劉碩,王啟慧,王志鵬
激光增材制造體育器材用TC4鈦合金疲勞裂紋擴展行為研究
劉碩1,王啟慧2a,王志鵬2b
(1.山西大學(xué) 體育學(xué)院,太原 030006;2.中北大學(xué) a.環(huán)境與安全工程學(xué)院 b.化學(xué)與化工學(xué)院,太原 030051)
揭示應(yīng)力比對增材制造TC4鈦合金疲勞裂紋擴展行為的影響規(guī)律。采用緊湊型拉伸試樣,在恒載荷幅條件下對激光增材制造TC4鈦合金進行了應(yīng)力比為0.1、0.3和0.5的疲勞裂紋擴展實驗,定量評價了不同應(yīng)力比下合金的疲勞裂紋擴展速率和變化規(guī)律?;赑aris公式對裂紋擴展速率進行了擬合,分析了應(yīng)力比對各參數(shù)的影響規(guī)律。最后通過掃描電鏡對斷口表面形貌進行了觀察,分析了應(yīng)力比對斷裂模型的影響。在相同的?條件下,疲勞裂紋擴展速率隨著應(yīng)力比的增大而增大。在Paris公式中,參數(shù)隨應(yīng)力比的增大而減小,參數(shù)隨應(yīng)力比的增大而增大,并且和lg呈現(xiàn)線性關(guān)系。隨應(yīng)力比的增大,斷口表面的河流花樣增多、疲勞輝紋變淺、二次裂紋數(shù)量增加。應(yīng)力比引起的裂紋尖端閉合效應(yīng)和平面應(yīng)力比變化是導(dǎo)致裂紋擴展速率發(fā)生改變的主要原因。
激光增材制造;TC4鈦合金;疲勞裂紋擴展;應(yīng)力比
鈦合金由于其低密度、耐腐蝕、高強度、高硬度等特點,已在航空航天、特殊體育器械和石油化工等領(lǐng)域得到廣泛應(yīng)用[1-2]。激光增材制造技術(shù)可以通過逐層沉積的方式,實現(xiàn)復(fù)雜結(jié)構(gòu)零部件的快速成形,其工藝過程簡單,生產(chǎn)制造周期短,目前已在鈦合金零部件的制造上得到應(yīng)用,并成為增材制造領(lǐng)域的研究熱點之一[3-6]。
疲勞一直是材料面臨的主要服役問題之一。與傳統(tǒng)工藝制造材料相同,增材制造材料同樣面臨腐蝕疲勞斷裂的問題[7-8]。目前已有學(xué)者對增材制造TC4鈦合金的疲勞性能進行了研究,發(fā)現(xiàn)影響其疲勞性能的因素眾多。Eric等[9]認(rèn)為激光增材制造形成的表面應(yīng)力集中會顯著降低材料的疲勞性能,他們提出可通過表面機械研磨來提高疲勞強度,但材料的內(nèi)部缺陷(未完全熔化的粉末、氣孔缺陷等)仍然會導(dǎo)致材料的疲勞性能不穩(wěn)定。此外,增材制造形成的各向異性也會導(dǎo)致TC4鈦合金橫向和縱向疲勞性能存在明顯的不均勻性,并且橫向試樣的疲勞極限通常比縱向的低,這種差異與材料內(nèi)部的微觀結(jié)構(gòu)及殘余應(yīng)力分布不均勻有關(guān)[10]。后熱處理工藝也會對增材制造TC4的疲勞裂紋擴展行為產(chǎn)生影響,Leuders等[11]研究發(fā)現(xiàn),后熱處理引起的微觀組織改變會影響疲勞裂紋擴展的第一階段,第二和第三階段則主要受外部應(yīng)力的影響。Chern等[12]總結(jié)了工藝參數(shù)及后處理對電子束增材制造TC4鈦合金疲勞性能影響的研究現(xiàn)狀。Sterling等[13]對制備態(tài)和熱處理態(tài)的直接能量沉積TC4合金的低周疲勞行為進行了研究,發(fā)現(xiàn)缺乏塑性是樣品低周疲勞壽命較低的主要原因。Benedetti等[14]研究了選區(qū)激光熔化TC4合金的低周疲勞行為,也發(fā)現(xiàn)了類似的結(jié)論。從以上研究可以看出,目前針對增材制造鈦合金疲勞性能的研究主要集中在制造缺陷及微觀組織對疲勞性能的影響方面,很少關(guān)注不同外載荷下材料的疲勞裂紋擴展行為。
為此,本文針對激光直接沉積制造的TC4鈦合金,采用緊湊拉伸(CT)試樣,進行了不同應(yīng)力比下的疲勞裂紋擴展實驗,采用Paris公式對裂紋擴展速率進行了擬合,并在掃描電鏡下對斷口形貌進行了分析,研究了不同應(yīng)力比下激光直接沉積制造的TC4鈦合金的疲勞裂紋擴展行為。
采用工業(yè)級TC4鈦合金粉末為原材料,粉末由氣霧化法制備,其主要化學(xué)成分如表1所示。粉末的形貌和尺寸如圖1所示。從圖1a可以看出,粉末呈球形,且未發(fā)生明顯的團聚。采用激光粒度儀測得的粉末粒徑分布情況如圖1b所示,粉末粒徑主要為20~60 μm,平均粒徑為36.5 μm。
表1 TC4鈦合金粉末主要化學(xué)成分
Tab.1 Main chemical content of TC4 titanium alloy powder wt.%
圖1 TC4鈦合金粉末形貌(a)及粒徑分布(b)
激光直接沉積設(shè)備型號為RC-LDM8060,試樣的成形示意圖如圖2a所示。設(shè)備采用同軸送粉方法,即激光和粉末同時從噴嘴發(fā)出,在基板上熔化并凝固沉積成所需試樣,保護氣體為99.999%的高純氬氣,在成形過程中保持氧的質(zhì)量分?jǐn)?shù)低于50×10?6。激光的掃描策略如圖2b所示,即在當(dāng)前層掃描結(jié)束后,旋轉(zhuǎn)90°進行下一層掃描。具體的沉積參數(shù)如下:激光功率為900 W,光斑直徑為2 mm,掃描速度為300 m/min,送粉速度為5 g/min,掃描間距為1 mm,層厚為0.5 mm。采用上述沉積工藝,制備出尺寸為80 mm×80 mm×20 mm的塊體試樣,并對試樣進行去應(yīng)力退火處理。
在Tescan Clara掃描電鏡下通過電子背散射衍射儀(EBSD)、背散射電子成像儀(BSE)和能量色散譜儀(EDS)對退火后試樣的微觀組織進行分析。通過電火花加工方法對試樣進行切割,然后依次使用400#~5000#砂紙進行打磨,最后再依次通過金剛石懸濁液和氧化硅懸濁液進行拋光,清洗并烘干后進行微觀組織分析。
按照圖3所示的試樣尺寸,采用電火花加工方法將去應(yīng)力退火處理后的材料加工成緊湊型拉伸(CT)試樣。其中,保持機加工缺口的開口方向與沉積方向相同。試樣寬度為50 mm,厚度為5 mm,初始裂紋長度0為10 mm。為減少表面粗糙度對實驗結(jié)果帶來的干擾,逐一采用400#~2000#砂紙對試樣表面進行打磨。
疲勞裂紋擴展實驗參照GB/T 6398—2017《金屬材料疲勞實驗疲勞裂紋擴展方法》進行:首先預(yù)制2 mm長的疲勞裂紋,然后進行最大載荷max恒定為2 500 N的疲勞裂紋擴展實驗。其中,載荷頻率為10 Hz,應(yīng)力比分別為0.1、0.3和0.5,載荷幅(?=max×)由應(yīng)力比決定。通過柔度法測量裂紋長度,記錄裂紋長度和循環(huán)次數(shù),通過割線法計算裂紋擴展速率d/d[15],如式(1)所示。
對于CT試樣,裂紋尖端應(yīng)力強度因子幅(?)采用式(2)進行計算[15]。
式中:=/,為試樣形狀因子。最后采用Paris公式對d/d-?曲線進行擬合,Paris公式如式(3)所示[16]。
式中:和均為與材料性質(zhì)相關(guān)的擬合參數(shù)。
待疲勞裂紋擴展實驗結(jié)束后,在Tescan Clara掃描電鏡下通過二次電子成像對斷口表面形貌進行表征。二次電子成像的加速電壓為15 kV,加速電流為300 pA。
裝配式建筑可實現(xiàn)質(zhì)量提升、提升效率、減少人工、減少消耗。尤為適宜推廣EPC模式,但是不應(yīng)狹隘化,而要廣義理解。靈山島尖九年一貫制學(xué)校項目在各專業(yè)的設(shè)計、施工階段均考慮廣義裝配式,是廣義裝配式的一次實踐。希望本項目能在綠色、循環(huán)、低碳的可持續(xù)發(fā)展方向更進一步,推進我國建筑工業(yè)化的發(fā)展進程。
圖2 激光直接沉積工藝示意圖(a)及掃描策略示意圖(b)
-平面上材料的微觀組織如圖4所示。EBSD分析結(jié)果表明,在激光直接沉積TC4鈦合金內(nèi),晶粒呈柱狀晶生長,各晶粒呈隨機取向分布,平均晶粒尺寸為3.2 μm,如圖4a所示。從圖4b所示的相分布圖可以看出,材料主要由α-Ti組成,可以檢測到少量的β-Ti。由于β-Ti尺寸較小,EBSD技術(shù)難以分辨,因此采用BSE和EDS對微觀組織進行了進一步表征。
微觀組織的高倍BSE形貌如圖5a所示??梢钥闯?,除板條的α-Ti以外,還有少量白色的針狀組織。通過EDS線掃描對這些組織的元素含量及分布進行了半定量表征,結(jié)果如圖5b所示。可以看出,在這些白色的針狀組織中出現(xiàn)了V元素的富集。V元素是β-Ti的形成元素,可以推測這些白色相為β-Ti[17-19]。
將采集的裂紋長度和循環(huán)次數(shù)繪制成-曲線,如圖6a所示。隨著載荷循環(huán)次數(shù)的增加,裂紋長度呈指數(shù)增長,且增長速度不斷增大。根據(jù)式(1)計算得到d/d數(shù)值,并與由式(2)計算得到的?值繪制成d/d-?曲線,如圖6b所示。在雙對數(shù)坐標(biāo)下,不同應(yīng)力比的d/d與?均呈線性關(guān)系,即裂紋擴展速率d/d隨應(yīng)力強度因子幅?的增大而增大。此外,從圖6b還可以看出,在相同?值下,疲勞裂紋擴展速率隨應(yīng)力比的增大而增大。
采用Paris公式對裂紋擴展速率進行擬合,結(jié)果如表3所示。3種應(yīng)力比下擬合優(yōu)度均大于0.97,擬合程度較好。在Paris公式中,參數(shù)可以被認(rèn)為是軸的截距,它依賴于材料的性質(zhì);參數(shù)代表斜率,它體現(xiàn)了裂紋擴展速率對外加的應(yīng)力強度因子幅值Δ的敏感度,值越大,則材料對Δ的敏感度越高。從表3可以看出,隨著應(yīng)力比由0.1增大到0.5,參數(shù)從1.42×10?11降低到1.21×10?11,參數(shù)從3.11增大到3.55,說明隨著應(yīng)力比的增大,材料更容易發(fā)生疲勞裂紋擴展。這種應(yīng)力比導(dǎo)致的變化規(guī)律,與傳統(tǒng)加工得到的損傷容限型TC4鈦合金變化規(guī)律相同[20-21]。
圖4 微觀組織EBSD表征結(jié)果
圖5 微觀組織BSE和EDS表征結(jié)果
圖6 不同應(yīng)力比下疲勞裂紋擴展
表3 Paris公式擬合結(jié)果
Tab.3 Fitting result of Parise rule
在掃描電鏡下通過二次電子成形對斷口表面形貌進行表征,結(jié)果如圖8所示??梢钥闯觯?種應(yīng)力比下,疲勞裂紋均呈現(xiàn)穿晶擴展模式。在裂紋擴展過程中出現(xiàn)了明顯的沿特定晶面的解理,因此觀察到大量沿裂紋擴展方向匯聚的河流花樣。此外,由裂紋尖端交替鈍化和銳化形成的疲勞輝紋也清晰可見。但在3種應(yīng)力比下,這些特征呈現(xiàn)了一定的差異。隨著應(yīng)力比的增大,河流花樣更多,疲勞輝紋逐漸變淺,說明并且二次裂紋的數(shù)量也隨之增加。
在疲勞裂紋擴展過程中,裂紋擴展的驅(qū)動力主要來源于正應(yīng)力和切應(yīng)力2個分量[26],如式(4)~(5)所示。
圖8 斷口表面形貌
1)在相同?條件下,隨著應(yīng)力比的增大,疲勞裂紋擴展速率增大。
3)隨應(yīng)力比的增大,斷口表面的河流花樣增多、疲勞輝紋變淺、二次裂紋數(shù)量增加。
4)應(yīng)力比引起的裂紋尖端閉合效應(yīng)和平面應(yīng)力比變化是導(dǎo)致裂紋擴展速率發(fā)生改變的主要原因。
[1] 郭照燦, 張德海, 何文斌, 等. 金屬多材料增材制造研究現(xiàn)狀與展望[J]. 精密成形工程, 2022, 14(2): 129-137.
GUO Z C, ZHANG D H, HE W B, et al. Research Status and Prospect of Metal Multi-Material Additive Manufacturing[J]. Journal of Netshape Forming Engineerging, 2022, 14(2): 129-137.
[2] 馮新, 馬英杰, 李建崇, 等. 鑄造、鍛造和粉末冶金TC4鈦合金損傷容限行為對比研究[J]. 精密成形工程, 2018, 10(3): 46-54.
FENG X, MA Y J, LI J C, et al. Comparative Study on Damage Tolerance Properties of TC4 Titanium Alloy Manufactured by Casting, Forging and Powder Metallurgy[J]. Journal of Netshape Forming Engineering, 2018, 10(3): 46-54.
[3] 高星, 張寧, 丁燕, 等. 熱處理時間對激光選區(qū)成形TC4鈦合金組織及力學(xué)性能的影響[J]. 金屬熱處理, 2022, 47(9): 12-17.
GAO X, ZHANG N, DING Y, et al. Effect of Heat Treatment Time on Microstructure and Mechanical Properties of TC4 Titanium Alloy Fabricated by Selective Laser Melting[J]. Heat Treatment of Metals, 2022, 47(9): 12-17.
[4] ANIL K S, MAINAK B, AMAN S, et al. Selective Laser Melting of Ti-6Al-4V Alloy: Process Parameters, Defects and Post-Treatments[J]. Journal of Manufacturing Processes, 2021, 64: 161-187.
[5] TSHEPHE T S, AKINWAMID S O, OLEVSKY E, et al. Additive Manufacturing of Titanium-based Alloys- A Review of Methods, Properties, Challenges, and Prospects[J]. Heliyon, 2022, 8(3): e09041.
[6] YANG X, LI Y A, DUAN M, et al. An Investigation of Ductile Fracture Behavior of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting[J]. Journal of Alloys and Compounds, 2022, 890: 161926.
[7] BECKER T H, KUMAR P, RAMAMURTY U. Fracture and Fatigue in Additively Manufactured Metals[J]. Acta Materialia, 2021, 219: 117240.
[8] KUMAR P, RAMAMURTY U. Microstructural Optimization Through Heat Treatment for Enhancing the Fracture Toughness and Fatigue Crack Growth Resistance of Selective Laser Melted Ti-6Al-4V Alloy[J]. Acta Materialia, 2019, 169: 45-59.
[9] ERIC W, ANDRES S, SHAFAQAT S, et al. Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties[J]. Physics Procedia, 2014, 56: 371-378.
[10] ZHANG J K, WANG X Y, PADDEA S, et al. Fatigue Crack Propagation Behaviour in Wire+Arc Additive Manufactured Ti-6Al-4V: Effects of Microstructure and Residual Stress[J]. Materials and Design, 2016, 90: 551- 561.
[11] LEUDERS S, THONE M, RIEMER A, et al. On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance[J]. International Journal of Fatigue, 2013, 48: 300-307.
[12] CHERN A H, NANDWANA P, YUAN T, et al. A Review on the Fatigue Behavior of Ti-6Al-4V Fabricated by Electron Beam Melting Additive Manufacturing[J]. International Journal of Fatigue, 2019, 119: 173-184.
[13] STERLING A J, TORRIES B, SHAMSAEI N, et al. Fatigue Behavior and Failure Mechanisms of Direct Laser Deposited Ti-6Al-4V[J]. Materials Science and Engineering: A, 2016, 655: 100-112.
[14] BENEDETTI M, FONTANARI V, BANDINI M, et al. Low- and High-cycle Fatigue Resistance of Ti-6Al-4V ELI Additively Manufactured via Selective Laser Melting: Mean Stress and Defect Sensitivity[J]. International Journal of Fatigue, 2018, 107: 96-109.
[15] GB/T 6398—2017, 金屬材料疲勞試驗疲勞裂紋擴展方法[S].
GB/T 6398—2017, Metallic Materials-Fatigue Testing- Fatigue Crack Growth Method[S].
[16] PARIS P, ERDOGAN F. A Critical Analysis of Crack Propagation Laws[J]. Journal of Basic Engineering, 1963, 85(4): 528-533.
[17] 李健, 莊宇盛, 李春慧, 等. 冷變形及時效對新型β鈦合金組織性能的影響[J]. 金屬熱處理, 2022, 47(11): 70-75.
LI J, ZHUANG Y S, LI C H, et al. Effect of Cold Rolling and Aging on Microstructure and Properties of Novel β-titanium Alloys[J]. Heat Treatment of Metals, 2022, 47(11): 70-75.
[18] TSAI M T, CHEN Y W, CHAO C Y, et al. Heat-treatment Effects on Mechanical Properties and Microstructure Evolution of Ti-6Al-4V Alloy Fabricated by Laser Powder Bed Fusion[J]. Journal of Alloys and Compounds, 2020, 816: 152615.
[19] LIANG Z L, SUN Z G, ZHANG W S, et al. The Effect of Heat Treatment on Microstructure Evolution and Tensile Properties of Selective Laser Melted Ti6Al4V Alloy[J]. Journal of Alloys and Compounds, 2019, 782: 1041-1048.
[20] 許飛, 周善林, 石科學(xué). 應(yīng)力比對TC4-DT鈦合金疲勞裂紋擴展速率的影響[J]. 熱加工工藝, 2010, 39: 33-35.
XU F, ZHOU S L, SHI K X. Effects of Stress Ratio on Fatigue Crack Growth Rate of TC4-DT Alloy[J]. Hot Work Technology, 2010, 39: 33-35.
[21] XU H F, YE D Y, MEI L B. A Study of the Back Stress and the Friction Stress Behaviors of Ti-6Al-4V Alloy during Low Cycle Fatigue at Room Temperature[J]. Materials Science and Engineering: A, 2017, 700: 530-539.
[22] 張亞軍, 張欣耀, 張云浩. 金屬材料疲勞裂紋擴展速率Paris模型中材料常數(shù)的相關(guān)性[J]. 材料開發(fā)與應(yīng)用, 2021, 36: 1-8.
ZHANG Y J, ZHANG X Y, ZHANG Y H. Pertinence of Material Constants in Paris Model for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36: 1-8.
[23] DUBEY S, SOBOYEJO A B O, SOBOYEJO W O. An Investigation of the Effects of Stress Ratio and Crack Closure on the Micromechanisms of Fatigue Crack Growth in Ti-6Al-4V[J]. Acta Materialia, 1997, 45: 2777-2787.
[24] SHADEMAN S, SINHA V, SOBOYEJI A B O, et al. An Investigation of the Effects of Microstructure and Stress Ratio on Fatigue Crack Growth in Ti-6Al-4V with Colony α/β Microstructures[J]. Mechanics of Materials, 2004, 36: 161-175.
[25] TANAKA Y, OKAZAKI S, OGAWA Y, et al. Fatigue Limit of Ni-based Superalloy 718 Relative to the Shear-mode Crack-growth Threshold: A Quantitative Evaluation Considering the Influence of Crack-opening and -Closing Stresses[J]. International Journal of Fatigue, 2021, 148: 106228.
[26] SUSMEL L, TOVO R, LAZZARIN P. The Mean Stress Effect on the High-cycle Fatigue Strength from a Multiaxial Fatigue Point of View[J]. International Journal of Fatigue, 2005, 27: 928-943.
Fatigue Crack Propagation Behavior of TC4 Titanium Alloy for Sports Equipment Prepared by Laser Additive Manufacturing
LIU Shuo1, WANG Qihui2a, WANG Zhipeng2b
(1. School of Physical Education, Shanxi University, Taiyuan 030006, China; 2. a. School of Environment and Safety Engineering, b. School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China)
The work aims to reveal the effect of stress ratio on the fatigue crack propagation behavior of TC4 titanium alloy prepared by laser additive manufacturing. The fatigue crack propagation experiments of laser additive TC4 titanium alloys with stress ratios of 0.1, 0.3 and 0.5 were carried out under constant external load amplitude using compact tensile specimens. The fatigue crack propagation rate and change rule of the alloys under different stress ratios were quantitatively evaluated. The crack propagation rate was fitted based on Paris formula, and the influence of stress ratio on each parameter was analyzed. Finally, the surface morphology of the fracture was observed with a scanning electron microscopy, and the influence of stress ratio on the fracture model was analyzed. Under the same ?conditions, the fatigue crack propagation rate increased with the increase of stress ratio. In Paris formula, parameterdecreased with the increase of stress ratio, and parameterincreased with the increase of stress ratio, and the relationship betweenand lgwas linear. With the increase of stress ratio, the flow pattern on the fracture surface increased, the fatigue markings became shallow and the number of secondary cracks increased.The closing effect of crack tip caused by stress ratio and the change of surface stress ratio are the main reasons for the change of crack growth rate.
laser additive manufacturing; TC4 titanium alloy; fatigue crack propagation; stress ratio
10.3969/j.issn.1674-6457.2024.01.007
TG441.8
A
1674-6457(2024)01-0059-07
2023-08-21
2023-08-21
山西省科技廳重點項目(202204031401003)
Key Project of Shanxi Provincial Science and Technology Department (202204031401003)
劉碩, 王啟慧, 王志鵬. 激光增材制造體育器材用TC4鈦合金疲勞裂紋擴展行為研究[J]. 精密成形工程, 2024, 16(1): 59-65.
LIU Shuo, WANG Qihui, WANG Zhipeng.Fatigue Crack Propagation Behavior of TC4 Titanium Alloy for Sports Equipment Prepared by Laser Additive Manufacturing[J]. Journal of Netshape Forming Engineering, 2024, 16(1): 59-65.