張開寶, 張宏強(qiáng), 李斌亮, 丁萬武*
(1. 甘肅東興嘉宇新材料有限公司,甘肅 嘉峪關(guān) 735100; 2. 蘭州理工大學(xué)材料科學(xué)與工程學(xué)院, 蘭州 730050)
鋁合金板帶鑄軋法生產(chǎn)工藝與傳統(tǒng)的半連續(xù)鑄造相比,具有顯著的成本和環(huán)保優(yōu)勢,在國內(nèi)外得到了廣泛的應(yīng)用[1-2]。橫紋缺陷是鋁合金鑄軋過程中頻繁出現(xiàn)的板面缺陷,顯著影響帶坯的表面質(zhì)量[3]。銅輥套的熱導(dǎo)率為250 W/(m·K),是常規(guī)鋼輥套的8~10 倍[4-5],具備大幅度提高鑄軋速度的潛力。輥套材質(zhì)的導(dǎo)熱能力、輥套表面與冷卻介質(zhì)的換熱系數(shù)對輥套熱應(yīng)力場有顯著影響[6-8],實(shí)踐過程中發(fā)現(xiàn),應(yīng)用銅輥套鑄軋技術(shù)生產(chǎn)的鑄軋帶坯出現(xiàn)橫紋缺陷的概率更高,缺陷的嚴(yán)重程度明顯高于常規(guī)鋼輥套,在后續(xù)冷軋過程中也無法消除[9]。國內(nèi)對銅輥套鑄軋橫紋缺陷并沒有開展深入研究,嚴(yán)重制約了銅輥套技術(shù)的應(yīng)用范圍。業(yè)內(nèi)普遍認(rèn)為,鑄軋輥與鑄嘴之間形成的氧化膜周期性循環(huán)建立和破裂是造成橫紋缺陷的根本原因[10-11],本文在深入研究銅輥套鑄軋過程中橫紋組織特點(diǎn)的基礎(chǔ)上,揭示了鑄軋橫紋缺陷的產(chǎn)生機(jī)制,為解決鑄軋橫紋缺陷提供一些思路。
對使用配備有銅輥套的Φ850 mm×1 700 mm鑄軋機(jī)生產(chǎn)的3 系合金鑄軋帶坯,采用切割方式進(jìn)行取樣,對酸洗后存在橫紋缺陷的樣板縱截面進(jìn)行取樣金相分析,金相制樣后經(jīng)Keller's 試劑腐蝕,用蔡司Axio Observer 7 倒置金相顯微鏡觀察帶坯橫紋缺陷處微觀組織形貌,化學(xué)成分分析結(jié)果見表1 所列。
表1 鑄軋帶坯化學(xué)成分Table1 Chemical composition of aluminum alloy單位:%(質(zhì)量分?jǐn)?shù))
圖1 所示為鑄軋速度為1 500 mm/min 時(shí)生產(chǎn)的帶坯下表層金相組織。鑄軋速度在1 500 mm/min時(shí),帶坯上、下板面均出現(xiàn)橫紋缺陷,通常下板面橫紋要明顯重于上表面,本文著重對下板面的橫紋組織進(jìn)行研究。從圖1 可以看出,橫紋缺陷沿著軋制方向規(guī)律性間隔分布(圖1(a)),板面暗紋與亮紋對應(yīng)位置表層枝晶組織存在顯著的差異,暗紋位置枝晶均勻且細(xì)密(圖1( b)),亮紋位置枝晶粗大且呈花瓣?duì)钪ЬW(wǎng)包(圖1(c)),大小為200~400 μm,暗紋與亮紋兩者交替出現(xiàn),因2 種組織對光的吸收和反射不同,形成了肉眼可見的明暗橫紋缺陷。
圖1 鑄軋板縱截面下表層組織金相圖(1 500 mm/min):(a) 酸洗后低倍橫紋組織;(b) 暗紋處金相;(c) 亮紋處金相Fig.1 Lower surface metallographic structure of longitudinal section of the casting plates(1 500 mm/min):(a) low magnification transverse texture after acid pickling; (b) metallography of dark lines;(c) metallography of bright lines
由于鑄嘴與鑄軋輥的相對位置關(guān)系,兩者之間存在一定的間隙,通常稱之為嘴輥間隙,鋁熔體從鑄嘴內(nèi)流出,進(jìn)入由鑄嘴前沿、軋輥表面組成的近似梯形腔體內(nèi)[12-14]。受液體表面張力作用,在鑄嘴與鄰近軋輥表面之間形成帶有一定曲率的彎液面,經(jīng)由鑄嘴進(jìn)入鑄軋區(qū)內(nèi)的鋁液被這一層弧形彎液面所包圍,上、下彎液面的存在避免了鋁液從嘴輥間隙流出[15]。BRADBURY[16]、王珊等[17]認(rèn)為較短的鑄軋區(qū)有利于板面質(zhì)量的改善; DAALAND 等[18]認(rèn)為彎液面與軋輥表面的凝固殼之間的相互作用造成橫紋缺陷的產(chǎn)生,而鑄軋速度、鑄嘴供料系統(tǒng)和軋輥表面性能的均勻性決定了彎液面的穩(wěn)定性;焦建剛等[19]認(rèn)為前箱液位過高容易在板面形成橫向波紋缺陷。因橫紋缺陷更容易在鑄軋板下板面產(chǎn)生,對鑄嘴下彎液面進(jìn)行受力分析,根據(jù)表面張力對所包攏液體金屬的壓力與彎液面受前箱鋁液相對高度產(chǎn)生靜壓力相等這一基本關(guān)系[20],由此可以推導(dǎo)出前箱熔體水平面與彎液面之間的垂直高度差H:
式(1)中:R為彎液面曲率半徑;σ為表面張力系數(shù);ρ為熔體密度;g為重力加速度。
根據(jù)式(1)可以計(jì)算出保持彎液面穩(wěn)定時(shí)的前箱液位與彎液面相對最大高度差(Hmax)。對彎液面進(jìn)行受力分析,當(dāng)前箱液位高度與彎液面高度差不大于Hmax時(shí),嘴輥間隙處的彎液面承受的靜壓力小于其所能承受的極限壓力,彎液面將穩(wěn)定存在,鑄軋過程穩(wěn)定進(jìn)行;當(dāng)前箱液位高度與彎液面高度差大于Hmax時(shí),彎液面所受到的靜壓力超過了其所能承受的極限壓力,彎液面將會(huì)被所包攏的液體金屬?zèng)_破,鋁液將會(huì)從嘴輥間隙流出,造成鑄軋過程中斷[21-22]。通過式(1)對銅輥套鑄軋?jiān)囼?yàn)過程中的前箱極限液位高度進(jìn)行計(jì)算,主要工藝參數(shù)見表2所列。
表2 嘴輥區(qū)域主要工藝參數(shù)Table 2 Main process parameters of nozzle roller area
根據(jù)上述計(jì)算方法得出銅輥套鑄軋過程中,嘴輥間隙處下彎液面保持穩(wěn)定的前箱液位極限高度Hmax為22.76 mm,鑄嘴下唇沿承受的熔體靜壓力大于上唇沿,因此可以得出前箱液位極限高度(前箱液位相對于軋輥中心線高度)為16.56 mm,而生產(chǎn)過程中前箱液位高度設(shè)定為12~14 mm,未超過造成彎液面破裂的極限液位高度。在此條件下,鑄軋生產(chǎn)基本能夠穩(wěn)定進(jìn)行,板面存在橫紋缺陷且不出現(xiàn)氧化膜的情況,因此彎液面破裂不是造成橫紋缺陷產(chǎn)生的原因,板面橫紋與氧化膜的出現(xiàn)沒有相關(guān)性。
鑄軋生產(chǎn)過程中嘴輥間隙值是保持不變的,一旦鑄軋參數(shù)保持穩(wěn)定后,將前箱內(nèi)熔體液位設(shè)定在某一高度后,嘴輥間隙處彎液面所承受的前箱熔體靜壓力是恒定的,根據(jù)公式R=σ/Pm可以得出彎液面的曲率半徑是固定值,冷卻區(qū)內(nèi)彎液面不隨軋輥的轉(zhuǎn)動(dòng)而發(fā)生變化,因此,不會(huì)造成橫紋缺陷的出現(xiàn)。根據(jù)上述分析,鑄軋板橫紋缺陷的產(chǎn)生不在于鑄軋區(qū)中的冷卻區(qū),而是在實(shí)現(xiàn)結(jié)晶過程的鑄造區(qū)內(nèi)形成。
圖2 所示為鑄軋時(shí)結(jié)晶前沿凝固殼動(dòng)態(tài)變化及橫紋缺陷形成過程。鑄軋是通過連續(xù)水冷卻軋輥,對熔體進(jìn)行結(jié)晶成型和一定程度的熱軋加工,形成了最終的鑄軋帶坯。鋁熔體從鑄嘴流出后溫度為680~690 ℃,鑄軋輥經(jīng)冷卻后輥面溫度為40~50 ℃,因兩者存在很大的溫差,鋁熔體與軋輥輥面接觸后發(fā)生凝固,鑄軋結(jié)晶由此開始。借助熔體中存在的結(jié)晶核心,以及輥面上微小可以起到形核作用的質(zhì)點(diǎn),鋁熔體接觸鑄軋輥輥面瞬間會(huì)產(chǎn)生很大的過冷度,在鑄軋板表層形成組織細(xì)密的凝固殼,如圖2(a)中St 所示。緊接著,由于鋁液發(fā)生結(jié)晶后形成凝固殼會(huì)發(fā)生體積收縮,收縮速度為Vs(圖2(a)),鑄軋時(shí)凝固殼受到軋輥向上的軋制壓力,凝固殼在向前運(yùn)行過程中與軋輥有持續(xù)靠近的傾向,速度為軋輥線速度Vt在垂直方向的分量Va(圖2(b)中θ為軋輥圓周切向方向與水平方向的夾角),但凝固殼的收縮速度Vs1大于軋輥向凝固殼靠近的速度Va1,凝固殼包裹的熔體脫離軋輥表面,凝固殼與軋輥之間會(huì)形成氣隙(如圖2(a)中①所示)。氣隙形成后軋輥對熔體的冷卻能力下降,結(jié)晶后形成的晶粒與初始晶粒相比較大,并且隨著凝固過程的持續(xù)進(jìn)行,相鄰鋁液傳導(dǎo)的熱量以及鋁液自身結(jié)晶過程中釋放的大量結(jié)晶潛熱,會(huì)使凝固殼溫度升高,局部高溫造成已發(fā)生結(jié)晶的晶粒長大,如圖1(c)所示。隨后,凝固殼溫度回升后支撐強(qiáng)度下降,在熔體靜壓力的作用下凝固殼再次與軋輥接觸,熱傳導(dǎo)系數(shù)又一次升高,再次生成細(xì)小的晶粒(如圖1(b));經(jīng)冷卻后凝固殼因Va2<Vs2,與軋輥之間會(huì)再次形成氣隙,上述過程反復(fù)循環(huán)(如圖2(a)中①~(○n -1)所示),周期性的出現(xiàn)氣隙導(dǎo)致軋輥對熔體的冷卻過程周期性變化,使鑄軋帶坯表層結(jié)晶組織出現(xiàn)周期性的變化規(guī)律。直至凝固殼厚度達(dá)到一定值,旋轉(zhuǎn)的軋輥向凝固殼靠近速度Van大于或等于凝殼的收縮速度Vsn時(shí),即Van≥Vsn(如圖2(a)中○n -1 所示),凝固殼與軋輥之間再不會(huì)產(chǎn)生氣隙,這一循環(huán)才會(huì)停止,最終在板面上形成了周期性的橫紋缺陷(如圖1(a))。
圖2 鑄軋過程中橫紋缺陷形成示意:(a)結(jié)晶前沿演變示意;(b)輥面切線速度分解示意Fig.2 Schematic diagram of transverse defect formation in the twin-roll casting process: (a) schematic diagram of evolution of crystallization front; (b) exploded view of tangent speed of roller surface
根據(jù)DAALAND 等[18]建立的鑄軋過程結(jié)晶模型,對鑄軋過程中的結(jié)晶過程進(jìn)行分析,如圖3所示。
圖3 鑄軋過程中光亮晶組織形成示意:(a)光亮晶形成示意;(b)鑄軋帶坯中的光亮晶粒Fig.3 Schematic diagram of bright crystal structure formation during twin-roll casting: (a) schematic diagram of bright crystal formation; (b) bright crystal in twin-roll casting strip
銅輥套鑄軋過程中固液兩相區(qū)內(nèi)的液穴前沿具有較大的溫度梯度,在熔體局部具備充足形核質(zhì)點(diǎn)和較大過冷度時(shí),這些區(qū)域會(huì)優(yōu)先生成低成分的樹枝狀晶體(如圖3(a)中①所示),在被新流入的鋁液沖刷后,部分這種樹枝狀晶體從已形成的凝固殼上脫落掉入熔體,尤其是凝固殼與軋輥之間會(huì)形成氣隙后(如圖2),軋輥對熔體的冷卻強(qiáng)能力的下降會(huì)使凝固殼局部附著的新生樹枝狀晶體溫度升高,大幅增加掉入熔體的概率,脫落的樹枝晶在過冷的熔體中下落有進(jìn)一步長大的趨勢,最終被靠近帶坯表面的液穴結(jié)晶前沿捕捉,成為鑄軋帶坯的一部分,在帶坯內(nèi)部形成組織特征有別于基體,且隨機(jī)分布的粗大光亮晶粒,如圖3(a)中②~③所示。分析存在橫紋缺陷的鑄軋帶材金相(如圖3(b)),橫紋缺陷表層附近區(qū)域存在若干隨機(jī)分布的光亮晶粒(如圖3(b)中Ⅰ~ Ⅳ),其枝晶尺寸明顯大于基體,色澤光亮且析出相稀少,合金元素含量低,從分布數(shù)量來看亮紋對應(yīng)的區(qū)域(圖1(c))要多于暗紋對應(yīng)區(qū)域(如圖1(b)),這一結(jié)論與上述光亮晶粒形成機(jī)理完全吻合。
通過上述分析也進(jìn)一步驗(yàn)證了鑄軋輥因具備較強(qiáng)的冷卻能力,與初始凝固殼反復(fù)接觸和脫離,軋輥對熔體的冷卻不連續(xù)造成帶坯表層結(jié)晶狀態(tài)的不連續(xù),是造成板面橫紋缺陷產(chǎn)生的主要原因,而光亮晶的形成加劇了橫紋缺陷的嚴(yán)重程度。
銅輥套熱導(dǎo)率顯著高于鋼輥套,在鑄軋區(qū)內(nèi)形成更大過冷度的環(huán)境,鋁液從鑄嘴流出后與銅輥接觸瞬間形成的結(jié)晶凝固殼更厚,凝固殼發(fā)生體積收縮的量也越大,因此凝固殼與軋輥之間形成的氣隙也就越大,氣隙熱阻很大,大幅降低了鋁液熱量向軋輥的傳導(dǎo)。而相鄰鋁液傳導(dǎo)的熱量以及鋁液自身結(jié)晶過程中釋放的大量結(jié)晶潛熱使凝固殼溫度升高,造成部分已結(jié)晶組織長大甚至重熔,枝晶得到充分的生長,而光亮晶粒也在這一過程大量產(chǎn)生,循環(huán)反復(fù),最終造成銅輥套橫紋缺陷顯著重于鋼輥套。
從上述分析可以得出,鑄軋過程中橫紋缺陷的產(chǎn)生與板面氧化膜壓入并沒有直接的聯(lián)系。彎液面外側(cè)與外界空氣直接接觸,會(huì)形成一層致密的薄氧化鋁膜,氧化膜的存在可以保護(hù)彎液面內(nèi)鋁熔體被進(jìn)一步氧化。但氧化膜長時(shí)間跟空氣接觸,其厚度會(huì)隨著接觸時(shí)間的持續(xù)而增厚,而氧化膜韌性較差,導(dǎo)致其隨著設(shè)備震動(dòng)或前箱液位的波動(dòng)引起的彎液面的動(dòng)態(tài)變化而出現(xiàn)擾動(dòng)。盡管氧化膜與鋁液能夠潤濕,但氧化膜厚度達(dá)到一定程度后也會(huì)從彎液面破裂脫落,隨著軋輥轉(zhuǎn)動(dòng)最終壓附在板面上,這是鑄軋過程中板面出現(xiàn)氧化膜壓入的原因。
通過對鑄軋過程中橫紋缺陷產(chǎn)生機(jī)理的分析,銅輥套導(dǎo)熱能力顯著高于常規(guī)鋼輥套,對鋁液結(jié)晶強(qiáng)過冷是造成橫紋缺陷產(chǎn)生的直接原因?;谏鲜龇治?,采取適當(dāng)減弱銅輥套對熔體冷卻能力的措施,可以達(dá)到控制橫紋缺陷的目的。蔣顯全等[23]認(rèn)為,通過采取提高鑄軋溫度,提升冷卻水溫度,降低冷卻水流量,提高火焰噴涂的強(qiáng)度,提升輥面溫度,提高鑄軋速度等技術(shù)措施,來增加鑄軋區(qū)中液穴的長度,降低鑄軋過程中帶材的加工率,均可以實(shí)現(xiàn)降低軋輥對鋁液結(jié)晶過程的冷卻強(qiáng)度。綜合分析,上述措施中既可以保證產(chǎn)品的內(nèi)部質(zhì)量,又能方便實(shí)施且不犧牲工作產(chǎn)量的,只有提高鑄軋速度。
為盡可能減低銅輥套鑄軋過程中橫紋缺陷對鑄軋帶坯質(zhì)量的影響,在鑄軋速度保持不變的情況下,通過采用激光穩(wěn)流器控制前箱液位、減小嘴輥間隙、減薄鑄嘴前沿厚度、降低前箱液位高度、提高前箱溫度以及提升精細(xì)化操作水平等措施后,板面橫紋缺陷依舊存在,改善作用不明顯。根據(jù)本文提出的橫紋缺陷產(chǎn)生機(jī)理,在線開展了銅輥套鑄軋?zhí)崴賹?shí)驗(yàn),將鑄軋速度從1 500 mm/min逐步提高至2 232 mm/min,并分別在1 850 mm/min和2 232 mm/min取樣進(jìn)行顯微組織檢測,提速過程中帶坯厚度穩(wěn)定為7.0 mm,以進(jìn)一步研究鑄軋速度對橫紋缺陷的影響。
圖4 所示為銅輥套鑄軋速度提高過程中帶坯表面的低倍組織和金相組織。通過對比鑄軋速度1 500(圖4(a)、圖4(b))、1 850 mm/min(圖4(c)、圖4(d))和2 232 mm/min(圖4(e)、圖4(f))的金相組織可知,隨著鑄軋速度的提高,表層低倍組織和截面金相組織橫紋缺陷特征均呈減弱趨勢,團(tuán)簇狀粗大樹枝晶長度由1 500 mm/min 時(shí)的200~400 μm(圖4(b)),減小到1 850 mm/min 時(shí)的50~100 μm(圖4(d)),直至在2 232 mm/min時(shí)徹底消除(圖4(f)),酸洗后板面低倍組織達(dá)到正常水平,由此可以看出,提高鑄軋速度是可以減輕或消除板面橫紋缺陷的有效措施。
圖4 鑄軋速度提高后帶坯縱截面下表層組織金相圖:(a)1 500 mm/min酸洗后低倍組織;(b)1 500 mm/min金相組織;(c)1 850mm/min酸洗后低倍組織;(d)1 850 mm/min金相組織;(e) 2 232 mm/min酸洗后低倍組織;(f) 2 232 mm/min金相組織Fig.4 Lower surface metallographic structure of longitudinal section after increasing casting speed: (a) macrostructure after acid pickling of 1 500 mm/min; (b) metallographic structure of 1 500 mm/min; (c) macrostructure after acid pickling of 1 500 mm/min; (d) metallographic structure of 1 850 mm/min; (e) macrostructure after acid pickling of 2 232 mm/min; (f) metallographic structure of 2 232 mm/min
大幅提高鑄軋速度可以控制橫紋缺陷的產(chǎn)生,這是因?yàn)樘岣哞T軋速度后單位時(shí)間內(nèi)通過鑄軋區(qū)的鋁液量增大,可以增加鑄軋區(qū)中液穴的長度,提高軋輥回轉(zhuǎn)周期內(nèi)的輥面的平均溫度,降低軋輥對熔體的冷卻強(qiáng)度,從而減薄初始凝固殼的厚度。同時(shí),鑄軋速度提高后軋輥向凝殼靠近速度Va更大,初始凝殼收縮后與軋輥表面形成的氣隙較小,對帶坯表層的凝固結(jié)晶過程影響較小,較薄的凝固殼強(qiáng)度較低,在前箱靜壓力的作用下有進(jìn)一步向軋輥表面靠近的趨勢,Va與Vs的差值將進(jìn)一步減小,板面橫紋缺陷逐漸減弱[24-26]。當(dāng)鑄軋速度達(dá)到一定值,初始凝固殼厚度和支撐強(qiáng)度降低到某一值時(shí),軋輥向凝固殼靠近速度Va大于或等于凝殼的收縮速度Vs(如圖5所示),這時(shí)初始凝固殼與軋輥表面不產(chǎn)生氣隙,鑄軋輥對熔體可以實(shí)現(xiàn)連續(xù)的冷卻和結(jié)晶,不再具備橫紋缺陷產(chǎn)生的條件。同時(shí),鑄軋速度提高后結(jié)晶前沿過冷度和溫度梯度的降低可以有效控制光亮晶粒的產(chǎn)生,板面橫紋缺陷得到有效控制。
圖5 高鑄軋速度結(jié)晶前沿示意Fig.5 Schematic diagram of the crystallization front at a high casting speed
1)鑄軋過程中板面橫紋缺陷沿帶坯軋制方向間隔分布,暗紋處晶粒正常,亮紋處枝晶粗大,呈明顯的白亮團(tuán)簇狀枝晶網(wǎng)包。
2)銅輥套鑄軋輥具備很強(qiáng)的冷卻能力,受初始凝固殼體積收縮和前箱熔體靜壓力作用,軋輥向初始凝固殼靠近速度Va小于凝固殼的收縮速度Vs,凝固殼與軋輥表面反復(fù)接觸、脫離,導(dǎo)致軋輥對熔體的冷卻不連續(xù),在鑄軋區(qū)中的鑄造區(qū)造成帶坯表層結(jié)晶的不連續(xù),這是造成板面橫紋缺陷產(chǎn)生的根本原因,而光亮晶的形成加劇了橫紋缺陷的嚴(yán)重程度。
3)提高鑄軋速度可以控制橫紋缺陷的產(chǎn)生,這是因?yàn)楫?dāng)鑄軋速度達(dá)到一定值時(shí),旋轉(zhuǎn)的軋輥向凝固殼靠近速度Va大于或等于凝殼的收縮速度Vs時(shí),即Va≥Vs,鑄軋過程中初始凝固殼與軋輥表面之間不產(chǎn)生氣隙。鑄軋輥對熔體可以實(shí)現(xiàn)連續(xù)穩(wěn)定的冷卻和結(jié)晶,有效抑制了光亮晶粒的產(chǎn)生,板面不再出現(xiàn)橫紋缺陷。