任賢魏,崔旭,趙熹,薛勇1,
應(yīng)力時(shí)效影響Al-10Zn-3Mg-3Cu合金帶外縱筋筒形件組織性能研究
任賢魏1,2*,崔旭3,趙熹2,薛勇1,2
(1.中北大學(xué) 材料科學(xué)與工程學(xué)院,太原 030051;2.國(guó)防科技工業(yè)復(fù)雜構(gòu)件擠壓創(chuàng)新中心,太原 030051;3.陸裝駐包頭地區(qū)第一代表室,內(nèi)蒙古 包頭 014032)
研究應(yīng)力時(shí)效條件下Al-10Zn-3Mg-3Cu合金帶外縱筋筒形件筋部試樣的應(yīng)力松弛行為,探明基體應(yīng)力松弛機(jī)制以及強(qiáng)韌性協(xié)同提升機(jī)理。針對(duì)淬火態(tài)筋部試樣,設(shè)計(jì)不同的初始應(yīng)力值進(jìn)行應(yīng)力時(shí)效實(shí)驗(yàn),然后采用數(shù)據(jù)分析與微觀組織形貌表征方法研究試樣組織性能。當(dāng)施加的初始應(yīng)力為250 MPa時(shí),筋部試樣的應(yīng)力松弛程度可達(dá)85.8%,同時(shí),試樣抗拉強(qiáng)度為736.40 MPa,屈服強(qiáng)度為697.53 MPa,延伸率為10.96%。在250 MPa應(yīng)力時(shí)效條件下,應(yīng)力松弛機(jī)制主要為晶界Coble蠕變和位錯(cuò)運(yùn)動(dòng),位錯(cuò)運(yùn)動(dòng)促進(jìn)了亞晶的增殖,Coble蠕變使基體晶粒長(zhǎng)大,這些行為促使試樣應(yīng)力耗散。同時(shí),應(yīng)力時(shí)效改變了析出相形態(tài),發(fā)展了具有孿生界面的復(fù)合析出相。經(jīng)分子動(dòng)力學(xué)計(jì)算可知,該特征微結(jié)構(gòu)有利于基體強(qiáng)韌性的協(xié)同提升。
應(yīng)力時(shí)效;Al-10Zn-3Mg-3Cu合金;應(yīng)力松弛;強(qiáng)韌性;析出相
隨著國(guó)民經(jīng)濟(jì)的不斷發(fā)展以及“雙碳”目標(biāo)的加速實(shí)施,對(duì)輕質(zhì)高性能構(gòu)件的需求不斷增加。Al-Zn-Mg-(Cu)(7×××系)鋁合金因其質(zhì)量輕、比強(qiáng)度高而成為理想選材[1-4]。研究人員通過增加Zn元素含量,實(shí)現(xiàn)了析出相(MgZn2相)體積分?jǐn)?shù)的提升,進(jìn)而使構(gòu)件的力學(xué)性能得以強(qiáng)化[5-6]。在本文采用的鋁合金材料中,Zn的質(zhì)量分?jǐn)?shù)達(dá)到10%,通過鐓擠開坯與反擠壓成形,實(shí)現(xiàn)了高性能鋁合金帶外縱筋筒形件的精確制造,拓展了該構(gòu)件的應(yīng)用范圍。
在實(shí)際應(yīng)用時(shí),外縱筋需要與葉片連接在一起,最常用的連接方式是焊接。在服役過程中,筋部受到葉片交變載荷的反復(fù)作用,如果筋部的殘余應(yīng)力過大,會(huì)誘發(fā)焊縫處開裂,進(jìn)而導(dǎo)致構(gòu)件失效。然而,在進(jìn)行帶外縱筋筒形件制造時(shí),筋部成形-熱處理受到的熱力耦合作用復(fù)雜,筋部沿軸向具有較高的初始?xì)堄鄳?yīng)力,其主要特征是“外壓內(nèi)拉”,表面最大壓應(yīng)力達(dá)到?225 MPa,芯部最大拉應(yīng)力達(dá)230 MPa,嚴(yán)重影響了構(gòu)件的服役可靠性。因此,本文圍繞筋部的殘余應(yīng)力消除與強(qiáng)韌性調(diào)控進(jìn)行研究。目前,應(yīng)力時(shí)效是實(shí)現(xiàn)殘余應(yīng)力松弛并兼顧強(qiáng)韌性的主要手段。諸多學(xué)者圍繞應(yīng)力時(shí)效過程中的應(yīng)力松弛及析出行為開展了研究。Solberg等[7]、Zhan等[8]和徐顯強(qiáng)等[9]系統(tǒng)研究了AA7×××系鋁合金的蠕變及應(yīng)力松弛行為,并構(gòu)建了相關(guān)的數(shù)理模型。Chen等[10]發(fā)現(xiàn)Al-Zn-Mg-Cu合金的應(yīng)力松弛過程表現(xiàn)為初始高應(yīng)力階段(I)、應(yīng)力過渡階段(Ⅱ)、低應(yīng)力平衡階段(Ⅲ)。應(yīng)力指數(shù)計(jì)算結(jié)果表明,第1階段和第2階段的變形機(jī)制為位錯(cuò)蠕變,第3階段的變形機(jī)制為Coble蠕變。
目前關(guān)于應(yīng)力時(shí)效的研究主要集中在板材成形,主要目的是通過殘余應(yīng)力消減控制回彈,提高板料成形精確度。本文基于Al-Zn-Mg-Cu合金帶外縱筋筒形件的實(shí)際應(yīng)用需求,以縱筋為研究對(duì)象,基于現(xiàn)有的應(yīng)力時(shí)效研究成果,進(jìn)行應(yīng)力時(shí)效調(diào)控構(gòu)件筋部殘余應(yīng)力以及強(qiáng)韌性研究。通過設(shè)置不同的初始外加應(yīng)力值,系統(tǒng)研究淬火態(tài)試樣的應(yīng)力耗散行為,探明相應(yīng)的應(yīng)力松弛機(jī)制;針對(duì)應(yīng)力時(shí)效試樣開展組織及力學(xué)性能檢測(cè),探明外加應(yīng)力對(duì)析出行為的影響機(jī)理,揭示析出相大小、形貌等對(duì)試樣強(qiáng)韌性的作用機(jī)制。
選用中南大學(xué)黃元春教授團(tuán)隊(duì)開發(fā)的Al-10Zn- 3Mg-3Cu合金棒材,其尺寸為180 mm×900 mm,在中北大學(xué)精密成形中心30MN油壓機(jī)上,通過反擠壓成形工藝制成外徑為330 mm的帶外縱筋筒形件(如圖1a和圖1b所示)。從筒形件筋部取應(yīng)力時(shí)效試樣,其尺寸如圖1c所示。將試樣進(jìn)行固溶-水冷處理,固溶工藝為475 ℃×2 h。將獲得的固溶態(tài)試樣在?20 ℃下保存,以抑制其發(fā)生自然時(shí)效。
應(yīng)力時(shí)效在Instron 8801拉伸試驗(yàn)機(jī)上完成。采用先升溫至120 ℃,待溫度穩(wěn)定后再施加拉伸應(yīng)力的方法。淬火態(tài)試樣的屈服強(qiáng)度(0.2)為360 MPa,結(jié)合初始?xì)堄鄳?yīng)力值(?225~230 MPa),確定本次設(shè)計(jì)的初始應(yīng)力值分別為0.60.2(220 MPa)、0.70.2(250 MPa)、0.80.2(280 MPa),即以彈性變形為主。應(yīng)力時(shí)效保溫時(shí)間為24 h,針對(duì)每個(gè)應(yīng)力值分別重復(fù)3次實(shí)驗(yàn),以保證實(shí)驗(yàn)數(shù)據(jù)的可重復(fù)性。同時(shí),取3個(gè)試樣作為對(duì)比實(shí)驗(yàn)進(jìn)行無應(yīng)力時(shí)效實(shí)驗(yàn),即完成常規(guī)120 ℃×24 h的時(shí)效處理。應(yīng)力時(shí)效工藝路線如圖2所示。
圖1 Al-10Zn-3Mg-3Cu合金帶外縱筋筒形件實(shí)物(a)、成形仿真圖(b)以及筋部應(yīng)力時(shí)效試樣尺寸(c)
試樣經(jīng)應(yīng)力時(shí)效后空冷到室溫,然后制成標(biāo)距為25 mm的拉伸片,使用Instron8801拉伸試驗(yàn)機(jī)進(jìn)行力學(xué)性能測(cè)試,拉伸速率為2 mm/min。針對(duì)應(yīng)力時(shí)效變形的中心區(qū)域,進(jìn)行微觀組織表征。在試樣中心區(qū)域取2 mm×2.5 mm×6 mm(厚×寬×長(zhǎng))樣品,進(jìn)行機(jī)械減薄和雙噴電解減薄,雙噴溶液采用30%(體積分?jǐn)?shù))HNO3+70%(體積分?jǐn)?shù))CH3OH。針對(duì)減薄后的試樣,借助日立SU-5000掃描電子顯微鏡(SEM)完成背散射電子衍射(Electron Back Scatter Diffraction,EBSD)組織表征,實(shí)驗(yàn)在20 kV、70°傾斜角下進(jìn)行,測(cè)試步長(zhǎng)為0.5 μm。結(jié)合OIMv7.3軟件完成EBSD組織信息分析。采用FEI Tecnai F30透射電子顯微鏡(TEM)對(duì)不同狀態(tài)合金的微觀組織進(jìn)行觀察分析,包括觀察第二相(彌散相和析出相)尺寸、形貌和分布,選用的是<011>Al晶帶軸。TEM制樣過程如下:用砂紙將試樣直接磨至40 μm厚并沖成3 mm的圓片,在離子減薄儀上進(jìn)行制樣,先在4.7 kV、傾角11°減薄參數(shù)下打穿試樣,隨后分兩步擴(kuò)大薄區(qū)(3.5 kV、傾角7°、保持20 min;2.5 kV、傾角3°、保持20 min)。此外,利用分子動(dòng)力學(xué)(MD)討論了新形態(tài)析出相的強(qiáng)韌化機(jī)制。
圖2 應(yīng)力時(shí)效工藝示意圖
Al-10Zn-3Mg-3Cu合金筒形件筋部試樣的應(yīng)力松弛曲線以及應(yīng)力松弛速率曲線如圖3所示,其中,初始應(yīng)力值分別為220、250、280 MPa,在120 ℃環(huán)境下保溫1 440 min。3條應(yīng)力松弛曲線均呈現(xiàn)對(duì)數(shù)下降趨勢(shì),同時(shí)可以分為2個(gè)階段。在早期階段,應(yīng)力值在短時(shí)間內(nèi)快速下降,該階段為變速率松弛階段(Variable-rate Relaxation,VRR)。在VRR階段,大部分的應(yīng)力得以釋放。隨著保溫時(shí)間的延長(zhǎng),應(yīng)力以近似穩(wěn)定的速率緩慢下降,此時(shí),應(yīng)力釋放持續(xù)時(shí)間較長(zhǎng),為穩(wěn)態(tài)速率松弛階段(Steady-rate relaxation,SRR)。這2個(gè)階段可通過應(yīng)力松弛速率來區(qū)分。
分析圖3a可知,經(jīng)過1 h的保溫,3種樣品的應(yīng)力值均接近最低值。當(dāng)初始應(yīng)力值為220 MPa時(shí),最低應(yīng)力值為67.4 MPa;當(dāng)初始應(yīng)力值為250 MPa時(shí),最低應(yīng)力值為35.46 MPa,這2種條件下的應(yīng)力時(shí)效松弛曲線基本一致,在SRR階段呈現(xiàn)近水平延伸,最低應(yīng)力值比較穩(wěn)定。當(dāng)初始應(yīng)力值為280 MPa時(shí),曲線在達(dá)到最低應(yīng)力值(57.69 MPa)后,隨著保溫時(shí)間的進(jìn)一步延長(zhǎng),開始緩慢回升,最終在17.7 h左右穩(wěn)定在80.43 MPa。這意味著在280 MPa下的應(yīng)力松弛機(jī)制與低應(yīng)力條件下的有所不同。從實(shí)驗(yàn)結(jié)果可以得出,最終殘余應(yīng)力與初始應(yīng)力相關(guān)。250 MPa應(yīng)力時(shí)效時(shí)的最終殘余應(yīng)力低于220 MPa的,其應(yīng)力釋放效果較好。不同初始應(yīng)力引發(fā)的應(yīng)力釋放效應(yīng)與微觀組織相關(guān)。圖3b為不同初始應(yīng)力值條件下試樣的應(yīng)力松弛速率。當(dāng)初始應(yīng)力值為220 MPa時(shí),進(jìn)入SRR階段的應(yīng)力松弛速率為?0.04 MPa/s,當(dāng)初始應(yīng)力值為250 MPa時(shí),進(jìn)入SRR階段的應(yīng)力松弛速率為?0.06 MPa/s,當(dāng)初始應(yīng)力值為280 MPa時(shí),進(jìn)入SRR階段的應(yīng)力松弛速率為?0.06 MPa/s。由此可知,初始應(yīng)力值越高,進(jìn)入SRR階段的應(yīng)力松弛速率越高。
圖3 120 ℃×1 440 min條件下筒形件筋部試樣在不同初始應(yīng)力下的應(yīng)力松弛曲線(a)與應(yīng)力松弛速率曲線(b)
式中:i為初始應(yīng)力;t為從VRR到SRR的轉(zhuǎn)變應(yīng)力。經(jīng)計(jì)算可得,當(dāng)初始應(yīng)力值為220、250、280 MPa時(shí),值分別為69.4%、85.8%和79.4%。由此可知,不同初始應(yīng)力均在VRR階段松弛了65%以上。較高的值有利于材料成形、弱化回彈。值并非隨著初始應(yīng)力值的增大而增大。當(dāng)初始應(yīng)力值從220 MPa增到250 MPa時(shí),值變大,應(yīng)力松弛能力得以提升,但當(dāng)初始應(yīng)力值進(jìn)一步增至280 MPa時(shí),值反而降低,應(yīng)力松弛能力削弱。同時(shí),280 MPa的應(yīng)力時(shí)效試樣在長(zhǎng)時(shí)保溫條件下的殘余應(yīng)力出現(xiàn)回升。這意味著應(yīng)力松弛機(jī)制隨著初始應(yīng)力的增大而發(fā)生了變化。
應(yīng)力松弛的本質(zhì)是彈性應(yīng)變逐步轉(zhuǎn)變?yōu)橛谰玫娜渥儜?yīng)變,同時(shí)整體應(yīng)變保持恒定,因此需要滿足式(2)~(4)[24]。
式中:t、e、p和c分別為整體應(yīng)變、彈性應(yīng)變、塑性應(yīng)變以及蠕變應(yīng)變,符號(hào)上面疊加一點(diǎn)表示對(duì)時(shí)間微分;為瞬時(shí)應(yīng)力;為材料的彈性模量。應(yīng)力松弛被當(dāng)作是特殊的蠕變行為。同時(shí),蠕變應(yīng)變速率、應(yīng)力以及溫度之間的本構(gòu)關(guān)系如式(5)所示[24]。
式中:為材料常數(shù);為變形激活能;為氣體常數(shù),=8.314 J/(mol·K);為開爾文溫度;為應(yīng)力指數(shù),該常數(shù)可通過擬合對(duì)數(shù)應(yīng)變速率與對(duì)數(shù)應(yīng)力之間的斜率而獲得。
應(yīng)力指數(shù)()可以反映材料發(fā)生蠕變時(shí)的變形機(jī)制。一般而言,當(dāng)=1時(shí),代表擴(kuò)散蠕變;當(dāng)=2~3時(shí),代表同時(shí)發(fā)生擴(kuò)散和位錯(cuò)攀移;當(dāng)4<<8時(shí),位錯(cuò)攀移是主導(dǎo)。由于在VRR階段松弛了大部分應(yīng)力,因此在進(jìn)行線性擬合時(shí),數(shù)據(jù)的選取范圍集中在該階段,擬合結(jié)果如圖4所示。當(dāng)筋部試樣的初始應(yīng)力值為220、250、280 MPa時(shí),應(yīng)力指數(shù)分別為2.63、1.78和1.88。對(duì)于蠕變過程中存在的析出相強(qiáng)化材料或金屬基復(fù)合材料,其應(yīng)力指數(shù)往往偏高。本文研究的Al-10Zn-3Mg-3Cu合金屬于析出相強(qiáng)化材料,在應(yīng)力松弛試驗(yàn)中,位錯(cuò)和析出相產(chǎn)生交互作用,不同初始應(yīng)力誘發(fā)的交互效應(yīng)不同,導(dǎo)致試樣的SAR值和值存在差異。
圖4 不同初始應(yīng)力條件下應(yīng)力松弛過程中的應(yīng)力指數(shù)
為了探明應(yīng)力松弛時(shí)的變形機(jī)制,對(duì)應(yīng)力時(shí)效后的Al-10Zn-3Mg-3Cu合金筒形件筋部試樣EBSD組織和TEM組織進(jìn)行表征。為了便于對(duì)比研究,增加了未施加應(yīng)力的試樣經(jīng)120 ℃×24 h時(shí)效后的EBSD組織圖,如圖5所示。該狀態(tài)下試樣的平均晶粒大小為19.15 μm。圖5c為Al-10Zn-3Mg-3Cu合金無應(yīng)力時(shí)效態(tài)組織中角度晶界的分布情況。角度小于15°的晶界為小角度晶界(LAGB),大于15°的晶界為大角度晶界(HAGB),經(jīng)統(tǒng)計(jì)可得常規(guī)時(shí)效后,基體內(nèi)小角度晶界占16.6%,大角度晶界占83.4%。
筋部樣品在220、250、280 MPa應(yīng)力時(shí)效后的EBSD組織如圖6所示。隨著初始應(yīng)力的增大,應(yīng)力時(shí)效后基體晶粒尺寸從19.15 μm分別增到29.67 μm(220 MPa)、44.93 μm(250 MPa)、47.36 μm(280 MPa)。與之相對(duì)應(yīng),LAGB占比從16.6%分別增到20.2%、28.5%和24.4%。HAGB占比從83.4%分別降低至79.8%、71.5%和75.6%。由此可見,隨著初始應(yīng)力的增大,晶粒尺寸增大,這意味著在應(yīng)力時(shí)效時(shí),晶界沿應(yīng)力方向發(fā)生了遷移。相關(guān)研究表明,晶界遷移的本質(zhì)是晶界發(fā)生了擴(kuò)散蠕變,即Coble蠕變。該蠕變主要是通過原子沿晶界擴(kuò)散完成。在3種應(yīng)力時(shí)效條件下,均發(fā)生了Coble蠕變。因此,與無應(yīng)力時(shí)效試樣相比,晶粒尺寸均發(fā)生了長(zhǎng)大
圖5 未施加應(yīng)力的時(shí)效態(tài)筋部EBSD組織
圖6 應(yīng)力時(shí)效態(tài)筋部EBSD反極圖、晶界圖以及取向差分布圖
在220 MPa應(yīng)力時(shí)效條件下,VRR階段的值為2.63,發(fā)生了位錯(cuò)攀移。該行為導(dǎo)致基體的LAGB占比顯著增大。在250 MPa和280 MPa應(yīng)力時(shí)效條件下,VRR階段的值分別為1.78和1.88,基體同樣存在位錯(cuò)攀移或是亞晶增殖,與220 MPa時(shí)相比,LAGB占比增大。
不同應(yīng)力時(shí)效條件下筋部的TEM圖如圖7所示。在不同初始應(yīng)力條件下,經(jīng)時(shí)效后,基體析出大量短桿狀或盤狀η/η'相。在220、250、280 MPa應(yīng)力時(shí)效條件下,析出相平均尺寸分別為8.41、4.89、5.01 nm。分析220 MPa初始應(yīng)力時(shí)效可知,基體內(nèi)存在位錯(cuò)(如圖7a所示),位錯(cuò)作為非均質(zhì)形核位點(diǎn),誘發(fā)了析出相形核-長(zhǎng)大。與此同時(shí),析出相對(duì)位錯(cuò)產(chǎn)生了釘扎作用,限制了位錯(cuò)攀移。對(duì)于初始應(yīng)力為250 MPa和280 MPa的時(shí)效樣品,雖然應(yīng)力值增大,但是基體內(nèi)并未發(fā)現(xiàn)位錯(cuò)。根據(jù)HAGB和LAGB統(tǒng)計(jì)結(jié)果,這可能是因?yàn)榫Ы鐢U(kuò)散蠕變或者亞晶增殖消耗了大部分應(yīng)變能。
不同初始應(yīng)力時(shí)效筋部試樣的拉伸應(yīng)力-應(yīng)變曲線如圖8所示,抗拉強(qiáng)度、屈服強(qiáng)度及延伸率如表1所示。經(jīng)220 MPa應(yīng)力時(shí)效后,試樣的屈服強(qiáng)度0.2為673.13 MPa,抗拉強(qiáng)度b為725.25 MPa,延伸率為8.68%;經(jīng)250 MPa應(yīng)力時(shí)效后樣品的0.2和b均得以提升,同時(shí),延伸率增至10.96%。280 MPa應(yīng)力時(shí)效后樣品的0.2和b與250 MPa應(yīng)力時(shí)效的相比變化不大,但是延伸率驟降為5.44%。與無應(yīng)力時(shí)效試樣相比,時(shí)效耦合應(yīng)力可以顯著提升試樣的強(qiáng)韌性,特別是在250 MPa時(shí),屈服強(qiáng)度提升了14.46%,抗拉強(qiáng)度提升了10.38%,延伸率提升了137.22%。力學(xué)性能的變化與基體內(nèi)的析出相有關(guān)。
2.4.1 初始應(yīng)力值對(duì)應(yīng)力時(shí)效行為的影響
圖7 應(yīng)力時(shí)效態(tài)筋部透射顯微組織
圖8 不同初始應(yīng)力時(shí)效筋部試樣拉伸應(yīng)力-應(yīng)變曲線
表1 不同初始應(yīng)力時(shí)效筋部試樣的力學(xué)性能
Tab.1 Mechanical property of specimens with different initial stress-aging
對(duì)于初始應(yīng)力為280 MPa的試樣,殘余應(yīng)力最低為57.69 MPa,但是隨著保溫時(shí)間延長(zhǎng)至24 h,殘余應(yīng)力緩慢回升到80.43 MPa,這與前述條件下的應(yīng)力時(shí)效行為不同。由值計(jì)算結(jié)果可知,在該初始應(yīng)力條件下,同樣發(fā)生了回復(fù)以及Coble蠕變。隨著初始應(yīng)力提高至280 MPa,基體內(nèi)的缺陷進(jìn)一步增加,缺陷誘發(fā)的析出相非均勻形核-長(zhǎng)大動(dòng)力增強(qiáng),析出相生長(zhǎng)速率變大,顯著阻礙了位錯(cuò)攀移,進(jìn)而使LAGB占比相較于250 MPa應(yīng)力時(shí)效時(shí)的降低。對(duì)于晶界擴(kuò)散蠕變,缺陷有利于晶界擴(kuò)散,但同時(shí)也促進(jìn)了晶間析出相的長(zhǎng)大,其尺寸從25 nm增至45 nm(見圖7b和圖7c),阻礙了晶界蠕變。受此雙重作用影響,當(dāng)初始應(yīng)力為280 MPa時(shí),基體應(yīng)力松弛程度降為79.4%。與此同時(shí),粗大的晶間析出相在單軸拉伸時(shí)容易成為應(yīng)力集中點(diǎn),進(jìn)而誘發(fā)裂紋形成,最終導(dǎo)致試樣延伸率降低。
2.4.2 初始應(yīng)力對(duì)析出行為及強(qiáng)韌性的影響
圍繞具有孿生界面微結(jié)構(gòu)的復(fù)合形態(tài)析出相,基于分子動(dòng)力學(xué)開展了理論計(jì)算,如圖10所示。計(jì)算結(jié)果表明,在單軸拉伸含相同體積分?jǐn)?shù)析出相的鋁基體時(shí),具有孿生界面復(fù)合析出相的基體強(qiáng)度優(yōu)于含常規(guī)形態(tài)析出相的基體強(qiáng)度。增加的孿生界面對(duì)基體強(qiáng)度的貢獻(xiàn)甚至高于常規(guī)亞穩(wěn)η¢相的。對(duì)于以η¢/η相為主要強(qiáng)化手段的Al-Zn-Mg-Cu合金,構(gòu)筑新型η¢/η相形態(tài)是進(jìn)一步提升合金強(qiáng)度的有效途徑。同時(shí),在室溫拉伸過程中,析出相界面孿生結(jié)構(gòu)從109.5°分別增至112.7°(力軸平行于孿生界面)和121.5°(力軸垂直于孿生界面),如圖10所示。與常規(guī)η¢/η相以位錯(cuò)繞過機(jī)制為主要變形方式相比,析出相孿生界面自身結(jié)構(gòu)的改變使其對(duì)位錯(cuò)的約束、攔儲(chǔ)能力得以提升。由此可知,針對(duì)250 MPa應(yīng)力時(shí)效試樣,析出相界面孿生微結(jié)構(gòu)的形成促使強(qiáng)韌性得以協(xié)同提升。
圖9 應(yīng)力時(shí)效筋部試樣高分辨透射組織
圖10 單軸拉伸析出相孿生界面微結(jié)構(gòu)分子動(dòng)力學(xué)模擬結(jié)果
通過研究不同應(yīng)力時(shí)效條件下Al-10Zn-3Mg-3Cu合金帶外縱筋筒形件筋部試樣應(yīng)力松弛行為、微觀組織形貌以及力學(xué)性能,得到如下結(jié)論:
1)在220 MPa應(yīng)力時(shí)效條件下,應(yīng)力松弛機(jī)制主要為位錯(cuò)攀移,試樣應(yīng)力松弛程度為69.4%;在250 MPa和280 MPa應(yīng)力時(shí)效條件下,應(yīng)力松弛機(jī)制主要為晶界Coble蠕變和位錯(cuò)運(yùn)動(dòng)。
2)經(jīng)220 MPa應(yīng)力時(shí)效后,試樣的屈服強(qiáng)度0.2為673.13 MPa,抗拉強(qiáng)度b為725.25 MPa,延伸率為8.68%;經(jīng)250 MPa應(yīng)力時(shí)效后,試樣的0.2提升到697.53 MPa,b提升到736.40 MPa,延伸率為10.96%。應(yīng)力時(shí)效使筋部試樣強(qiáng)韌性得以協(xié)同提升。
3)經(jīng)250 MPa應(yīng)力時(shí)效后,基體析出相的平均尺寸為4.89 nm,同時(shí),應(yīng)力時(shí)效改變了析出相形態(tài),發(fā)展了具有孿生界面的復(fù)合析出相,經(jīng)分子動(dòng)力學(xué)計(jì)算可知,該特征微結(jié)構(gòu)有利于基體強(qiáng)韌性的協(xié)同提升。
[1] ZHAO H, YE L Y, CHENG Q S, et al. Through Variable Temperature Retrogression to Enhance Mechanical Properties and Corrosion Resistance of Extruded 7055 Aluminum Alloy[J]. Journal of Materials Research and Technology, 2023, 24: 2575-2594.
[2] YANG X W, CHENG Q S, DONG Y, et al. Effect of Various Non-Isothermal Aging on Properties and Microstructure of 7055 Aluminum Alloy[J]. Journal of Materials Research and Technology, 2023, 25(15): 6275-6287.
[3] KHAN M, XU C H, HAMZA M, et al. Enhanced Tensile Strength in an Al-Zn-Mg-Cu Alloy via Engineering the Precipitates along the Grain Boundaries[J]. Journal of Materials Research and Technology, 2022, 22(5): 696-705.
[4] JIANG H T, XING H, XU Z H, et al. Effect of Pre-Aging and Precipitation Behavior on Mechanical Properties of 7055 Aluminum Alloy Processed by Hot-Forming Quenching[J]. Materials Characterization, 2023, 198(111398): 112729.
[5] LI H C, CAO F Y, GUO S, et al. Microstructures and Properties Evolution of Spray-Deposited Al-Zn-Mg-Cu-Zr Alloys with Scandium Addition[J]. Journal of Alloys and Compounds, 2016, 691: 482-488.
[6] LIU Y, JIANG D M, LI B Q, et al. Heating Aging Behavior of Al-8.35Zn-2.5Mg-2.25Cu Alloy[J]. Materials & Design, 2014, 60: 116-124.
[7] SOLBERG J K, THON H. Stress Relaxation and Creep of some Aluminium Alloys[J]. Materials Science and Engineering, 1985, 75(1/2): 105-116.
[8] ZHAN L H, LIN J G, DEAN T, et al. Experimental Studies and Constitutive Modelling of the Hardening of Aluminium Alloy 7055 under Creep Age Forming Conditions[J]. International Journal of Mechanical Sciences, 2011, 53(8): 595-605.
[9] 徐顯強(qiáng), 董顯娟, 徐勇, 等. 7050鋁合金蠕變本構(gòu)模型及其泛化能力研究[J]. 精密成形工程, 2023, 15(7): 96-103.
XU X Q, DONG X J, XU Y, et al. Creep Constitutive Model and Generalization Ability of 7050 Aluminum Alloy[J]. Journal of Netshape Forming Engineering, 2023, 15(7): 96-103.
[10] CHEN J F, JIANG J T, ZHEN L, et al. Stress Relaxation Behavior of an Al-Zn-Mg-Cu Alloy in Simulated Age-Forming Process[J]. Journal of Materials Processing Technology, 2014, 214(4): 775-783.
[11] XIANG K Y, DING L P, JIA Z H, et al. Phase Transition Induced by Synchroshear in Al-Zn-Mg-Cu Alloy[J]. Scripta Materialia, 2022, 212: 114577.
[12] CHATTERJEE A, QI L, MI A. In Situ Transmission Electron Microscopy Investigation of Nucleation of GP Zones under Natural Aging in Al-Zn-Mg Alloy[J]. SSRN Electronic Journal, 2021, 207: 114319.
[13] YAN Z, WU X D, TANG S B, et al. Co-Precipitation of T' and η′ Phase in Al-Zn-Mg-Cu Alloys[J]. Materials Characterization, 2020, 169(1): 110610.
[14] CAO F H, ZHENG J X, JIANG Y, et al. Experimental and DFT Characterization of η′ Nano-phase and Its Interfaces in Al-Zn-Mg-Cu Alloys[J]. Acta Materialia, 2019, 164: 207-219.
[15] BENDO A, MATSUDA K, LERVIK A, et al. An Unreported Precipitate Orientation Relationship in Al-Zn-Mg Based Alloys[J]. Materials Characterization, 2019, 158: 109958.
[16] LIU C H, FENG Z Z, MA P P, et al. Reversion of Natural Ageing and Restoration of Quick Bake-hardening Response in Al-Zn-Mg-Cu Alloy[J]. Journal of Materials Science & Technology, 2021, 95: 88-94.
[17] ZHAO H, GAULT B, PONGE D, et al. Reversion and Re-aging of a Peak Aged Al-Zn-Mg-Cu Alloy[J]. Scripta Materialia, 2020, 188: 269-273.
[18] CHEN J F, ZHEN L, JIANG J T, et al. Microstructures and Mechanical Properties of Age-formed 7050 Aluminum Alloy[J]. Materials Science & Engineering A, 2012, 539: 115-123.
[19] GUO W, GUO J Y, WANG J D, et al. Evolution of Precipitate Microstructure during Stress Aging of an Al-Zn-Mg-Cu Alloy[J]. Materials Science & Engineering A, 2015, 634: 167-175.
[20] GUO W, YANG M, ZHENG Y, et al. Influence of Elastic Tensile Stress on Aging Process in an Al-Zn-Mg-Cu Alloy[J]. Materials Letters, 2013, 106: 14-17.
[21] NIE J F, MUDDLE B C, POLMEAR I J. The Effect of Precipitate Shape and Orientation on Dispersion Strengthening in High Strength Aluminium Alloys[J]. Materials Ence Forum, 1996, 217/218/219/220/221/222: 1257-1262.
[22] CHUNG T F, YANG Y L, SHIOJIRI M, et al. An Atomic Scale Structural Investigation of Nanometre-sized η Precipitates in the 7050 Aluminium Alloy[J]. Acta Materialia, 2019, 174: 351-368.
[23] CHUNG T F, YANG Y L, HUANG B M, et al. Transmission Electron Microscopy Investigation of Separated Nucleation and In-Situ Nucleation in AA7050 Aluminium Alloy[J]. Acta Materialia, 2018, 149: 377-387.
[24] ZHENG J H, PAN R, LI C, et al. Experimental Investigation of Multi-step Stress-relaxation-ageing of 7050 Aluminium Alloy for Different Pre-strained Conditions[J]. Materials Science and Engineering: A, 2018, 710: 111-120.
[25] YANG Y L, ZHAN L H, LIU C H, et al. Stress- relaxation Abehavior and Microstructural Evolution under Varying Initial Stresses in an Al-Cu Alloy: Experiments and Modeling[J]. International Journal of Plasticity, 2020, 127: 102646.
Effect of Stress-aging on Microstructure and Mechanical Properties of Al-10Zn-3Mg-3Cu Alloy Cylindrical Parts with External Longitudinal Ribs
REN Xianwei1,2*, CUI Xu3, ZHAO Xi2, XUE Yong1,2
(1. School of Materials and Engineering, North University of China, Taiyuan 030051, China; 2. National Defense Technology Industry Complex Component Extrusion Innovation Center, Taiyuan 030051, China; 3. Lu Zhuang's First Representative Office in Baotou Area, Inner Mongolia Baotou 014032, China)
The work aims to investigate the stress relaxation behavior of Al-10Zn-3Mg-3Cu alloy with external longitudinal reinforcement under stress aging conditions, and to clarify the mechanism of matrix stress relaxation and the mechanism of enhancing toughness and strength. For the quenched reinforcement samples, different initial stress values were designed to carry out stress aging experiments. Then, the microstructure and properties of the samples were studied through data analysis and microstructure characterization. When the initial stress was 250 MPa, the stress relaxation degree of the reinforcement samples reached 85.8%. At the same time, the tensile strength of the samples was 736.40 MPa, the yield strength was 697.53 MPa, and the elongation was 10.96%. Under the stress aging conditions of 250 MPa, the stress relaxation mechanism mainly includes grain boundary Coble creep and dislocation movement. Dislocation movement promotes the proliferation of subgrains. Coble creep makes the grain size of the matrix grow. These behaviors promote stress dissipation of the sample. At the same time, stress aging changes the morphology of precipitates, and develops composite precipitates with twin interfaces. According to the molecular dynamics calculation, this characteristic microstructure is beneficial to the coordinated improvement of matrix toughness and strength.
stress-aging; Al-10Zn-3Mg-3Cu alloy; stress relaxation; strength-ductility; precipitates
10.3969/j.issn.1674-6457.2024.03.007
TG146.21
A
1674-6457(2024)03-0076-10
2024-01-04
2024-01-04
國(guó)家自然科學(xué)基金(52205427);山西省基礎(chǔ)研究計(jì)劃-青年科學(xué)研究項(xiàng)目(20210302124322);山東省重點(diǎn)研發(fā)計(jì)劃(2023JMRH0302);山東省博士后創(chuàng)新項(xiàng)目(SDCX-ZG-202203072)
The National Natural Science Foundation of China (52205427); the Basic Research Program of Shanxi Province (20210302124322); Key Research and Development Plan in Shandong Province (2023JMRH0302); Shandong Postdoctoral Innovation Project (SDCX-ZG-202203072)
任賢魏, 崔旭, 趙熹, 等. 應(yīng)力時(shí)效影響Al-10Zn-3Mg-3Cu合金帶外縱筋筒形件組織性能研究[J]. 精密成形工程, 2024, 16(3): 76-85.
REN Xianwei, CUI Xu, ZHAO Xi, et al. Effect of Stress-aging on Microstructure and Mechanical Properties of Al-10Zn-3Mg- 3Cu Alloy Cylindrical Parts with External Longitudinal Ribs[J]. Journal of Netshape Forming Engineering, 2024, 16(3): 76-85.
(Corresponding author)