摘"要:【目的】""探究其對(duì)受二甲戊樂靈脅迫下小麥生長(zhǎng)發(fā)育的影響。
【方法】""采用田間盆栽的方式,以蟲砂、生物炭以及粉煤灰作為吸附劑,復(fù)配微生物菌劑的方式,設(shè)計(jì)不同施用量的蟲砂(1 500、3 000 kg/hm2)、不同施用量的生物炭(300、600 kg/hm2)、粉煤灰(6 000 kg/hm2)三種吸附劑復(fù)配十二菌醫(yī)(150 kg/hm2)、菌淋田下(6 kg/hm2)、腐植酸(3 kg/hm2),設(shè)置除草劑CK、清水CK 2組對(duì)照組,共25個(gè)處理。
【結(jié)果】""3 000 kg/hm2蟲砂+150 kg/hm2十二菌醫(yī)處理小麥株高抑制率為所有處理組中最低的,為-2.99%;其次為3 000 kg/hm2蟲砂+6 kg/hm2菌淋田下,小麥株高抑制率為-3.10%,其小麥株高均顯著高于除草劑CK,且高于清水CK,莖粗為1 500 kg/hm2蟲砂+150 kg/hm2十二菌醫(yī)最優(yōu),莖粗達(dá)到2.56 cm。葉綠素指標(biāo)上,300 kg/hm2生物炭+6 kg/hm2菌淋田下的SPAD值最高,為45.76,其次是3 000 kg/hm2蟲砂,SPAD值為45.56,均高于2組對(duì)照組。盆栽單盆產(chǎn)量最高的為3 000 kg/hm2蟲砂,其次為3 000 kg/hm2蟲砂+十二菌醫(yī),相比除草劑CK高出60.01%、54.59%。相比清水CK高出52.50%、47.33%。
【結(jié)論】""吸附劑復(fù)配微生物的方式可以促進(jìn)二甲戊樂靈脅迫下小麥的生長(zhǎng)發(fā)育及產(chǎn)量,3 000 kg/hm2蟲砂+150 kg/hm2十二菌醫(yī)、3 000 kg/hm2蟲砂+6 kg/hm2菌淋田下2組處理均可顯著增加小麥株高,緩解二甲戊樂靈對(duì)小麥的藥害影響,3 000kg/hm2蟲砂、3 000kg/hm2蟲砂+150 kg/hm2十二菌醫(yī)處理顯著提高小麥產(chǎn)量。
關(guān)鍵詞:""白星花金龜蟲砂;吸附劑;緩解藥害;小麥
中圖分類號(hào):"S512""""文獻(xiàn)標(biāo)志碼:"A""""文章編號(hào):"1001-4330(2024)11-2779-08
0"引 言
【研究意義】二甲戊樂靈屬于二硝基苯胺類除草劑[1],是旱田雜草的一種芽前選擇性除草劑,普遍應(yīng)用于棉花、玉米和馬鈴薯等作物[2-4]。二甲戊樂靈在環(huán)境中易被土壤吸附,降解時(shí)間緩慢[5-6],使作物主根縮短,側(cè)生根減少,影響根系發(fā)育,隨著劑量增大二甲戊樂靈對(duì)作物的抑制也開始顯現(xiàn),抑制其出苗率及株高[7-8]。在棉麥輪作的種植模式下,二甲戊樂靈殘留易對(duì)下茬作物小麥產(chǎn)生藥害。微生物降解是農(nóng)藥降解的主要途徑[9],有機(jī)肥+微生物相互作用可以更高效緩解藥害,促進(jìn)作物生長(zhǎng)。【前人研究進(jìn)展】白星花金龜蟲糞砂顆粒性好,體積小,干燥無異味,經(jīng)測(cè)定,蟲糞砂含有機(jī)質(zhì)超過有機(jī)肥的標(biāo)準(zhǔn)(NY525-2021,NPK≥4%)的2倍[10]。張連俊等[11]以辣椒為研究對(duì)象,結(jié)果表明添加蟲砂可以促進(jìn)辣椒生長(zhǎng),提高辣椒品質(zhì);張廣杰[10]用蟲菌復(fù)合技術(shù)防治棉花黃萎病,結(jié)果表明蟲砂復(fù)合生防菌可以有效緩解棉花黃萎病,增加棉花產(chǎn)量。有機(jī)質(zhì)在高溫限氧的條件下形成生物炭,其在碳化過程中保留了孔隙結(jié)構(gòu),使生物炭具有較強(qiáng)的吸附力[12]。鄭妍婕[13]的研究表明,施用生物炭可以吸附土壤中莠去津殘留,減輕大豆的藥害。王佳穎等[14]研究緩解煙嘧磺隆對(duì)油菜的藥害,結(jié)果表明,生物炭固定化菌劑可以明顯緩解煙嘧磺隆對(duì)油菜的藥害。粉煤灰為煤炭燃燒過后的粉渣,呈白色粉狀,具有較好的透水透氣性,在土壤修復(fù)方面具有再生利用的潛力[15]。Singh[16]試驗(yàn)表明,粉煤灰對(duì)莠去津有較強(qiáng)的吸附力,表明粉煤灰可以作為低成本吸附劑,緩解除草劑對(duì)作物的藥害?!颈狙芯壳腥朦c(diǎn)】目前尚未有將蟲砂應(yīng)用于緩解藥害的相關(guān)研究。需針對(duì)棉麥輪作的除草劑殘留問題,需研究不同吸附劑緩解二甲戊樂靈對(duì)小麥藥害的效果?!緮M解決的關(guān)鍵問題】選用白星花金龜蟲砂、生物炭和粉煤灰作為吸附劑,研究不同量的吸附劑與微生物菌劑配施對(duì)藥害的緩解效果,研究緩解藥害并促進(jìn)小麥生長(zhǎng)施用吸附劑與微生物菌劑的最佳配比,為蟲砂有機(jī)肥開發(fā)應(yīng)用提供依據(jù)。
1"材料與方法
1.1"材 料
春小麥品種為新春44號(hào)(屬早熟品系,株高85~88 cm,千粒重約為47 g,播種量為26~28 kg/667m2,平均產(chǎn)量為469 kg/667m2),除草劑為二甲戊樂靈(33%有效成分)。運(yùn)用葉綠素儀(TYS-B,浙江托普云農(nóng)科技股份有限公司)。
有機(jī)肥:白星花金龜蟲砂(新疆瑪納斯縣科研基地飼養(yǎng)的白星花金龜,轉(zhuǎn)化秸稈產(chǎn)出的蟲糞砂,含有54.8%有機(jī)質(zhì)、9.04%氮磷鉀)、生物炭(新疆格萊美特有限公司)、粉煤灰、微生物菌肥十二菌醫(yī)(液體,有效活菌數(shù)≥2×108/mL,由阿托菲納化學(xué)公司提供,以枯草芽孢桿菌為主的復(fù)合菌劑,推薦劑量10~15 kg/667m2);菌淋田下(粉劑,有效活菌數(shù)≥200 ×108/g,北京航天恒豐科技股份有限公司,以巨大芽孢桿菌為主的復(fù)合菌劑,推薦劑量400 g/667m2);腐殖酸(新疆心連心能源化工有限公司)。
1.2"方 法
1.2.1"試驗(yàn)設(shè)計(jì)
試驗(yàn)于2023年5月14日在新疆昌吉回族自治州瑪納斯縣包家店鎮(zhèn)塔西河村新疆農(nóng)業(yè)大學(xué)科研基地進(jìn)行,設(shè)置2種施用量的蟲砂、生物炭,粉煤灰3種吸附劑,復(fù)配十二菌醫(yī)、菌淋田下和腐植酸。設(shè)置1個(gè)清水CK及除草劑CK,共25個(gè)處理。表1
每個(gè)處理5個(gè)重復(fù),盆栽口徑尺寸為30 cm,二甲戊樂靈濃度設(shè)定為推薦劑量的一半(1 500 mL/hm2)。將除草劑稀釋噴灑至棉田土壤中混合均勻后裝盆,每盆裝土10 kg,確保盆中土壤重量相同,按照各個(gè)處理所需不同量的肥料均勻播撒至盆中,并拌土,拌土深度為10 cm。盆中土壤劃分十字淺溝,將小麥種子按十字交叉法均勻播撒至淺溝中,每盆播種3.2 g(68粒)小麥種子,之后輕土覆蓋并澆水浸透土壤。播種后進(jìn)行常規(guī)水肥管理,春小麥生育期間按時(shí)按量澆水、定期清除雜草,并做好生長(zhǎng)記錄。
1.2.2"測(cè)定指標(biāo)
1.2.2.1"小麥生長(zhǎng)發(fā)育
小麥出苗后每盆選取5株長(zhǎng)勢(shì)均勻的小麥,于拔節(jié)期與揚(yáng)花期調(diào)查株高、莖粗與葉綠素SPAD值,計(jì)算株高抑制率。
株高抑制率=(對(duì)照株高-處理株高)/對(duì)照株高×100。"(1)
1.2.2.2"小麥產(chǎn)量構(gòu)成因素與產(chǎn)量
待小麥成熟后按每盆盆栽實(shí)收,人工脫粒后測(cè)產(chǎn)并考種,記錄每盆盆栽的穗數(shù)、穗長(zhǎng)、穗粒數(shù)、千粒重與產(chǎn)量。
2"結(jié)果與分析
2.1"不同處理對(duì)小麥生長(zhǎng)發(fā)育的影響
2.1.1"不同處理對(duì)小麥株高的影響
研究表明,拔節(jié)期時(shí)處理組中株高最高的為全量蟲砂+菌淋田下,其次為半量蟲砂+菌淋田下,株高分別為40.39、40.2 cm。以蟲砂為吸附劑的情況下,復(fù)配十二菌醫(yī)后株高抑制率有所下降,且隨著蟲砂的施用量增加而進(jìn)一步下降至2.53%。復(fù)配菌淋田下時(shí)株高抑制率最低,同樣是隨著蟲砂施用量增加株高抑制率下降,且均與除草劑CK差異顯著。復(fù)配2種菌劑均優(yōu)于單施蟲砂組,但組間并未達(dá)到顯著性差異。全量生物炭+菌淋田下在以生物炭為吸附劑時(shí)株高抑制率最低,為3.41%。隨著施用量減少,株高抑制率增加1.97%,但仍然優(yōu)于復(fù)配十二菌醫(yī)及腐植酸。粉煤灰則是十二菌醫(yī)的株高抑制率最低,菌淋田下與腐植酸株高抑制率相近。拔節(jié)期時(shí)株高抑制率在施用不同吸附劑的整體趨勢(shì)為蟲砂>生物炭>粉煤灰。
揚(yáng)花期時(shí)小麥株高最高的為全量蟲砂+十二菌醫(yī),為47.58 cm,要高于清水對(duì)照,但并未達(dá)到顯著性差異。以蟲砂為吸附劑時(shí),復(fù)配十二菌醫(yī)的小麥株高抑制率要低于復(fù)配菌淋田下,與除草劑CK存在顯著性差異,株高抑制率最高的為復(fù)配腐植酸,且與復(fù)配十二菌醫(yī)、菌淋田下存在顯著性差異。2種施用量的生物炭復(fù)配菌淋田下小麥株高抑制率相近(-2.28%、-2.84%),且顯著高于除草劑CK。復(fù)配十二菌醫(yī)小麥株高抑制率要低于腐植酸。粉煤灰則是復(fù)配菌淋田下的小麥株高抑制率相比只施用粉煤灰降低了4.27%,其表現(xiàn)要優(yōu)于十二菌醫(yī)與腐植酸。3種吸附劑的整體趨勢(shì)為蟲砂>生物炭>粉煤灰。表2
2.1.2"不同處理對(duì)拔節(jié)期小麥莖粗的影響
研究表明,各處理中莖粗最高的為半量蟲砂+十二菌醫(yī)、半量蟲砂+菌淋田下,兩者莖粗均為2.46 cm,且顯著高于除草劑CK 24.24%,高于清水對(duì)照6.49%。蟲砂在復(fù)配十二菌醫(yī)與菌淋田下的莖粗表現(xiàn)最好,但是隨著蟲砂施用量增加,莖粗出現(xiàn)了下降趨勢(shì),分別下降了3.18%、5.39%,與前者相比并未達(dá)到顯著性差異。全量生物炭+十二菌醫(yī)莖粗最高(2.30 cm),莖粗會(huì)隨著施用量增加而增加,生物炭為吸附劑時(shí),各處理間均未差異顯著。粉煤灰為吸附劑時(shí)各組莖粗均無較大差異。蟲砂復(fù)配微生物菌劑要優(yōu)于生物炭、粉煤灰,吸附劑施用量的不同對(duì)于拔節(jié)期小麥的莖粗并無明顯差異。圖1
2.1.3"不同處理對(duì)揚(yáng)花期小麥莖粗的影響
研究表明,揚(yáng)花期莖粗最優(yōu)的仍是半量蟲砂+十二菌醫(yī)組,莖粗為2.56 cm。蟲砂為吸附劑的情況下,半量蟲砂在復(fù)配十二菌醫(yī)后莖粗增加了4.06%,且顯著高于除草劑CK 25.98%,小幅高于清水CK 5.32%。復(fù)配菌淋田下后莖粗則有小幅下降,蟲砂為吸附劑時(shí)各處理均差異不顯著。生物炭為吸附劑各處理也同樣未出現(xiàn)顯著性差異。而生物炭復(fù)配十二菌醫(yī)時(shí)莖粗要高于復(fù)配菌淋田下與腐植酸,增加生物炭的施用量可以使生物炭+十二菌醫(yī)處理的莖粗小幅增長(zhǎng)。吸附劑為粉煤灰時(shí),腐殖酸要優(yōu)于復(fù)配十二菌醫(yī)及菌淋田下,與除草劑CK均差異不顯著。不同吸附劑的整體趨勢(shì)為蟲砂>生物炭>粉煤灰。圖2
2.1.4"不同處理對(duì)葉綠素的影響
研究表明,葉綠素SPAD值最高的為清水CK,其次為全量蟲砂,SPAD值分別為46.45、45.56。以蟲砂為吸附劑時(shí)各處理的葉綠素差異不顯著,葉綠素最高的為全量蟲砂,隨施用量增加葉綠素也有小幅增加,復(fù)配十二菌醫(yī)小幅優(yōu)于菌淋田下與腐殖酸組。以生物炭為吸附劑時(shí),葉綠素含量最高的為半量生物炭+菌淋田下,SPAD值為45.76,其次為全量生物炭+十二菌醫(yī),SPAD值為44.94,生物炭施用量增加可使生物炭+十二菌醫(yī)的葉綠素含量增加,而復(fù)配菌淋田下的情況下卻有小幅下降,與前者均差異不顯著。粉煤灰組則是菌淋田下>十二菌醫(yī)>腐殖酸。對(duì)于葉綠素影響整體的趨勢(shì)為蟲砂>生物炭>粉煤灰。圖3
2.2"不同處理對(duì)小麥產(chǎn)量及產(chǎn)量構(gòu)成因素影響
研究表明,各處理均可對(duì)于小麥產(chǎn)量及產(chǎn)量構(gòu)成因素起不同的促進(jìn)作用,單盆盆栽產(chǎn)量最高的為全量蟲砂組,單盆產(chǎn)量達(dá)到346.53 g,其次為全量蟲砂+十二菌醫(yī),產(chǎn)量為334.8 g,分別比清水CK高出52.50%、47.33%,相比除草劑CK高出60.01%、54.59%。全量蟲砂的穗數(shù)也顯著高于除草劑CK,且產(chǎn)量與產(chǎn)量指標(biāo)隨著施用量逐漸增加。生物炭為吸附劑時(shí)復(fù)配菌淋田下產(chǎn)量表現(xiàn)最優(yōu)(298.11、289.42 g),均較2組CK產(chǎn)量更優(yōu),增加生物炭的施用量并不會(huì)使產(chǎn)量有顯著變化,粉煤灰為吸附劑時(shí),則是單施粉煤灰的產(chǎn)量最高,復(fù)配十二菌醫(yī)與菌淋田下的產(chǎn)量相近。蟲砂組在產(chǎn)量及產(chǎn)量構(gòu)成因素要優(yōu)于生物炭組、粉煤灰組,但與2組CK產(chǎn)量存在顯著性的只有全量蟲砂與全量蟲砂+十二菌醫(yī)。表3
3"討 論
3.1"不同吸附劑緩解二甲戊樂靈對(duì)小麥的藥害
土壤中施用生物炭等吸附劑、微生物菌劑以及兩者復(fù)合可以緩解作物藥害發(fā)生[17-19],研究中采用白星花金龜蟲砂、生物炭、粉煤灰三種吸附劑,復(fù)配十二菌醫(yī)、菌淋田下與腐植酸于播種前施用,研究結(jié)果表明,蟲砂+十二菌醫(yī)、蟲砂+菌淋田下、生物炭+菌淋田下的施用方式均可有效緩解二甲戊樂靈對(duì)小麥的藥害,促進(jìn)小麥株高莖粗的增長(zhǎng),降低株高抑制率。蟲砂+十二菌醫(yī)與蟲砂+菌淋田下的株高抑制率最低,且隨著蟲砂施用量增加,株高抑制率會(huì)進(jìn)一步降低,生物炭+菌淋田下同樣可以緩解藥害,顯著降低株高抑制率,可能由于蟲砂、生物炭復(fù)合降解菌劑可以增強(qiáng)小麥抗性,促進(jìn)小麥株高增長(zhǎng),或其吸附作用并通過微生物降解土壤中農(nóng)藥殘留的方式來緩解藥害發(fā)生。
3.2"不同吸附劑對(duì)小麥生長(zhǎng)發(fā)育及產(chǎn)量的影響
吸附劑復(fù)合微生物菌肥的方式對(duì)作物生長(zhǎng)發(fā)育及產(chǎn)量有一定的促進(jìn)作用[20-21],研究中,莖粗表現(xiàn)最優(yōu)的為蟲砂+十二菌醫(yī)、蟲砂組,均顯著高于除草劑CK,葉綠素含量方面各組間差異不顯著,SPAD值最高的處理為半量生物炭+菌淋田下(45.76),其次為全量蟲砂(45.56),盆栽單盆產(chǎn)量最高的為全量蟲砂,其次為全量蟲砂+十二菌醫(yī),相比除草劑CK高出60.01%、54.59%。相比清水CK高出52.50%、47.33%。與前人研究結(jié)果一致。試驗(yàn)僅研究了粉煤灰以及不同施用量的蟲砂、生物炭配施菌劑的方式對(duì)于緩解二甲戊樂靈對(duì)后茬作物小麥藥害,以及對(duì)下茬作物小麥生長(zhǎng)發(fā)育以及產(chǎn)量的影響,施用的菌肥為2種能夠降解農(nóng)藥殘留的商業(yè)菌劑,降解效率有限,從農(nóng)藥污染土壤中分離迭代培養(yǎng)降解菌的方式可能有更優(yōu)良的降解效果,關(guān)于對(duì)小麥根系微生物環(huán)境、降解作用機(jī)理及土壤理化性質(zhì)的的影響還需進(jìn)一步研究。
4"結(jié) 論
緩解小麥二甲戊樂靈藥害方面播種前施用1 500~3 000 kg/hm2蟲砂+150 kg/hm2十二菌醫(yī)、1 500~3 000 kg/hm2蟲砂+6 kg/hm2菌淋田下、600 kg/hm2生物炭+6 kg/hm2菌淋田下及緩解效果最優(yōu)。在播種前,施用施用3 000 kg/hm2蟲砂、3 000 kg/hm2蟲砂+150 kg/hm2十二菌醫(yī)可使受二甲戊樂靈脅迫下的小麥增產(chǎn),可不同程度促進(jìn)小麥的株高、莖粗、葉綠素的增加,使小麥穗數(shù)、穗粒數(shù)、穗長(zhǎng)等產(chǎn)量構(gòu)成因素增加。
參考文獻(xiàn)"(References)
[1]"張卓亞, 郭世儉, 趙東, 等.龍草凈桶混二甲戊靈在南疆棉田應(yīng)用防除三棱草示范試驗(yàn)[J].農(nóng)業(yè)科技通訊, 2021,(10): 106-108, 157.
ZHANG Zhuoya, GUO Shijian, ZHAO Dong, et al.Long Cao Jing demonstration experiment on application of barrel mixed pendimethalin in cotton field in southern Xinjiang[J].Bulletin of Agricultural Science and Technology, 2021,(10): 106-108, 157.
[2]馮文彪.二甲戊樂靈防除玉米田雜草應(yīng)用試驗(yàn)[J].農(nóng)藥科學(xué)與管理, 2003,(6):25-27.
FENG Wenbiao.Application experiment of dimethylpenthalene in controlling weeds in corn field[J].Agrochemical Science and Management, 2003,(6):25-27.
[3] 許維誠(chéng), 牛樹君, 胡冠芳, 等.4種除草劑對(duì)馬鈴薯田間雜草防效試驗(yàn)[J].甘肅農(nóng)業(yè)科技, 2014,(11): 29-30.
XU Weicheng, NIU Shujun, HU Guanfang, et al.Experiment on the control effect of four herbicides on weeds in potato field[J].Gansu Agricultural Science and Technology, 2014,(11): 29-30.
[4] 王燕.沉水植物對(duì)二種除草劑耐受性及二甲戊靈去除研究[D].蘇州: 蘇州大學(xué), 2018.
WANG Yan.Research on the Tolerance of Submerged Macrophytes to Two Herbicides and the Removal of Pendimethalin[D].Suzhou: Soochow University, 2018.
[5] Tsiropoulos N G, Lolas P C.Persistence of pendimethalin in cotton fields under sprinkler or drip irrigation in central Greece[J].International Journal of Environmental Analytical Chemistry, 2004, 84(1-3): 199-205.
[6] Siqueira J O, Safir G R, Nair M G.VA-mycorrhizae and mycorrhiza stimulating isoflavonoid compounds reduce plant herbicide injury[J].Plant and Soil, 1991, 134(2): 233-242.
[7] Agnieszka JAZW A, Ewa SZPYRKA, Sado1 S.Disappearance of pendimethalin in soil and its residue in ripe fennel[J].Journal of Central European Agriculture, 2009, 10(2): 153-158.
[8] Belal, Elsayed B, El Nady Mohamed F.Bioremediation of pendimethalin-contaminated soil[J].African Journal of Microbiology Research, 2013, 7(21): 2574-2588.
[9] 齊丹, 任立偉, 盧滇楠, 等.二氯喹啉酸污染土壤生物修復(fù)的研究現(xiàn)狀與發(fā)展方向[J].環(huán)境科技, 2016, 29(2): 74-78.
QI Dan, REN Liwei, LU Diannan, et al.Progress and development direction of bioremediation for quinclorac-contaminated soil[J].Environmental Science and Technology, 2016, 29(2): 74-78.
[10] 張廣杰.蟲菌復(fù)合技術(shù)轉(zhuǎn)化棉稈還田對(duì)棉花生長(zhǎng)發(fā)育及黃萎病發(fā)生的影響[D].烏魯木齊: 新疆農(nóng)業(yè)大學(xué), 2022.
ZHANG Guangjie.Effects of the Return to the Field of Cotton Stalks Transformed by Insect-microorganism Composite Technology on the Growth and Development of Cotton and the Occurrence of Verticillium Wilt[D].Urumqi: Xinjiang Agricultural University, 2022.
[11] 張連俊, 李金蘭, 張帥, 等.2種昆蟲蟲糞對(duì)辣椒生長(zhǎng)及果實(shí)品質(zhì)的影響[J].新疆農(nóng)業(yè)科學(xué), 2021, 58(8): 1511-1518.
ZHANG Lianjun, LI Jinlan, ZHANG Shuai, et al.Effects of dung from two insects on the growth and fruit quality of pepper[J].Xinjiang Agricultural Sciences, 2021, 58(8): 1511-1518.
[12] 李玉梅, 王根林, 劉征宇, 等.生物炭對(duì)土壤中莠去津殘留消減的影響[J].作物雜志, 2014,(2): 137-141.
LI Yumei, WANG Genlin, LIU Zhengyu, et al.Effects of bio-char application on degradation of atrazine residual in soil[J].Crops, 2014,(2): 137-141.
[13] 鄭妍婕.生物炭對(duì)莠去津在土壤中的吸附及后茬作物的影響研究[D].北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2019.
ZHENG Yanjie.Effects of Biochars on Atrazine Adsorption in Soil and Succession Crops[D].Beijing: Chinese Academy of Agricultural Sciences, 2019.
[14] 王佳穎, 何樅, 楊冬臣, 等.生物炭固定化YB1菌劑對(duì)煙嘧磺隆降解效果的研究[J].河北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019, 42(6): 91-96.
WANG Jiaying, HE Cong, YANG Dongchen, et al.Study on degradation of nicosulfuron by biochar immobilized YB1 bacterium[J].Journal of Hebei Agricultural University, 2019, 42(6): 91-96.
[15] 趙旭, 彭培好, 李景吉.鹽堿地土壤改良試驗(yàn)研究——以粉煤灰和煤矸石改良鹽堿土為例[J].河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 39(4): 70-74.
ZHAO Xu, PENG Peihao, LI Jingji.An experiment of amelioration to saline alkali: improved saline-alkali soil by coal ash and coal gangue as an example[J].Journal of Henan Normal University (Natural Science Edition), 2011, 39(4): 70-74.
[16] Singh N.Adsorption of herbicides on coal fly ash from aqueous solutions[J].Journal of Hazardous Materials, 2009, 168(1): 233-237.
[17] 韓思月.秸稈基生物炭耦合功能菌株強(qiáng)化土壤阿特拉津去除及解磷能力的研究[D].哈爾濱: 東北農(nóng)業(yè)大學(xué), 2021.
HAN Siyue."Study on Straw Biochar Coupled Functional Microorganisms for Enhanced Atrazine Removal and Phosphorus Solubilization Ability in Soil[D].Harbin: Northeast Agricultural University, 2021.
[18]李照怡,楊敬之,尹顯慧,等.煙田前茬殘留二氯喹啉酸的解毒劑篩選[J/OL].煙草科技,1-12.
LI Zhaoyi,YANG Jingzhi,YI Xianhui,et al.Antidotes screening of dichloroquinolinic acid residue from previous crop in tobacco fields[J/OL].Tobacco science and technology, 1-12.
[19] 周玲.微生物-生物炭復(fù)合材料對(duì)水中草甘膦的去除研究[D].蘇州: 蘇州科技大學(xué), 2021.
ZHOU Ling."Removal of Glyphosate from Water by Microbe-biochar Composite[D].Suzhou: Suzhou University of Science and Technology, 2021.
[20] 王洋.阿特拉津降解菌DNS32發(fā)酵工藝優(yōu)化及菌制劑的制備[D].哈爾濱: 東北農(nóng)業(yè)大學(xué), 2012.
WANG Yang.Optimization of Fermentation Process of Atrazine-degradation Strain DNS32and Preparation of Bacteria Preparations[D].Harbin: Northeast Agricultural University, 2012.
[21] 高巖.泥稈共熱解生物炭耦合菌株Arthrobacter sp.DNS10對(duì)阿特拉津污染土壤的修復(fù)[D].哈爾濱: 東北農(nóng)業(yè)大學(xué), 2020.
GAO Yan.Remediation of Atrazine Contaminated Soil by Co-pyrolysis Biochar Prepared by Corn Straw and Sludge Coupling Strain Arthrobacter Sp.DNS10[D].Harbin: Northeast Agricultural University, 2020.
The effects of different adsorbents in alleviating"""drug injury of wheat
Aihemaitijiang Maimaiti1,YAN Yu2, ZHANG Guangjie2, XU Andong2, ""ZHANG Shuai2, MENG Zhuo2, FU Rao2, MA Deying2
(1. Institute for the Control of Agrochemicals of Xinjiang Uygur Autonomous Region, Urumqi 830049, China; 2. College of Agronomy,Xinjiang Agricultural University, Urumqi 830052, China)
Abstract:【Objective】 ""Biochar and fly ash on wheat growth and development under the stress of dimetolalin by using them as adsorbents.
【Methods】 """Through field potted plants,to study the effects of insect dung sand,three kinds of adsorbent doses of insect dung sand (1,500,3,000 kg/hm2), biochar (300, 600 kg/hm2), fly ash (6,000 kg/hm2) were combined with dodecamethium (150 kg/hm2), bacterioline (6 kg/hm2), humic acid (3 kg/hm2), and herbicides CK and water CK were treated with a total of 25 treatments.
【Results】 ""The results showed that the inhibition rate of height of medical treatment of 3,000 kg/hm +150 kg/hm was the lowest among all treatment groups, which was -2.99%.The inhibition rate of plant height was -3.10%, which was significantly higher than that of herbicide CK and that of water CK.In terms of stem diameter, 1,500 kg/hm2 worm sand +150 kg/hm2 dodecobacterium was the best, and the stem diameter reached 2.56cm.In terms of chlorophyll index, the SPAD value of 300 kg/hm2 biochar +6kg/hm2 bacteria under the field was the highest (45.76), followed by the SPAD value of 3,000 kg/hm2 insect dung sand (45.56), both of which were higher than those of the two control groups.The highest single pot yield was 3000 kg/hm2 insect dung sand, followed by 3,000 kg/hm2 insect dung sand + Decardiac medicine, which was 60.01% and 54.59% higher than that of herbicide CK.Compared with CK water, it was 52.50% and 47.33% higher.
【Conclusion】 """It was shown that the combination of adsorbent and microbe could promote the growth, development and yield of wheat under the stress of dimepenalline.The treatments of 3,000 kg/hm2 insect dung sand +150 kg/hm2 twelve fungus medicine and 3,000 kg/hm2 insect dung sand +6 kg/hm2 bacteria in the field could significantly increase the plant height of wheat.The effect of dimepenalline on wheat is alleviated.Medical treatment with 3,000 kg/hm2 insect dung sand and 3,000 kg/hm2 insect dung sand +150 kg/hm2 decadicum significantly increase wheat yield.
Key words:""potosia brevitarsis insect dung sand; adsorbent; alleviating drug damage; wheat
Fund projects:nbsp;"Key Research and Development Program Project of Xinjiang Uygur Autonomous Region (2022B02046) ;Third Phase Training Project of Tianshan Talents Program
Correspondence author:"""MA Deying(1968-), female, from Urumqi, Xinjiang , professor,Ph.D., master and doctoral's supervisor,instructor, research direction:green control of pests research, (E-mail)mdynd@163.com
收稿日期(Received):
2024-03-13
基金項(xiàng)目:
新疆維吾爾自治區(qū)重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022B02046);“天山英才”計(jì)劃第三期培養(yǎng)計(jì)劃項(xiàng)目
作者簡(jiǎn)介:
艾合買提江·買買提(1984-),男,新疆烏魯木齊人,高級(jí)農(nóng)藝師,研究方向?yàn)檗r(nóng)藥及農(nóng)產(chǎn)品質(zhì)量安全,(E- mail)492900759@qq.com
通訊作者:
馬德英(1968-),女,新疆烏魯木齊人,教授,博士,碩士生/博士生導(dǎo)師,研究方向?yàn)橛泻ι锞G色防控,(E- mail)mdynd@163.com