龍靖, 何小芳, 陸宏芳, 劉楠, 林永標(biāo), 楊龍, 王俊*
混交比例對(duì)桉樹-鄉(xiāng)土樹種混交林優(yōu)勢(shì)樹種葉片資源獲取性狀的影響
龍靖1,2,3, 何小芳1,2,3, 陸宏芳1,2, 劉楠1,2, 林永標(biāo)1,2, 楊龍4, 王俊1,2*
(1. 中國(guó)科學(xué)院華南植物園,中國(guó)科學(xué)院海島與海岸帶生態(tài)恢復(fù)重點(diǎn)實(shí)驗(yàn)室,廣州 510650;2. 華南國(guó)家植物園,廣州 510650;3. 中國(guó)科學(xué)院大學(xué),北京 100049;4. 廣東省科學(xué)院廣州地理研究所,廣州 510070)
桉樹-鄉(xiāng)土樹種混交林在提高林分生產(chǎn)力和生態(tài)系統(tǒng)功能等方面具有較大潛力。該研究以南亞熱帶4種桉樹-鄉(xiāng)土樹種混交林(桉樹與鄉(xiāng)土樹種混交比例分別為5?5、6?4、7?3、8?2)和桉樹純林為研究對(duì)象,研究了3種優(yōu)勢(shì)鄉(xiāng)土樹種華潤(rùn)楠()、陰香()、灰木蓮()和速生樹種尾葉桉()的葉片生理、結(jié)構(gòu)和化學(xué)性狀在不同比例混交林中的差異。結(jié)果表明, 4優(yōu)勢(shì)造林樹種的葉片性狀存在明顯的種間差異,其中灰木蓮的比葉面積(SLA)、光合磷利用效率(PPUE)、單位質(zhì)量葉片最大光合速率(Amass)和蒸騰速率(Tmass)以及葉片養(yǎng)分含量最高,說明灰木蓮采取資源獲取型的生態(tài)策略;尾葉桉的SLA、Amass、Tmass及葉片養(yǎng)分含量最低,但具有最高的PPUE,說明尾葉桉兼顧了資源獲取型和保守型的物種特征?;夷旧徟c尾葉桉在SLA、Amass、Tmass、PPUE、葉片氮含量和氮磷比等葉片性狀上幾乎沒有任何重疊,說明灰木蓮與尾葉桉之間的葉片資源利用高度互補(bǔ),可能是與尾葉桉混交的理想樹種。物種水平上,灰木蓮葉片氮含量、華潤(rùn)楠葉片磷含量以及干季時(shí)陰香葉片Amass和PPUE隨鄉(xiāng)土樹種混交比例增加有增加的趨勢(shì),但總體上樹種混交比例對(duì)于4造林樹種的葉片結(jié)構(gòu)、化學(xué)和生理性狀的影響不大;林分水平上,桉樹-鄉(xiāng)土樹種混交林的比葉面積、光合能力以及葉片氮磷比顯著高于尾葉桉純林,說明桉樹與鄉(xiāng)土樹種混交能夠提高林分整體的光捕獲和光合能力,但同時(shí)也加劇了植物生長(zhǎng)的磷限制。因此,建議在未來南亞熱帶桉樹人工林的構(gòu)建與改造中,應(yīng)優(yōu)先挑選與桉樹資源利用互補(bǔ)并能夠優(yōu)化混交林磷素循環(huán)利用的鄉(xiāng)土樹種。
桉樹;鄉(xiāng)土樹種;混交林;混交比例;葉片性狀
隨著我國(guó)社會(huì)和經(jīng)濟(jì)的快速發(fā)展,社會(huì)對(duì)于紙漿、木材等林木產(chǎn)品的需求日益增加。桉樹()因其生長(zhǎng)迅速、輪伐期短、環(huán)境適應(yīng)性強(qiáng)以及當(dāng)年?duì)I造即可當(dāng)年成林等特點(diǎn)[1–2],得以在我國(guó)南方地區(qū)大面積種植[3]。然而當(dāng)前社會(huì)在桉樹人工林的經(jīng)營(yíng)過程中,往往只注重桉樹經(jīng)濟(jì)上的效益,忽略了其生態(tài)效益[4],集約化桉樹純林大規(guī)模的構(gòu)建引發(fā)了林下物種多樣性減少、土壤質(zhì)量嚴(yán)重退化、外來物種入侵加劇等一系列生態(tài)問題[3,5]。為了緩解上述問題,提高桉樹人工林質(zhì)量及其生態(tài)系統(tǒng)服務(wù)功能,有關(guān)桉樹純林向近自然人工林改造以及桉樹混交林構(gòu)建的研究近年來逐漸受到關(guān)注。
研究表明,混交林在維持生物多樣性和生態(tài)系統(tǒng)功能等方面發(fā)揮重要作用,例如增加生物量、提高生產(chǎn)力和碳封存[6–7],提高土壤肥力和促進(jìn)養(yǎng)分循環(huán)[8–9],改善風(fēng)險(xiǎn)管理以防范病蟲害[10–12],以及提升應(yīng)對(duì)未來氣候變化的能力[13–14]等。隨著“close- to-nature forests”這一概念的提出,結(jié)合桉樹早期的速生特性和鄉(xiāng)土樹種在維持生態(tài)系統(tǒng)穩(wěn)定性方面的突出作用,通過營(yíng)造桉樹與鄉(xiāng)土樹種混交林對(duì)于提高林地生態(tài)服務(wù)功能、增強(qiáng)林地恢復(fù)力具有重要意義[4,15–16]。因此,將桉樹單一純林改造成與鄉(xiāng)土樹種混交林是未來人工林發(fā)展的一個(gè)關(guān)鍵目標(biāo)。
葉片性狀是表征植物功能性狀中重要的定量指標(biāo),與植物的資源(光照、養(yǎng)分和水)獲取能力密切相關(guān)。隨著資源有效性的變化,植物會(huì)在各葉片性狀之間進(jìn)行資源上的權(quán)衡以使其資源利用最大化,這就形成了植物在當(dāng)前環(huán)境下的生態(tài)策略[17–18]。葉片性狀之間的這種權(quán)衡關(guān)系決定了植物的行為和生產(chǎn),因此被認(rèn)為是樹木生長(zhǎng)的預(yù)測(cè)因子,其對(duì)環(huán)境變化的響應(yīng)對(duì)于樹木的生存和競(jìng)爭(zhēng)至關(guān)重要[19–20]。在人工林的營(yíng)造過程中,不同的混交樹種和不同的混交模式均會(huì)影響物種間的相互作用和人工林的林分環(huán)境,進(jìn)而影響資源有效性、土壤理化性質(zhì)和微環(huán)境等[21–23]。因此,可以利用植物的葉片性狀來預(yù)測(cè)不同樹種混交和不同混交模式人工林的生產(chǎn)力和生態(tài)系統(tǒng)功能,這對(duì)于未來南亞熱帶多用途混交林的設(shè)計(jì)和物種選擇具有重要的借鑒作用。
造林樹種在混交林中的占比對(duì)于林分的生長(zhǎng)和發(fā)育也有重要影響。當(dāng)上層樹種的比例過高時(shí)可能會(huì)抑制下層樹種的生長(zhǎng)發(fā)育,從而導(dǎo)致混交效果不佳[12]。汪清等[24]報(bào)道增加馬尾松()- 木荷()混交林中馬尾松的混交比例會(huì)導(dǎo)致林內(nèi)的種內(nèi)競(jìng)爭(zhēng)強(qiáng)度增大。Santos等[9,25]報(bào)道,相比于巨尾桉()純林,巨尾桉在其與馬占相思()各占50%的混交林中具有更高的胸徑和樹高,并且在林分水平上具有更快的養(yǎng)分循環(huán)速率和更高的養(yǎng)分利用效率。這都表明合適的樹種混交比例對(duì)于人工林的結(jié)構(gòu)、動(dòng)態(tài)和生產(chǎn)力至關(guān)重要[26]。目前有關(guān)各造林樹種的資源利用效率(光、水和養(yǎng)分)如何響應(yīng)混交比例的研究已有報(bào)道,但大多只是基于2樹種的混交試驗(yàn), 混交比例在多樣性較高的混交林中的影響還鮮有報(bào)道。另一方面,有關(guān)混交比例影響樹種葉片性狀的研究也比較匱乏[27]。因此,本研究以南亞熱帶4種混交比例的桉樹混交林和桉樹純林為對(duì)象,研究尾葉桉()和3種優(yōu)勢(shì)鄉(xiāng)土樹種華潤(rùn)楠()、陰香()、灰木蓮()的葉片生理性狀、結(jié)構(gòu)性狀和化學(xué)性狀在不同混交比例的桉樹-鄉(xiāng)土樹種混交林中的差異,探討混交鄉(xiāng)土樹種及增加鄉(xiāng)土樹種占比對(duì)4樹種資源利用策略的影響,為我國(guó)南亞熱帶生態(tài)恢復(fù)用途桉樹混交林的鄉(xiāng)土樹種選擇選種與設(shè)計(jì)提供科學(xué)依據(jù)與參考。
研究區(qū)位于廣東省鶴山市中國(guó)科學(xué)院鶴山丘陵綜合開放試驗(yàn)站共和樣地(112°54′ E,22°41′ N),該試驗(yàn)站是中國(guó)生態(tài)系統(tǒng)研究網(wǎng)絡(luò)(Chinese Ecosystem Research Network,CERN)的核心臺(tái)站之一。該地區(qū)為典型的南亞熱帶季風(fēng)氣候,干濕季分明,4月—9月為濕季,10月—次年3月為干季,年均溫為21.7℃,最冷月平均溫度為12.6 ℃,最熱月平均溫度為29.2 ℃。年均降水量約1 700 mm,多集中于雨季[28]。土壤為磚紅壤。
本研究選取桉樹純林(monoculture,EM)和4種混交比例的桉樹-鄉(xiāng)土樹種人工林,混交林包括50%尾葉桉(, EU)+50%鄉(xiāng)土樹種(50%NS)、60%EU+40%NS、70%EU+30%NS和80% EU+20%NS?;旖涣种械钠鹗监l(xiāng)土樹種均為華潤(rùn)楠、陰香、灰木蓮、秋楓()、楓香()、觀光木()、五椏果()和藍(lán)花楹()。林下植被均以芒萁()和烏毛蕨()為主。
人工林均于2005年5月在退化的丘陵荒坡上建立,植株間距為3 m×2 m,混交林的混交方式為帶狀混交,采用完全隨機(jī)設(shè)計(jì)進(jìn)行人工林配置。每種人工林均設(shè)有3個(gè)重復(fù)樣地,每個(gè)樣地面積約1 hm2。此外,經(jīng)過15 a的自然演替,不同混交比例人工林內(nèi)鄉(xiāng)土物種的生存狀況存在較大差異,故本研究只選取了3種共有優(yōu)勢(shì)鄉(xiāng)土樹種作為研究對(duì)象:華潤(rùn)楠(MC)、陰香(CB)和灰木蓮(MG)。華潤(rùn)楠、陰香、灰木蓮和尾葉桉的平均樹高分別為8.4、7.8、10.9和14.9 m,平均胸徑分別為13.29、10.65、12.53和17.30 cm (表1)。
在每個(gè)人工林樣地中,每種目標(biāo)樹種選取4~5株大小、長(zhǎng)勢(shì)接近且生長(zhǎng)良好的植株進(jìn)行取樣并標(biāo)記。于2020年11月(干季)和2021年7月分別從樣株樹冠中上部采集成熟葉片,放入聚乙烯袋中密封以保持水分,在實(shí)驗(yàn)室中進(jìn)行相關(guān)指標(biāo)的測(cè)定。采用LI-3000C葉面積儀(LI-COR, USA)測(cè)定成熟葉片面積(leaf area, LA),記錄除去葉柄后的葉片鮮重(leaf fresh weight, LFW)。然后,將葉片置于65 ℃下烘72 h, 測(cè)定葉片干重(leaf dry weight, LDW),并計(jì)算比葉面積(specific leaf area, SLA)、比葉質(zhì)量(leaf mass per area, LMA)和葉干物質(zhì)含量(leaf dry matter content, LDMC)。SLA=LA/LDW; LMA=LDW/ LA; LDMC=LDW/LFW。將烘干的葉片粉碎并過60目篩,分別采用半微量凱氏定氮法和鉬銻抗比色法測(cè)定成熟葉片的氮(N)和磷(P)濃度[29]。
表1 桉樹-鄉(xiāng)土樹種混交林樣地概況
MF: 混交林; EM: 純林; NS: 鄉(xiāng)土樹種; MC: 華潤(rùn)楠; CB: 陰香; MG: 灰木蓮; EU: 尾葉桉。下同
MF: Mixed forest; EM:monoculture; NS: Native species; MC:; CB:; MG:; EU:. The same below
利用LI-6800光合系統(tǒng)(LI-COR, USA)測(cè)定成熟葉片的生理性狀。分別于2021年8月(濕季)和2022年1月(干季)上午的8:00–12:00對(duì)每株樣株至少6片陽生葉進(jìn)行單位面積最大光合速率(maximum photo- synthetic rate per unit of leaf area, Aarea)、蒸騰速率(transpiration rate per unit of leaf area, Tarea)和水分利用效率(water use efficiency, WUE)的測(cè)定。測(cè)定時(shí)光合有效輻射為1 500mol/(m2·s),葉室溫度設(shè)定為25 ℃,利用CO2鋼瓶設(shè)定參比室CO2通量為400mol/mol。WUE=Aarea/Tarea,單位葉片質(zhì)量的最大光合速率(Amass)=Aarea/LMA, 單位葉片質(zhì)量的蒸騰速率(Tmass)=Tarea/LMA[30]。此外,葉片的光合氮利用效率(photosynthetic nitrogen use efficiency, PNUE)=Amass/Nmass, 光合磷利用效率(photosynthetic phospho- rus use efficiency, PPUE)=Tmass/Pmass[31]。
統(tǒng)計(jì)分析前,對(duì)所有數(shù)據(jù)進(jìn)行了正態(tài)檢驗(yàn)和方差同質(zhì)性檢驗(yàn),并在分析前對(duì)不符合條件的數(shù)據(jù)進(jìn)行了log10轉(zhuǎn)換。利用三因素方差分析方法(ANOVA)分析季節(jié)、物種和混交比例及其交互作用對(duì)各葉片性狀的影響,并用最小差異顯著法(LSD)進(jìn)行事后多重比較(顯著水平設(shè)置為<0.05)。主成分分析(PCA)用于分析各葉片性狀在不同比例桉樹混交林和不同造林樹種中的總體差異。所有的數(shù)據(jù)分析與作圖均使用R統(tǒng)計(jì)軟件(V 4.0.3)完成。
結(jié)果表明,不同混交比例下4種優(yōu)勢(shì)樹種的葉片結(jié)構(gòu)和化學(xué)性狀存在顯著的種間差異(表2)?;夷旧彽钠骄鵖LA、Nmass、Pmass最高,陰香的N?P最高,尾葉桉的LDMC最高(圖1)。SLA、Nmass和Pmass在干濕季均存在較大差異,其中SLA在濕季較高,Nmass在干季較高,Pmass和N:P受干濕季的影響因物種而異。整體上,SLA和Nmass受混交比例主效應(yīng)的影響顯著,LDMC和Pmass隨桉樹混交比例的變化因物種而異,混交比例對(duì)N:P沒有顯著影響。但在物種層面上,除灰木蓮的Nmass和華潤(rùn)楠在干季的Pmass隨桉樹混交比例的增加而降低外,其余樹種的SLA、LDMC、Nmass和Pmass隨桉樹混交比例的增加無顯著變化。
表2 季節(jié)、物種、混交比例及其交互作用對(duì)葉片性狀的影響
*:<0.05; SE: 季節(jié); MP: 混交比例; SP: 物種; SLA: 比葉面積; LDMC: 葉干物質(zhì)含量; WUE: 水分利用效率; PNUE: 光合氮利用效率; PPUE: 光合磷利用效率; Nmass: 基于單位質(zhì)量的葉片氮含量; Pmass: 基于單位質(zhì)量的葉片磷含量; Amass: 基于單位質(zhì)量的最大光合速率; Tmass: 基于單位質(zhì)量的蒸騰速率; Narea: 基于單位面積的葉片氮含量; Parea: 基于單位面積的葉片磷含量。下同
*:<0.05; SE: Season; MP: Mixed proportion; SP: Species; SLA: Specific leaf area; LDMC: Leaf dry matter content; WUE: Water use efficiency; PNUE: Photosynthetic nitrogen use efficiency; PPUE: Photosynthetic phosphorus use efficiency; Nmass: Mass-based leaf nitrogen content; Pmass: Mass-based leaf phosphorus content; Amass: Mass-based leaf maximum photosynthetic rate; Tmass: Mass-based leaf transpiration rate; Aarea: Area-based leaf maximum photosynthetic rate; Tarea: Area-based leaf transpiration rate. The same below
圖1 不同混交比例下4樹種在干季和濕季的葉片性狀比較。柱上不同字母表示差異顯著(P<0.05)。
4優(yōu)勢(shì)樹種的葉片生理性狀存在顯著的種間差異(表2)?;夷旧彽腡mass和PPUE最高,陰香的Amass最高、PNUE和Tarea最低,尾葉桉的Aarea最高(圖2)。4樹種的WUE沒有顯著的種間差異。葉片生理性狀受干濕季的影響較大,其中Tarea、Tmass和PPUE表現(xiàn)為濕季高于干季,WUE表現(xiàn)為干季高于濕季, Aarea、Amass和PNUE受干濕季的影響因物種而異?;旖槐壤w上對(duì)Aarea、Amass、Tmass和PNUE存在顯著影響,對(duì)Tarea的影響因物種而異。但是在物種層面上,只有陰香的Aarea、Amass、PNUE和PPUE在干季隨著桉樹混交比例的增加呈降低的趨勢(shì),其余物種的葉片生理性狀大多隨桉樹混交比例的增加變化不明顯。
主成分分析結(jié)果表明(圖3),第一主軸和第二主軸對(duì)總方差的解釋度分別為38.09%和26.06%。與尾葉桉純林相比,4種混交林均表現(xiàn)出了更高的SLA、N?P、Amass、Tmass、PPUE和Nmass(圖3: A),其中70%EU具有最高的SLA、PPUE、Tmass和Amass。當(dāng)以4樹種作為分組時(shí),與尾葉桉相比,鄉(xiāng)土樹種則具有更高的SLA、N?P、Amass、Tmass、PPUE和Nmass(圖3: B)。此外,除華潤(rùn)楠和陰香的WUE和LDMC等葉片性狀與尾葉桉存在部分重合之外,4樹種的其他葉片物理、化學(xué)和生理性狀出現(xiàn)了明顯的分化與互補(bǔ)(圖3: B)。
圖2 不同混交比例下4樹種在干季和濕季的葉片生理性狀比較
圖3 不同混交比例優(yōu)勢(shì)樹種葉片性狀的主成分分析。A: 混交比例; B: 樹種。
本研究結(jié)果表明,4造林樹種中,以灰木蓮的SLA、PPUE、Amass、Tmass和葉片養(yǎng)分含量最高。根據(jù)經(jīng)典的“葉經(jīng)濟(jì)譜”理論[32],灰木蓮傾向于采取資源獲取型的生態(tài)策略。尾葉桉的SLA、Amass、Tmass、葉片養(yǎng)分含量最低,說明尾葉桉傾向于采取保守型的生態(tài)策略。然而,低SLA通常對(duì)應(yīng)較低的相對(duì)生長(zhǎng)速率[33–34],本研究中相同樹齡的尾葉桉植株平均大小(高度和胸徑分別為14.9 m和17.3 cm)明顯高于鄉(xiāng)土樹種,說明尾葉桉的相對(duì)生長(zhǎng)速率和生物量更高,這與其較低的SLA相矛盾。有研究表明,SLA與相對(duì)生長(zhǎng)速率之間的關(guān)系會(huì)受植株大小的影響[35]。隨著植物大小的增加,出于對(duì)機(jī)械和液壓的支撐,通常會(huì)導(dǎo)致植物的葉片生物量在總生物量中所占比重大幅減少,進(jìn)而越來越多的總生物量會(huì)被用于構(gòu)建和維護(hù)支撐組織[36–37]。換言之,尾葉桉較高的相對(duì)生長(zhǎng)率主要體現(xiàn)在對(duì)樹干部分生物量的投資,其對(duì)于葉片生物量的投資較少。因此,本研究結(jié)果支持了Giber等[35]的觀點(diǎn),即SLA這一指標(biāo)對(duì)相對(duì)生長(zhǎng)速率的預(yù)測(cè)效果可能受植物個(gè)體發(fā)育的顯著影響。另一方面,尾葉桉具有較高的PNUE,這與尾葉桉較高的相對(duì)生長(zhǎng)速率相對(duì)應(yīng)。因此我們認(rèn)為,尾葉桉結(jié)合了采取資源獲取型策略的快速生長(zhǎng)型物種和適應(yīng)養(yǎng)分貧乏環(huán)境的保守型物種的典型特征。Richards等[38]對(duì)澳大利亞山銀樺()人工林的研究中也觀察到了類似現(xiàn)象。此外,高LDMC的葉片往往更加堅(jiān)韌[39], 較高的LDMC可能有助于尾葉桉頂端的葉片抵御外界的物理災(zāi)害(研究區(qū)域主要為臺(tái)風(fēng))。
桉樹是人工林資源強(qiáng)有力的競(jìng)爭(zhēng)者,通常受益于混交林中樹種的混合效應(yīng)并抑制混交林中其他樹木的生長(zhǎng)[40–41]。然而在本研究中,4造林樹種的葉片結(jié)構(gòu)、化學(xué)和生理性狀受樹種混交比例的影響較小,除灰木蓮的Nmass、華潤(rùn)楠的Pmass以及陰香在干季的Amass和PNUE隨尾葉桉混交比例增加有降低的趨勢(shì)以外,4樹種的葉片性狀隨鄉(xiāng)土樹種混交比例增加的變化并不具有統(tǒng)計(jì)學(xué)意義上的差異, Amazonas等[42]在巴西的桉樹與鄉(xiāng)土樹種的混交試驗(yàn)中也發(fā)現(xiàn)了類似的現(xiàn)象。這一方面可能是因?yàn)槲踩~桉與鄉(xiāng)土樹種之間已經(jīng)出現(xiàn)了樹冠分層,上層樹冠中尾葉桉的快速生長(zhǎng)導(dǎo)致不同混交比例的鄉(xiāng)土樹種冠層的光環(huán)境比較接近,所以目標(biāo)樹種對(duì)光資源的獲取能力受混交比例的影響不大[12]。另一方面,這可能與當(dāng)?shù)貜?qiáng)烈的磷限制有關(guān)。本研究中的試驗(yàn)樣地土壤有效磷含量極低(平均小于0.5 mg/kg[43], 并且4個(gè)造林樹種的葉片N?P均明顯高于目前普遍認(rèn)為的磷限制閾值(N?P>16[44]),強(qiáng)烈的磷限制會(huì)導(dǎo)致植物-土壤系統(tǒng)元素化學(xué)計(jì)量的失衡,從而導(dǎo)致植物的功能和生長(zhǎng)受到很大的限制[45–46],可能掩蓋了樹種混交效應(yīng)對(duì)植物葉片性狀的影響[47]。此外,本研究中的混交林鄉(xiāng)土樹種種植條帶具有較高的多樣性(6~8種鄉(xiāng)土種),由于鄉(xiāng)土樹種之間并沒有出現(xiàn)明顯的樹冠分層,他們對(duì)于光照的強(qiáng)烈競(jìng)爭(zhēng)可能會(huì)導(dǎo)致目標(biāo)樹種受到多樣化的鄰體影響[41],這可能解釋了3種鄉(xiāng)土樹種部分葉片性狀隨尾葉桉混交比例增加的復(fù)雜變化(增加或不規(guī)律)。
本研究中,除了WUE和LDMC,4優(yōu)勢(shì)樹種的其他葉片性狀均出現(xiàn)了明顯的分化與互補(bǔ),尤其是鄉(xiāng)土樹種灰木蓮與尾葉桉在SLA、N?P、Amass、Tmass、PPUE和Nmass等性狀上幾乎沒有任何的重疊。與人工純林相比,組成物種的營(yíng)養(yǎng)特征和資源利用的互補(bǔ)性是混交林穩(wěn)定性和生產(chǎn)力更高的主要原因之一[48–49]。本研究中灰木蓮和尾葉桉之間的葉片資源利用高度互補(bǔ),兩者之間對(duì)于資源的競(jìng)爭(zhēng)減弱,因此我們認(rèn)為灰木蓮可能是與尾葉桉混交的理想樹種。從林分尺度上看,我們發(fā)現(xiàn)桉樹-鄉(xiāng)土樹種混交林的SLA和光合能力在林分水平上顯著高于尾葉桉純林,這種提升的幅度以70%EU最高。這說明混交鄉(xiāng)土樹種可以提高林分整體的光捕獲能力,對(duì)于提高林分生產(chǎn)力可能有積極的影響。然而,混交林在林分水平的葉片N:P也顯著高于尾葉桉純林,這說明混交林雖然成功地促進(jìn)了樹木生長(zhǎng)和林分生產(chǎn)力,但這可能也意味著磷限制的加劇。換言之,強(qiáng)烈的磷限制可能會(huì)抑制混交林中正向的混交效應(yīng),從而導(dǎo)致混交林的造林效果不佳。因此我們建議,在未來南亞熱帶桉樹人工林的構(gòu)建與改造中,一方面應(yīng)著重挑選與桉樹資源利用互補(bǔ)的鄉(xiāng)土樹種,另一方面應(yīng)挑選一些能夠優(yōu)化混交林磷素循環(huán)利用的樹種,如能夠有效的從土壤惰性磷庫中獲取磷的樹種[50]。
綜上,桉樹-鄉(xiāng)土樹種混交林中4優(yōu)勢(shì)造林樹種的葉片性狀存在明顯的種間差異,其中灰木蓮傾向于采取資源獲取型的生態(tài)策略,尾葉桉則是兼顧了資源獲取型和保守型的物種特征。物種水平上,灰木蓮與尾葉桉之間的葉片資源利用高度互補(bǔ),可能是與尾葉桉混交的理想樹種,但是樹種混交比例對(duì)于4造林樹種的葉片結(jié)構(gòu)、化學(xué)和生理性狀影響不大。林分水平上,桉樹與鄉(xiāng)土樹種混交能夠提高林分的光捕獲和光合能力,但也加劇了植物生長(zhǎng)的磷限制。在未來南亞熱帶桉樹人工林的構(gòu)建與改造中,應(yīng)優(yōu)先挑選與桉樹資源利用互補(bǔ)并優(yōu)化混交林磷素循環(huán)利用的鄉(xiāng)土樹種。
[1] PBOYLE J R, WINJUM J K, KAVANAGH K, et al. Planted Forests: Contributions to the Quest for Sustainable Societies [M]. Dordrecht: Kluwer Academic Publishers, 1999.
[2] LUO S M, HE D J, XIE Y L, et al. Effect of stand density on commu- nity structure and ecological effect of×plantation [J]. J Trop Subtrop Bot, 2010, 18(4): 357– 363. [羅素梅, 何東進(jìn), 謝益林, 等. 林分密度對(duì)尾赤桉人工林群落結(jié)構(gòu)與生態(tài)效應(yīng)的影響研究 [J]. 熱帶亞熱帶植物學(xué)報(bào), 2010, 18(4): 357– 363. doi: 10.3969/j.issn.1005-3395.2010.04.003.]
[3] WILLIAMS R A. Mitigating biodiversity concerns inplantations located in south China [J]. J Biosci Med, 2015, 3(6): 1–8. doi: 10.4236/jbm.2015.36001.
[4] BRANCALION P H S, AMAZONAS N T, CHAZDON R L, et al. Exotic eucalypts: From demonized trees to allies of tropical forest restoration? [J]. J Appl Ecol, 2020, 57(1): 55–66. doi: 10.1111/1365- 2664.13513.
[5] ZHOU X G, ZHU H G, WEN Y G, et al. Intensive management and declines in soil nutrients lead to serious exotic plant invasion inplantations under successive short-rotation regimes [J]. Land Degrad Dev, 2020, 31(3): 297–310. doi: 10.1002/ldr.3449.
[6] BAUHUS J, VAN WINDEN A P, NICOTRA A B. Aboveground interactions and productivity in mixed-species plantations ofand[J]. Can J For Res, 2004, 34(3): 686–694. doi: 10.1139/X03-243.
[7] ZHANG H, GUAN D S, SONG M W. Biomass and carbon storage ofandplantations in the Pearl River Delta, south China [J]. For Ecol Manage, 2012, 277: 90–97. doi: 10.1016/j.foreco. 2012.04.016.
[8] FORRESTER D I, BAUHUS J, COWIE A L. Nutrient cycling in a mixed-species plantation ofand[J]. Can J For Res, 2005, 35(12): 2942–2950. doi: 10.1139/X05-214.
[9] SANTOS F M, CHAER G M, DINIZ A R, et al. Nutrient cycling over five years of mixed-species plantations ofandon a sandy tropical soil [J]. For Ecol Manage, 2017, 384: 110–121. doi: 10. 1016/j.foreco.2016.10.041.
[10] MONTAGNINI F. Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical lowland [J]. For Ecol Manage, 2000, 134(1–3): 257–270. doi: 10.1016/S0378-1127(99)00262-5.
[11] SCHERER-LORENZEN M, K?RNER C, SCHULZE E D. Forest Diversity and Function: Temperate and Boreal Systems [M]. Berlin: Springer-Verlag, 2005.
[12] KELTY M J. The role of species mixtures in plantation forestry [J]. For Ecol Manage, 2006, 233(2/3): 195–204. doi: 10.1016/j.foreco.2006.05. 011.
[13] MILLAR C I, STEPHENSON N L, STEPHENS S L, et al. Climate change and forests of the future: Managing in the face of uncertainty [J]. Ecol Appl, 2007, 17(8): 2145–2151. doi: 10.1890/06-1715.1.
[14] FELTON A, NILSSON U, SONESSON J, et al. Replacing mono- cultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden [J]. Ambio, 2016, 45(2): 124–139. doi: 10.1007/s13280-015-0749-2.
[15] LARSEN J B, NIELSEN A B. Nature-based forest management: Where are we going? Elaborating forest development types in and with practice [J]. For Ecol Manage, 2007, 238(1/2/3): 107–117. doi: 10. 1016/j.foreco.2006.09.087.
[16] AMAZONAS N T, FORRESTER D I, OLIVEIRA R S, et al. Com- biningwood production with the recovery of native tree diversity in mixed plantings: Implications for water use and availability [J]. For Ecol Manage, 2018, 418: 34–40. doi: 10.1016/j.foreco.2017. 12.006.
[17] REICH P B. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto [J]. J Ecol, 2014, 102(2): 275–301. doi: 10.1111/1365- 2745.12211.
[18] LIU X J, MA K P. Plant functional traits-concepts, applications and future directions [J]. Sci Sin Vitae, 2015, 45(4): 325–339. [劉曉娟, 馬克平. 植物功能性狀研究進(jìn)展 [J]. 中國(guó)科學(xué): 生命科學(xué), 2015, 45(4): 325–339. doi: 10.1360/N052014-00244.]
[19] MCDOWELL N, ALLEN C D, ANDERSON-TEIXEIRA K, et al. Drivers and mechanisms of tree mortality in moist tropical forests [J]. New Phytol, 2018, 219(3): 851–869. doi: 10.1111/nph.15027.
[20] KUNSTLER G, FALSTER D, COOMES D A, et al. Plant functional traits have globally consistent effects on competition [J]. Nature, 2016, 529(7585): 204–207. doi: 10.1038/nature16476.
[21] ROA-FUENTES L L, TEMPLER P H, CAMPO J. Effects of preci- pitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico [J]. Oecologia, 2015, 179(2): 585–597. doi: 10.1007/s00442-015-3354-y.
[22] CHEN C, CHEN H Y H, CHEN X L. Functional diversity enhances, but exploitative traits reduce tree mixture effects on microbial biomass [J]. Funct Ecol, 2020, 34(1): 276–286. doi: 10.1111/1365-2435.13459.
[23] ROSENFIELD M V, KELLER J K, CLAUSEN C, et al. Leaf traits can be used to predict rates of litter decomposition [J]. Oikos, 2020, 129 (10): 1589–1596. doi: 10.1111/oik.06470.
[24] WANG Q, PAN P, OUYANG X Z, et al. Intraspecific and interspecific competition intensity in mixed plantation with different proportion ofand[J]. Chin J Ecol, 2021, 40(1): 49–57. [汪清, 潘萍, 歐陽勛志, 等. 馬尾松-木荷不同比例混交林種內(nèi)和種間競(jìng)爭(zhēng)強(qiáng)度 [J]. 生態(tài)學(xué)雜志, 2021, 40(1): 49–57. doi: 10. 13292/j.1000-4890.202101.016.]
[25] SANTOS, MARTINI F, BALIEIRO, et al. Dynamics of aboveground biomass accumulation in monospecific and mixed-species plantations ofandon a Brazilian sandy soil [J]. For Ecol Manage, 2016, 363: 86– 97. doi: 10.1016/j.foreco.2015.12.028.
[26] DEL RíO, PRETZSCH M, ALBERDI H, et al. Characterization of the structure, dynamics, and productivity of mixed-species stands: Review and perspectives [J]. Eur J For Res, 2016, 135(1): 23–49. doi: 10.1007/ s10342-015-0927-6.
[27] ZHA M Q, CHENG X R, YU M K, et al. Effects of mixing proportion on functional traits ofandseedling [J]. Acta Ecol Sin, 2021, 41(21): 8556–8567. [查美琴,成向榮, 虞木奎, 等. 不同混交比例對(duì)杉木和大葉櫸幼苗功能性狀的影響 [J]. 生態(tài)學(xué)報(bào), 2021, 41(21): 8556–8567. doi: 10.5846/stxb 202007311999.]
[28] WANG J, REN H, YANG L, et al. Establishment and early growth of introduced indigenous tree species in typical plantations and shrubland in south China [J]. For Ecol Manage, 2009, 258(7): 1293–1300. doi: 10. 1016/j.foreco.2009.06.022.
[29] DONG M. Survey, Observation and Analysis of Terrestrial Biocom- munities [M]. Beijing: Standards Press of China, 1997. [董鳴. 陸地生物群落調(diào)查觀測(cè)與分析 [M]. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 1997.]
[30] HAN T T, REN H, WANG J, et al. Variations of leaf eco-physiological traits in relation to environmental factors during forest succession [J]. Ecol Indic, 2020, 117: 106511. doi: 10.1016/j.ecolind.2020.106511.
[31] WRIGHT I J, REICH P B, CORNELISSEN J H C, et al. Assessing the generality of global leaf trait relationships [J]. New Phytol, 2005, 166 (2): 485–496. doi: 10.1111/j.1469-8137.2005.01349.x.
[32] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821–827. doi: 10. 1038/nature02403.
[33] POORTER L, WRIGHT S J, PAZ H, et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests [J]. Ecology, 2008, 89(7): 1908–1920. doi: 10.1890/07-0207.1.
[34] PAINE C E T, AMISSAH L, AUGE H, et al. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why [J]. J Ecol, 2015, 103(4): 978–989. doi: 10.1111/1365-2745.12401.
[35] GIBERT A, GRAY E F, WESTOBY M, et al. On the link between functional traits and growth rate: Meta-analysis shows effects change with plant size, as predicted [J]. J Ecol, 2016, 104(5): 1488–1503. doi: 10.1111/1365-2745.12594.
[36] GIVNISH T J. Plant stems: Biomechanical adaptation for energy capture and influence on speciesdistributions [M]// GARTNER B L. Plant Stems Physiology and Functional Morphology. San Diego:Academic Press, 1995.
[37] KING D A. Size-related changes in tree proportions and their potential influence on the course of height growth [M]// MEINZER F C, LACHENBRUCH B, DAWSON T E. Size- and Age-Related Changes in Tree Structure and Function. Dordrecht: Springer, 2011.
[38] RICHARDS A E, FORRESTER D I, BAUHUS J, et al. The influence of mixed tree plantations on the nutrition of individual species: A review [J]. Tree Physiol, 2010, 30(9): 1192–1208. doi: 10.1093/tree phys/tpq035.
[39] PéREZ-HARGUINDEGUY N, DíAZ S, GARNIER E, et al. New handbook for standardised measurement of plant functional traits worldwide [J]. Aust J Bot, 2013, 61(3): 167–234. doi: 10.1071/BT12225.
[40] FORRESTER D I, BAUHUS J, COWIE A L, et al. Mixed-species plantations ofwith nitrogen-fixing trees: A review [J]. For Ecol Manage, 2006, 233(2/3): 211–230. doi: 10.1016/j.foreco.2006. 05.012.
[41] AMAZONAS N T, FORRESTER D I, SILVA C C, et al. High diver- sity mixed plantations ofand native trees: An interface between production and restoration for the tropics [J]. For Ecol Manage, 2018, 417: 247–256. doi: 10.1016/j.foreco.2018.03.015.
[42] AMAZONAS N T, FORRESTER D I, SILVA C C, et al. Light- and nutrient-related relationships in mixed plantations ofand a high diversity of native tree species [J]. New For, 2021, 52(5): 807– 828. doi: 10.1007/s11056-020-09826-x.
[43] LONG J. Evaluation of leaf nutrient resorption efficiency under mixedand native trees plantations with different established proportions [D]. Beijing: University of Chinese Academy of Sciences, 2022. [龍靖. 不同比例桉樹-鄉(xiāng)土樹種混交林葉片養(yǎng)分再吸收效率評(píng)價(jià) [D]. 北京: 中國(guó)科學(xué)院大學(xué), 2022.]
[44] KOERSELMAN W, MEULEMAN A F M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation [J]. J Appl Ecol, 1996, 33(6): 1441–1450. doi: 10.2307/2404783.
[45] CAMPO J, GALLARDO J F, HERNáNDEZ G. Leaf and litter nitrogen and phosphorus in three forests with low P supply [J]. Eur J For Res, 2014, 133(1): 121–129. doi: 10.1007/s10342-013-0748-4.
[46] YAN K, DUAN C Q, FU D G, et al. Leaf nitrogen and phosphorus stoichiometry of plant communities in geochemically phosphorus- enriched soils in a subtropical mountainous region, SW China [J]. Environ Earth Sci, 2015, 74(5): 3867–3876. doi: 10.1007/s12665-015- 4519-z.
[47] LI M, HUANG C H, YANG T X, et al. Role of plant species and soil phosphorus concentrations in determining phosphorus: Nutrient stoi- chiometry in leaves and fine roots [J]. Plant Soil, 2019, 445(1/2): 231– 242. doi: 10.1007/s11104-019-04288-3.
[48] HOOPER D U, CHAPIN F S, EWEL J J, et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge [J]. Ecol Monogr, 2005, 75(1): 3–35. doi: 10.1890/04-0922.
[49] FORRESTER D I, BAUHUS J. A review of processes behind diversity- productivity relationships in forests [J]. Curr For Rep, 2016, 2(1): 45– 61. doi: 10.1007/s40725-016-0031-2.
[50] SIDDIQUE I, ENGEL V L, PARROTTA J A, et al. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years [J]. Biogeochemistry, 2008, 88(1): 89–101. doi: 10.1007/s10533-008-9196-5.
Effect of Mixed Proportions on Leaf Resource Acquisition Capability in Mixed Plantations ofand Native Trees
LONG Jing1,2,3, HE Xiaofang1,2,3, LU Hongfang1,2, LIU Nan1,2, LIN Yongbiao1,2, YANG Long4, WANG Jun1,2*
(1. Key Laboratory of Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. South China National Botanical Garden, Guangzhou 510650, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China)
Mixed-species plantations composed ofand native tree species have great potential in improving stand productivity and ecosystem functions. In this study, we investigated leaf physiological, structural and chemical traits of three dominant native tree species (,and) andinmonocultures (EM) and four mixtures of(EU) and native trees species (NS) with different mixed proportions (EU:NS=5?5, 6?4, 7?3, 8?2, respectively) in south China. The results showed that there was substantial interspecific variation in leaf traits among four dominant tree species. On average,had the highest SLA, PPUE, Amass, Tmass, Nmassand Pmass, indicating thatadopts resource acquisition strategies.had the lowest SLA, PPUE, Amass, Tmass, Nmass, Pmassbut the highest PNUE, indicating thatoccupies characteristics typical of fast-growing and nutrient-conserving in order to adapt nutrient-poor environments. There was nearly no overlap betweenandin leaf traits, such as SLA, N?P, Amass, Tmass, PPUE and Nmass, indicating thatandwere highly complementary in the leaf resource use.may be an ideal candidate tree species for establishing mixed plantations ofand native tree species. At the species level, Nmassof, Pmassof, Amassand PPUE ofin dry season increased with the mixed proportion of native species, but leaf traits of four dominant tree species were generally not affected by the mixed proportion as a whole. At the stand level, SLA, PPUE, Amass, Tmassand N?P in mixtures ofand native species were significantly higher than those inmonocultures. Thus, plantations established withand high diversity native tree species can improve the light capture and photosynthetic capability from the stand level, but also aggravate the phosphorus limitation of plant growth. Overall, it was suggested that native species with complementary resource use toand capability of optimizing phosphorus biogeochemical cycle of mixed plantations should be prioritized in designing and improving theplantations in south China.
; Native species; Mixed forest; Mixed proportion; Leaf trait
10.11926/jtsb.4744
2022-11-02
2022-12-23
廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃項(xiàng)目(2020B1111530004);中國(guó)科學(xué)院青年創(chuàng)新促進(jìn)會(huì)會(huì)員項(xiàng)目(2019340);國(guó)家自然科學(xué)基金項(xiàng)目(31770473); 廣東省林業(yè)科技創(chuàng)新項(xiàng)目(2022KJCX003)資助
This work was supported by the Program for Key Research and Development in Guangdong (Grant No. 2020B1111530004), the Project of Youth Innovation Promotion Association, Chinese Academy of Science (Grant No. 2019340), the National Natural Science Foundation of China (Grant No. 31770473), and the Project for Forestry Science and Technology Innovation in Guangdong (Grant No. 2022KJCX003).
龍靖,男,碩士研究生,從事森林生態(tài)學(xué)研究。E-mail: glwyzlj11@126.com
* 通訊作者 Corresponding author. E-mail: wxj@scbg.ac.cn