget.15189.

Xing B S,Bai X X, Guo H X, Chen J F,Hua L S,Zhang J Q, Ma Q, Ren Q L, Wang H S, Wang J. 2017. Long noncoding RNA analysis of muscular responses to testosterone deficiency in Huainan male pigs[J]. Animal Science Journal,88(9):1451-1456. doi:10.1111/asj.12777.

Yu X, Wang Z, Sun H,Yang Y,Li K,Tang Z. 2018. Long noncoding MEG3 is a marker for skeletal muscle development and meat production traits in pigs[J]. Animal Genetics,49

(6):571-578. doi:10.1111/age.12712.

Zammit P S. 2017. Function of the myogenic regulatory factors Myf5,MyoD,Myogenin and MRF4 in skeletal muscle,satellite cells and regenerative myogenesis [J]. Seminars in Cell amp; Developmental Biology, 72: 19-32. doi: 10.1016/j.

semcdb.2017.11.011.

Zhan S Y,Dong Y,Zhao W,Guo J Z, Zhong T, Wang L J, Li L, Zhang H P. 2016. Genome-wide identification and characterization of long non-coding RNAs in developmental skeletal muscle of fetal goat [J]. BMC Genomics, 17 (1):

666. doi:10.1186/s12864-016-3009-3.

Zhang H,Wang D R, Li M,Plecitá-Hlavatá L,D'Alessandro A, Tauber J, Riddle S, Kumar S, Flockton A, McKeon B A, Frid M G, Reisz J A, Caruso P, El Kasmi K C, Jezek P, Morrell N W, Hu C J, Stenmark K R. 2017. Metabolic and proli-ferative state of vascular adventitial fibroblasts in pul- monary hypertension is regulated through a microrna-124/ PTBP1 (polypyrimidine tract binding protein 1)/pyruvate kinase muscle axis [J]. Circulation, 136 (25) : 2468-2485.

doi:10.1161/CIRCULATIONAHA.117.028069.

Zhao W M,Mu Y L,Ma L,Wang C,Tang Z L,Yang S L,Zhou

R, Hu X J, Li M H, Li K. 2015. Systematic identificationand characterization of long intergenic non-coding RNAsin fetal porcine skeletal muscle development[J]. ScientificReports,5:8957. doi:10.1038/srep08957.

(責(zé)任編輯劉可丹)

贵阳市| 大关县| 东阳市| 黄山市| 阳泉市| 延川县| 镇平县| 宁蒗| 奉新县| 都兰县| 咸宁市| 蒲江县| 精河县| 邹城市| 二手房| 扎鲁特旗| 黔江区| 庆阳市| 朔州市| 繁峙县| 五大连池市| 桑植县| 德州市| 山东省| 庄河市| 陇西县| 鹤峰县| 霍山县| 尼勒克县| 什邡市| 临猗县| 泸溪县| 通州区| 鹤壁市| 澜沧| 泉州市| 惠水县| 河曲县| 稷山县| 白朗县| 同心县|