曹梓恒,郭威,,3*,呂書林,王錦程,吳樹森
鋁基非晶合金的制備、性能與應(yīng)用研究進(jìn)展
曹梓恒1,郭威1,2,3*,呂書林1,王錦程2,吳樹森1
(1.華中科技大學(xué) 材料科學(xué)與工程學(xué)院 材料成形與模具技術(shù)全國(guó)重點(diǎn)實(shí)驗(yàn)室,武漢 430074;2.西北工業(yè)大學(xué) 凝固技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710072;3.深圳華中科技大學(xué)研究院,廣東 深圳 518057)
鋁基非晶合金因其獨(dú)特的物理和化學(xué)性能在諸多領(lǐng)域具有廣泛的應(yīng)用前景,綜述了鋁基非晶合金的成分體系、制備方法、性能特點(diǎn)及應(yīng)用研究進(jìn)展。首先,介紹了鋁基非晶合金的發(fā)展歷史和成分體系,目前鋁基非晶主要分為3大體系:二元、三元和多元體系,以及綜合性能和形成能力2大方面,多元體系表現(xiàn)更佳,并逐漸向更多元化發(fā)展;其次,系統(tǒng)介紹了鋁基非晶合金的制備方法,包括粉末狀、薄帶狀、塊體樣品的制備,相較于非晶薄帶的制備,塊體和粉狀的制備方法較為豐富,而粉狀非晶通常作為鋁基非晶涂層的預(yù)制材料;隨后,詳細(xì)介紹了鋁基非晶合金的性能特點(diǎn)、應(yīng)用現(xiàn)狀及發(fā)展趨勢(shì),從性能上來看,鋁基非晶在強(qiáng)度和硬度以及耐腐蝕性能上表現(xiàn)良好,目前主要以涂層的形式參與應(yīng)用,除此之外,研究者們也開始對(duì)磁性和熱塑性展開研究,由于玻璃形成能力的限制,作為結(jié)構(gòu)材料的應(yīng)用較少;最后,對(duì)其未來應(yīng)用前景進(jìn)行了展望,認(rèn)為涂層是目前鋁基非晶合金最具應(yīng)用前景的工程化方式。
鋁基非晶合金;成分體系;制備方法;性能特點(diǎn);應(yīng)用現(xiàn)狀
非晶合金是21世紀(jì)較受關(guān)注的工程材料之一。與傳統(tǒng)晶態(tài)金屬材料相比,非晶合金呈現(xiàn)出長(zhǎng)程無序、短程有序的原子排列特點(diǎn),不存在線、面缺陷以及介觀尺度以上的成分偏析,表現(xiàn)出優(yōu)異的力學(xué)、磁學(xué)、電學(xué)等性能,現(xiàn)已被廣泛應(yīng)用于能源、精密機(jī)械、電子通信、航空航天和生物醫(yī)學(xué)等領(lǐng)域[1-4]。在眾多非晶合金體系中,鋁基非晶合金由于密度低、耐蝕性能優(yōu)良等特點(diǎn),引起了國(guó)內(nèi)外研究學(xué)者的極大興趣。本文對(duì)鋁基非晶合金的成分體系、制備方法、性能特點(diǎn)等進(jìn)行了綜述,并對(duì)其未來發(fā)展提出了展望。
鋁-類金屬和鋁-過渡金屬體系是首先被發(fā)現(xiàn)并成功使用熔體急冷法制備的二元鋁基非晶體系,由于非晶形成能力(GFA)不足,制備得到的是非晶相與晶態(tài)相混合的組織[5-10],室溫脆性極大。隨后,研究學(xué)者發(fā)現(xiàn)Al-RE(RE是指稀土元素La、Nd、Pr、Sm、Gd、Dy、Tb、Er、Yb[11-13])在具有良好韌性的同時(shí),還具有良好的非晶形成能力[14-24]。研究表明,體系的GFA隨RE元素的不同而有很大差異。GFA最高的是Al-Sm,而Al-Ce合金的GFA較低。稀土含量也會(huì)影響非晶相的形成,當(dāng)稀土含量較低時(shí),易形成飽和的α-Al固溶體;而當(dāng)稀土質(zhì)量分?jǐn)?shù)超過1%時(shí),易形成非晶相與晶化相混合組織;當(dāng)稀土含量繼續(xù)增加時(shí),急冷后無法獲得非晶組織,而趨向形成完全金屬間化合物。
為進(jìn)一步提高鋁基非晶的非晶形成能力,研究者將體系成分元素提高至三元,甚至三元以上,制備出單一非晶合金樣品。Inoue等[25]對(duì)Al-(Fe,Co,Ni)-B、Al-Fe-Si、Al-Mn-Si體系[26]先后制備出單一非晶組織,但上述非晶合金極脆。隨后,研究者發(fā)現(xiàn)將非金屬替換成稀土元素或者另一種過渡元素(TM)時(shí),Al-TM-RE非晶合金不但具有較好的非晶形成能力[27-28],并且改善了其脆性的劣勢(shì)。Inoue等[29-30]通過對(duì)Al-(Ce,La,Y)-TM合金的研究,發(fā)現(xiàn)Al-La-Cu的非晶形成能力最差,而Al-La-(Fe,Co,Ni)則均具有較高的非晶形成能力,對(duì)于Al-(Y,Ce)-TM系,當(dāng)TM元素為Ni時(shí)具有最寬的非晶形成范圍。此外,含有Ni元素的Al-Ni-RE 三元合金體系也具有較高的非晶形成能力,而且其在晶化過程中發(fā)生的晶化行為特征較為明顯,常用于非晶基礎(chǔ)理論的研究[31]。
Zhang等[32]在Al85Ni7Er8非晶合金的基礎(chǔ)上,用Co、La分別取代Ni和Er元素,制備的Al85Ni5Co2Er6La2有效提高了合金的熱穩(wěn)定性和非晶形成能力。李曉峰[33]在Al84Ni10Ce6合金中用Co部分取代Ni,發(fā)現(xiàn)少量Co的加入提高了合金的非晶形成能力和熱穩(wěn)定性。但是在使用TM或者RE元素部分取代時(shí),合金的非晶形成能力和熱穩(wěn)定性并不是相輔相成的,Huang等[34]通過使用Co元素部分取代Al-Ni-La中的Ni元素制備非晶合金時(shí),發(fā)現(xiàn)過量Co元素的添加降低了體系的非晶形成能力,而Co元素的添加提高了合金的熱穩(wěn)定性。多元鋁基非晶合金不僅具有較高的非晶形成能力與熱穩(wěn)定性,還擁有較高的拉伸強(qiáng)度、硬度以及優(yōu)良的耐蝕性能等。通過向Al86Ni6Y4.5Co2La1.5體系添加少量的Cr、Mo元素后,發(fā)現(xiàn)多元非晶合金涂層在鹽水溶液中表現(xiàn)出更加優(yōu)異的耐腐蝕性能。
式中:B~Z表示溶質(zhì)元素,c表示溶質(zhì)的濃度,Al表示鋁元素的半徑,r表示元素的半徑,通常認(rèn)為當(dāng)大于0.1時(shí),合金容易形成非晶形態(tài);當(dāng)小于0.1時(shí)容易形成納米晶;而當(dāng)約等于0.1時(shí),合金成分表現(xiàn)為納米玻璃態(tài)。例如,Al85Ni10Y5納米晶合金(=0.084)在添加1%(質(zhì)量分?jǐn)?shù))的Sr后,新形成的合金Al84Ni10Y5Sr1(=0.108)轉(zhuǎn)變?yōu)椴AB(tài)合金[37]。當(dāng)非晶體系為二元時(shí),拓?fù)洳环€(wěn)定參數(shù)轉(zhuǎn)變?yōu)槭剑?)。
盡管參數(shù)可作為部分鋁基非晶合金GFA的設(shè)計(jì)原則,但也存在特殊情況。例如,盡管在<0.1的情況下,由于Al與TM相互作用產(chǎn)生的鍵縮短效應(yīng),也可以得到完全非晶態(tài)的Al-TM-RE體系[18,38]鍵縮短效應(yīng),導(dǎo)致非晶態(tài)合金體系中的原子不能總被認(rèn)為是硬球,因此在用名義原子半徑進(jìn)行計(jì)算時(shí)會(huì)導(dǎo)致誤差。如果使用元素的有效原子半徑替代其名義原子半徑,判斷準(zhǔn)確度可以得到改善。張章等[39]對(duì)5種合金的拓?fù)洳环€(wěn)定參數(shù)進(jìn)行了研究,發(fā)現(xiàn)數(shù)值在0.1附近時(shí),Al85.7Ni9.5Ce5等5種成分的合金非晶形成能力最佳,并且發(fā)現(xiàn)若使用有效原子半徑(Ni)代替名義原子半徑參與計(jì)算,可以優(yōu)化拓?fù)洳环€(wěn)定參數(shù)對(duì)非晶形成能力的判斷。
Ma等[40]提出了團(tuán)簇線模型來預(yù)測(cè)Al-TM-RE 合金的最佳非晶形成成分。該模型首先利用Al和溶質(zhì)元素的半徑比來確定溶劑原子近鄰溶質(zhì)原子的團(tuán)簇配位數(shù),由此可以確定二元穩(wěn)定團(tuán)簇的成分,成分三角形上頂點(diǎn)與對(duì)應(yīng)軸上點(diǎn)的連線交點(diǎn)得到的合金成分,就是理論玻璃形成能力最佳的合金成分。Sheng等[41]采用分子動(dòng)力學(xué)模擬計(jì)算統(tǒng)計(jì)了配位數(shù),并由此建立了非晶合金原子構(gòu)型(見圖1),將模擬計(jì)算所得數(shù)據(jù)帶入團(tuán)簇模型后發(fā)現(xiàn),與Ma等[40]所得結(jié)果相差不大。團(tuán)簇線模型有效地對(duì)鋁基三元合金體系成分設(shè)計(jì)進(jìn)行了預(yù)測(cè),尤其是Al-RE-TM體系,預(yù)測(cè)所得最佳非晶形成成分,與實(shí)驗(yàn)結(jié)果十分接近,具有較高的成分設(shè)計(jì)指導(dǎo)意義。
鋁基非晶粉末為粉末冶金以及非晶涂層制備提供了基礎(chǔ)材料,是鋁基非晶走向應(yīng)用的重要環(huán)節(jié)之一。制備非晶粉末有2種廣泛使用的工藝,即氣霧化法和機(jī)械合金化法。
2.1.1 氣霧化法
氣霧化法制備非晶粉末的原理是在密閉的腔體內(nèi)利用高速氣流(通常是Ar、He)將金屬或合金液體破碎為細(xì)小液滴,增大金屬液的比表面積從而實(shí)現(xiàn)快速冷凝,通常冷速可達(dá)102~104K/s,超聲速氣流在細(xì)化粉末尺寸、提高冷速上更具優(yōu)勢(shì)。氣霧化法具有生產(chǎn)的粉末呈球形且非晶純度高、生產(chǎn)效率高、利于后期消除顆粒的原始邊界、適用于工業(yè)生產(chǎn)等優(yōu)點(diǎn)[42]。
圖1 Al89Ni5La6非晶合金中Ni和La的配位數(shù)分布,以及常見的以Ni為中心和以La為中心的具有不同尺寸和配位數(shù)的團(tuán)簇拓?fù)浣Y(jié)構(gòu)
氣霧化法適用于臨界冷卻速率較小的非晶體系,通常鋁基非晶合金所需的臨界冷卻速率范圍為105~ 106K/s,冷速要求較高。霧化法制粉時(shí)顆粒粒徑越小,粉末冷卻速度越大,因此可通過改變霧化參數(shù),選擇細(xì)顆粒粉末,得到鋁基非晶粉末。劉祖銘等[43]用氬氣霧化法制備了Al82Ni10Y8非晶粉末,發(fā)現(xiàn)粒徑小于20 μm的粉末結(jié)構(gòu)為單一非晶相,而粒徑大于20 μm的粉末混雜著晶化相。鄧姍姍[44]采用氬氣霧化法制備了Al-Ni-Y-Co-La非晶/晶態(tài)粉末,發(fā)現(xiàn)粉末外觀呈規(guī)則球形,平均粒徑達(dá)到35 μm。霧化法通常會(huì)造成一定程度的原料浪費(fèi),而且用霧化法制備GFA較低的Al基非晶粉末較困難。
2.1.2 機(jī)械合金化法
機(jī)械合金化制備鋁基非晶粉末的基本原理為通過球磨使大而韌的原始粉末顆粒扁平化,扁平顆粒表面具有很高的分層、團(tuán)聚和冷焊傾向,在球磨機(jī)中不斷循環(huán)冷焊、破碎的變形過程中形成層狀結(jié)構(gòu)。在負(fù)混合焓的驅(qū)動(dòng)下,各組元原子間相互擴(kuò)散并產(chǎn)生合金化。隨著晶格應(yīng)變達(dá)到臨界值,破壞了原子的周期性排布,導(dǎo)致非晶相的形成[39,45]。利用機(jī)械合金化法制備鋁基非晶粉末需設(shè)置合適的球磨時(shí)間和球磨轉(zhuǎn)速。一般認(rèn)為增加球磨轉(zhuǎn)速、控制球磨時(shí)間有利于鋁基非晶的形成。袁明[46]采用機(jī)械合金化制備了Al60Cu20Ti15Zr5非晶合金粉末,發(fā)現(xiàn)合金粉末經(jīng)過120 h球磨后基本轉(zhuǎn)變?yōu)榉蔷唷Q娱L(zhǎng)球磨時(shí)間至160 h仍沒有明顯晶化,具有較強(qiáng)的穩(wěn)定性,且較高的球磨轉(zhuǎn)速能促進(jìn)向非晶態(tài)的轉(zhuǎn)變。Sun等[47]也認(rèn)為增加球磨轉(zhuǎn)速有利于促進(jìn)非晶態(tài)的轉(zhuǎn)變,其利用機(jī)械合金化制備了Al70Ni15Ti10Zr5的非晶粉末,發(fā)現(xiàn)當(dāng)球磨機(jī)轉(zhuǎn)速?gòu)?00 r/min提高到400 r/min時(shí),粉末中已不存在明顯的晶態(tài)結(jié)構(gòu)。
單輥旋淬法(也叫單輥激冷法、單輥甩帶法等),是目前最通用也是最有效的制備鋁基非晶條帶的方法。該方法將感應(yīng)融化后的合金熔體噴射到快速旋轉(zhuǎn)的單輥上,使其快速冷卻形成薄帶。Tsai等[48]應(yīng)用單輥旋淬法制備了三元體系的鋁基非晶薄帶,研究了TM元素對(duì)不同成分鋁基非晶合金的非晶形成能力的影響,結(jié)果如表1所示??梢钥闯觯衂r、Hf元素的合金易形成非晶相,而以W作為合金元素的鋁合金則無法實(shí)現(xiàn)非晶化。
條帶中非晶相含量與單輥轉(zhuǎn)速、合金液的噴射流量有關(guān),通過改變參數(shù)可獲得連續(xù)致密的不同厚度的非晶條帶。旋淬法操作方便,冷卻速率一般能達(dá)到105~106K/s,高于一般鋁基非晶合金的冷速要求,且生產(chǎn)效率高,有工業(yè)化生產(chǎn)的潛力。
2.3.1 直接凝固法
直接凝固法是指將熔融的母合金直接吸入/澆入/噴入冷卻模具中,使熔體迅速冷卻并成型。根據(jù)凝固方式的不同,又分為以下幾種。
2.3.1.1 銅模吸鑄法
該方法是基于直接凝固制備塊體鋁基非晶合金最常用的方法,其工藝簡(jiǎn)單、操作方便,并且由于銅具有良好的熱傳導(dǎo)性,凝固過程具有很高的冷卻速率,成形后一般沒有明顯的氣孔。Yang等[49]運(yùn)用該方法直接凝固,經(jīng)多次凈化處理后降低了氧含量的熔體,制備出臨界直徑達(dá)2.5 mm的鋁基非晶樣品,實(shí)現(xiàn)了模鑄鋁基非晶合金尺寸上的新突破,為鋁基非晶合金的應(yīng)用奠定了良好的基礎(chǔ)。不過該方法目前還存在一定缺陷,由于熔體冷卻時(shí)的熱脹冷縮效應(yīng),在凝固過程中會(huì)使棒材與銅模之間形成一層空隙,從而導(dǎo)致凝固過程中的冷卻速率大幅下降。目前通過銅模吸鑄法制備的鋁基非晶合金如表2所示[50]。
一般認(rèn)為銅模吸鑄設(shè)備的鑄造腔體為圓柱體,近幾年也出現(xiàn)了使用楔形鑄造腔體制備鋁基非晶合金的研究[51]。雖然制備的非晶樣品在尺寸上相比圓柱型吸鑄小,但相比單輥旋淬法制備的薄帶更厚,使鋁基非晶在形狀和尺寸上實(shí)現(xiàn)了多樣性。例如,Zhang等[52]使用夾角為5°、寬度為10 mm的楔形銅模具制備了厚度為486~538 μm的Al-Ni-RE(La,Y,Ce,Gd,Dy)三元鋁基非晶合金。
表1 采用單輥旋淬法時(shí)不同成分下所形成的樣品組織
Tab.1 Microstructure of samples prepared with different compositions via melt spinning
表2 銅模吸鑄法制備棒狀鋁基非晶合金的尺寸與力學(xué)性能
Tab.2 Dimensions and mechanical properties of rod-shaped Al-based amorphous alloys prepared by suction copper mold casting
2.3.1.2 銅模噴鑄法
銅模噴鑄法與銅模吸鑄法冷卻方式相同,使用水冷銅模進(jìn)行冷卻鑄造,在熔融金屬液進(jìn)入模具的方式上做了改進(jìn),噴鑄法使用注射裝置將金屬液注射到模具中冷卻。Wang等[53]使用噴鑄法研究了Al85-XY8Ni5Co2Ca(=0.5~5)五元鋁基非晶合金的非晶形成能力,發(fā)現(xiàn)該成分具有極高的約化玻璃指數(shù)。
2.3.2 粉末冶金法
相比于直接凝固法,粉末冶金法在制備塊體鋁基非晶合金上更有優(yōu)勢(shì),其適合于更多的非晶體系,可制備形狀更加復(fù)雜的樣品。目前通過粉末冶金法可制備尺寸為幾十毫米的大塊非晶樣品[54]。近年來發(fā)展起來的放電等離子燒結(jié)法(Spark Plasma Sintering,SPS),可進(jìn)一步解決傳統(tǒng)粉末冶金過程中非晶粉末易晶化的問題,通過瞬間產(chǎn)生的放電等離子體使燒結(jié)體內(nèi)顆粒均勻地自身發(fā)熱,使顆粒表面活化,升溫至過冷液相區(qū)的非晶合金黏度急劇變小,再施加一定的壓力使燒結(jié)體達(dá)到致密,制備出高致密度的大塊非晶合金[55]。
SPS制備的塊體鋁基非晶合金通常含有一定量的納米晶,少量納米晶的存在可有效提高樣品強(qiáng)度和硬度。TAN等[56]利用SPS制備了含AlCu微晶和納米晶的Al65Cu16.5Ti18.5復(fù)合塊體非晶樣品,該合金具有非常高的強(qiáng)度,可達(dá)1 920 MPa。Mula等[57]通過SPS制備的Al88Ni6Ti6塊體非晶納米晶樣品,與低壓燒結(jié)和熱壓燒結(jié)的樣品相比,性能大幅提升,最高納米壓痕硬度達(dá)到了8.51 GPa。
鋁基非晶合金具有高耐蝕、高耐磨性能,但由于非晶形成能力有限,難以制備大塊非晶樣品。相對(duì)來說,鋁基非晶涂層更有利于工程化應(yīng)用,近些年研究學(xué)者愈發(fā)重視鋁基非晶涂層的研究。目前,鋁基非晶涂層的制備方法包括:激光熔覆[58-59]、熱脈沖[60-61]、熱噴涂和冷噴涂。其中,由于激光的高能量輸入使熔體冷卻速率較慢,導(dǎo)致涂層中非晶相含量較少,因此人們逐漸認(rèn)為激光熔覆不適用于鋁基非晶涂層的制備。例如,Tan等[62]利用激光熔覆制備的Al80Cu15Zn5涂層僅有少量的非晶分布在基體附近。同時(shí),熱脈沖制備的非晶涂層太薄,限制了其應(yīng)用,因此本文主要針對(duì)熱噴涂和冷噴涂技術(shù)進(jìn)行介紹。
2.4.1 熱噴涂
熱噴涂是指通過熱源將噴涂材料加熱至熔融或半熔化狀態(tài),再借助壓縮空氣將其霧化成小顆粒。這些微小的顆粒在壓縮空氣的推動(dòng)下,從噴嘴處以金屬射流的形式高速噴出,猛烈沖擊并附著在預(yù)先處理的工件表面。由于顆粒與工件表面之間存在較大的溫差,顆粒在接觸工件后迅速凝固并堆積,便可得到一定厚度的熱噴涂涂層[63]。根據(jù)熱源和噴射方式可將熱噴涂分為等離子噴涂、超音速火焰噴涂、高速電弧噴涂、爆炸噴涂等。其中常見的3種噴涂技術(shù)特點(diǎn)如表3[64]所示。
2.4.1.1 超音速火焰噴涂
按照助燃劑的不同,超音速火焰噴涂可分為2種,一種為氧氣助燃的HVOF,一種為空氣助燃的HVAF,這2種噴涂技術(shù)都是將特定的燃料(通常為丙烷、丙烯、氫氣或煤油等)在燃燒室內(nèi)燃燒后,用高溫高速的燃料焰流使預(yù)制的鋁基非晶粉末以高速?zèng)_擊向基板,熔融或半熔融的非晶粉末在基體表面迅速凝固形成致密涂層[65],Gao等[66]采用氣霧化法制備了高非晶含量的Al86Ni6Y4.5Co2La1.5粉末,并利用HVAF技術(shù)制備了非晶含量高、致密度高、耐腐蝕性能優(yōu)異的鋁基非晶涂層。袁嘉馳[67]采用HVOF制備了厚度為380 μm的Al-Ni-Co-Y非晶涂層,發(fā)現(xiàn)涂層內(nèi)部結(jié)合緊密,只存在少許孔洞。涂層與基體結(jié)合良好,無明顯縫隙,其截面形貌如圖2所示。
表3 常見熱噴涂技術(shù)的特點(diǎn)
Fig.3 Characteristics of commonly used thermal spraying technology
Spraying technologyTemperature/℃Particle velocity/(m·s?1)Bonding strength/MPaPorosity ratio/%Efficiency /(kg·h?1)Coating thickness/mm Flame spraying3 000≤507-480202-60.05-2.5 Arc spraying4 000-5 000100-20014-501010-250.1-5 Plasma spraying6 000-20 000150-40014-692-52-100.05-5
2.4.1.2 高速電弧噴涂
高速電弧噴涂是指在動(dòng)態(tài)電弧噴涂過程中原位制備鋁基非晶涂層,噴涂使用粉芯絲材,具有制粉工藝簡(jiǎn)單、生產(chǎn)成本低、生產(chǎn)效率高等優(yōu)點(diǎn),目前高速電弧噴涂已形成多種鋁基非晶體系[68]。例如,梁秀兵等[69-70]通過該技術(shù)制備了具有良好耐磨性能的Al-Ni-Mm-Fe鋁基非晶涂層。該涂層相較于AZ91鎂合金和純鋁涂層,在測(cè)試載荷下具有較低的摩擦系數(shù)和磨損量。
2.4.1.3 爆炸噴涂
爆炸噴涂的原理同樣是使粉末以高速?zèng)_擊基體表面,使其快速凝固形成致密度較高的涂層,與超音速火焰噴涂技術(shù)的相同點(diǎn)都是將燃料與助燃劑以一定比例混合,區(qū)別在于爆炸噴涂通過高能量的沖擊波加速粉末。Tailleart等[71]利用爆炸噴涂技術(shù)制備了鋁基非晶涂層,其在2024鋁合金表面的腐蝕過程中起到了較好的犧牲陽極保護(hù)作用。
2.4.2 冷噴涂
冷噴涂其原理是:利用空氣動(dòng)力學(xué)原理,通過加熱設(shè)施預(yù)熱壓縮氣體,使壓縮氣體通過縮放型Laval噴管產(chǎn)生超高速氣流。粉末粒子沿軸向送入氣流中,經(jīng)氣體加速后以高速撞擊基體,通過產(chǎn)生劇烈的塑性變形在基體表面沉積為涂層。由于粉末粒子在整個(gè)沉積過程中溫度低于其熔點(diǎn),因此稱為冷噴涂[72]。冷噴涂的工作溫度較熱噴涂低,粉末在噴涂中保持不融化或者半熔化狀態(tài)。通過將高壓預(yù)熱的主氣流與攜帶粉末的氣流在噴槍前混合,然后以壓縮氣體為加速介質(zhì),將顆粒以較高的速度(300~1 200 m/s)與基體碰撞,顆粒發(fā)生劇烈塑性變形后沉積形成涂層。
利用冷噴涂制備的鋁基非晶涂層會(huì)由于噴涂溫度的不同導(dǎo)致非晶含量的變化。周香林等[73]以Al86Ni7Y5Co1La1非晶為研究對(duì)象,研究了噴涂工藝參數(shù)對(duì)非晶涂組織結(jié)構(gòu)的影響,發(fā)現(xiàn)噴涂溫度顯著影響著涂層的非晶含量,其中溫度越低非晶含量越高,并且涂層內(nèi)部存在著少量裂紋,氣孔率小于4%。冷噴涂具有較高的噴涂速率和沉積效率,涂層顯微組織結(jié)構(gòu)和原始材料可保持一致,避免材料發(fā)生氧化與相變。對(duì)非晶形成能力較低的鋁基非晶體系而言,制粉后可減少因晶化而造成的非晶相流失,使制備的涂層含有較高的非晶相。
圖2 HVOF制備的Al-Ni-Co-Y非晶涂層截面顯微形貌
由于具有長(zhǎng)程無序、短程有序的特殊原子排布,鋁基非晶合金變形過程中不存在位錯(cuò)等變形機(jī)制,使得其強(qiáng)度、硬度等相較于傳統(tǒng)晶態(tài)鋁合金而言更高,在力學(xué)性能上表現(xiàn)出明顯的優(yōu)勢(shì)。
3.1.1 強(qiáng)度
傳統(tǒng)高強(qiáng)鋁合金材料的拉伸強(qiáng)度為700 MPa左右,而鋁基非晶合金的拉伸強(qiáng)度可達(dá)1 000 MPa,Al88Ni10Nd2非晶合金的拉伸強(qiáng)度更是達(dá)到1 300 MPa[74]。如果在非晶基體中進(jìn)一步彌散析出α-Al納米晶,其拉伸強(qiáng)度高達(dá)1 560 MPa[75],強(qiáng)度與部分鋼鐵材料相當(dāng),但是鋼鐵材料的密度卻達(dá)到前者的2倍以上。鋁基非晶合金的壓縮強(qiáng)度也非常高。TAN等[56]利用SPS制備了含Al-Cu微晶和納米晶的Al65Cu16.5Ti18.5復(fù)合非晶材料,其具有非常高的壓縮強(qiáng)度,可達(dá)1 920 MPa。隨后將高熵合金顆粒摻入后得到的鋁基非晶復(fù)合材料的壓縮強(qiáng)度最高可達(dá)3 200 MPa[76],斷口形貌如圖3所示。部分鋁基非晶合金的力學(xué)性能數(shù)據(jù)如表4[38]所示。
表4 典型鋁基非晶合金及其強(qiáng)度
Tab.4 Typical Al-based amorphous alloys and their strength
圖3 鋁基非晶復(fù)合材料在準(zhǔn)靜態(tài)壓縮下的典型工程應(yīng)力-應(yīng)變曲線(a)及其斷口形貌(低倍率(b);高倍率(c))
3.1.2 硬度和耐磨性
鋁基非晶合金的顯微硬度很高,通常為300HV~ 400HV[77]。Al94V4M2(M=Fe,Co,Ni)的顯微硬度達(dá)到470HV[77]。金穎[78]通過快速冷凝技術(shù)制備的Al84Y9Ni4Co1.5Fe0.5TM1非晶合金,其維氏硬度值為360HV~430HV。在600~680 K的溫度進(jìn)行退火處理后,得到鋁基非晶納米晶合金,硬度增加至550HV~580HV。
3.1.3 彈性模量
鋁基非晶合金的彈性模量由于成分不同差異很大,但總體上鋁基非晶合金的彈性模量遠(yuǎn)高于相應(yīng)晶態(tài)合金。Mula等[57]通過SPS制備的Al88Ni6Ti6非晶納米晶樣品,其最大彈性模量達(dá)到77.8 GPa。
從力學(xué)性能上來看,鋁基非晶合金作為結(jié)構(gòu)材料具有廣泛的應(yīng)用前景,但受限于其非晶形成能力,目前尺寸最大的鑄態(tài)單一非晶相的鋁基非晶樣品只有2.5 mm。通過粉末冶金的方式可使其尺寸有一定程度的提升,但同樣難以在結(jié)構(gòu)材料上運(yùn)用。同時(shí),目前的制備技術(shù)無法進(jìn)行非晶合金的精密制造,因此很大程度上限制了其應(yīng)用。
通過成分設(shè)計(jì),Mousavi等[79]利用單輥旋淬法制備的Al82.3Co10.1Ce4.8La2.8非晶薄帶在較寬的過冷液相區(qū)內(nèi)具有較高的熱穩(wěn)定性,遠(yuǎn)超一般的鋁基非晶合金。熱穩(wěn)定性的提高有望進(jìn)一步提升其鑄態(tài)尺寸,從而推動(dòng)鋁基非晶合金的發(fā)展與應(yīng)用。同時(shí),鋁基非晶合金還具有較低的熱膨脹系數(shù)。Fukuhara等[80]制備的鋁基非晶合金Al88.5Ni8Y3.5和Al88.5Ni8Mm3.5的熱膨脹系數(shù)比傳統(tǒng)鋁合金A6061、A5056要低20%。
Al基非晶合金綜合了非晶組織結(jié)構(gòu)均勻和鋁元素易鈍化的優(yōu)勢(shì)[81],在腐蝕介質(zhì)中易生成鈍化膜,延緩腐蝕進(jìn)程。鋁基非晶涂層作為鋁基非晶合金最有潛力的應(yīng)用方向,是近年來的研究熱點(diǎn)。其主要圍繞耐蝕性能展開,研究發(fā)現(xiàn),混合適量納米晶的鋁基非晶涂層在耐蝕性上表現(xiàn)得更加出色。梁秀兵等[31]總結(jié)了鋁基非晶納米晶耐腐蝕的機(jī)理主要有4點(diǎn):1)納米晶體能夠促使合金中的雜質(zhì)均勻分布,并引起鈍化元素的混亂,從而為形成穩(wěn)定的鈍化膜提供了一個(gè)均勻的基底;2)非晶合金中的原子處于非平衡狀態(tài),而晶化過程使合金的結(jié)構(gòu)得以弛豫,原子間的相對(duì)結(jié)合力得到增強(qiáng),從而減緩了溶液與原子之間的反應(yīng)速度;3)納米尺寸的Al粒子具有高度的活性,容易與氧反應(yīng)形成鈍化膜;4)晶化過程有助于減小合金內(nèi)部的應(yīng)力,使其更加穩(wěn)定。當(dāng)前的研究現(xiàn)狀表明,可實(shí)現(xiàn)工程應(yīng)用的鋁基涂層制備技術(shù)主要是冷噴涂、超音速火焰噴涂和電弧噴涂技術(shù),而通過上述技術(shù)制備的涂層或多或少地含有少量孔隙。孔隙的存在會(huì)使材料的耐蝕性能下降,因此后續(xù)研究不僅要對(duì)合金體系進(jìn)行成分優(yōu)化,也要對(duì)工藝方法進(jìn)一步改善以降低孔隙率,實(shí)現(xiàn)非晶與納米晶的比例可控。
Lahiri等[82]和Pitchuka等[83]采用氣霧化制備初始粉末,使用冷噴涂在6061鋁合金表面沉積了Al90.05Y4.4Ni4.3Co0.9Sc0.35五元鋁基非晶涂層,涂層界面如圖4所示。結(jié)果發(fā)現(xiàn),與6061基體相比,涂層的耐磨性提高了600%,耐蝕性能提高了5倍。Babu等[84]采用冷噴涂技術(shù)使用同樣的非晶體系在6061鋁合金上沉積了非晶/納米晶合金粉末,并將涂層在573 K(低于玻璃轉(zhuǎn)變溫度593 K)進(jìn)行了熱處理,分別經(jīng)過2、4 d腐蝕測(cè)試的結(jié)果如圖5所示。結(jié)果發(fā)現(xiàn),與6061鋁合金基材相比,冷噴涂非晶/納米晶涂層在鹽霧腐蝕測(cè)試中形成的反應(yīng)層厚度要低60%左右,而經(jīng)過熱處理的涂層反應(yīng)層厚度進(jìn)一步減小。Wen等[85]采用HVAF技術(shù)在ZM5鎂合金表面制備了Al86Ni6Y4.5Co2La1.5非晶涂層,涂層的顯微硬度達(dá)到420HV。涂層能夠經(jīng)受500 h的中性鹽霧試驗(yàn),無明顯腐蝕。此外,與基體相比,涂層表現(xiàn)出更高的腐蝕電位和小2個(gè)數(shù)量級(jí)的腐蝕電流密度。王曉明等[86]和邱實(shí)等[87]分別在5083鋁合金和2024鋁合金表面制備了鋁基非晶涂層,發(fā)現(xiàn)涂層的耐蝕性不僅更好,而且顯微硬度也有提高。梁秀兵等[88]在45鋼表面制備了含有高非晶含量的Al-Ni-Zr非晶納米晶復(fù)合涂層,發(fā)現(xiàn)復(fù)合涂層各相腐蝕的先后順序依次為富Al相、氧化物相、非晶相。王琦等[89]分析了Al-RE-TM系鋁基非晶長(zhǎng)期腐蝕機(jī)制,發(fā)現(xiàn)在0.001 mor/L氯化鈉條件下,非晶鋁合金在最初浸泡階段,其耐蝕性會(huì)逐漸增強(qiáng),腐蝕速率降低,表現(xiàn)為鈍化膜從有缺陷的狀態(tài)逐漸變成完整的狀態(tài);在鈍化膜保持完整階段,整個(gè)體系的耐蝕性達(dá)到最強(qiáng),腐蝕速率降到最低。隨后他們研究了孔隙率對(duì)鋁基非晶合金涂層腐蝕行為的影響[90],發(fā)現(xiàn)相對(duì)于1.36%高孔隙率涂層,0.86%低孔隙率涂層具有更大的接觸角,疏水性更好,且其電荷轉(zhuǎn)移電阻(Rct)約為高孔隙率涂層的2倍,說明低的孔隙率帶來更優(yōu)異的耐蝕性。
近年來鋁基非晶合金的功能特性也受到了廣泛關(guān)注。沈瑩瑩[91]制備了Al-Ni-Y-Co-Fe五元非晶,并進(jìn)行了磁性研究,結(jié)果發(fā)現(xiàn),該合金完全非晶態(tài)和部分晶化態(tài)下磁性均為順磁性與抗磁性的疊加。完全非晶態(tài)的初始磁化率為2.41×10?4,而不完全非晶態(tài)的初始磁化率是2.73×10?4,導(dǎo)致不完全非晶態(tài)更易磁化。Xu等[92]采用Al基非晶合金為電極陽極、石墨版為陰極的電絮凝技術(shù)成功降解了含油廢水,但反應(yīng)過程中非晶陽極出現(xiàn)了氧化腐蝕,期待進(jìn)一步實(shí)驗(yàn)改進(jìn)。Gao等[93]發(fā)現(xiàn)了一類新的Al基金屬玻璃,它在水的沸點(diǎn)附近表現(xiàn)出類似聚合物的熱塑性成形能力。
圖4 冷噴涂制備的Al基非晶涂層截面的SEM照片:厚度均勻(a);冷噴涂形成的扁平結(jié)構(gòu)(b);與Al - 6061基體結(jié)合良好(c)
注:AS-sprayed;HT-heat treated
圖5 基底樣品表面的SEM圖像(a、b、c);噴涂層(d、e、f)和熱處理前后的涂層(g、h、i)分別進(jìn)行2、4 d鹽霧試驗(yàn)的結(jié)果
Fig.5 SEM images of sample surfaces of substrate (a, b, c); as-sprayed coating (d, e, f); and heat-treated coatings (g, h, i) before and after 2 days and 4 days of salt fog tests, respectively
本文對(duì)鋁基非晶合金的成分體系、制備方法、性能特點(diǎn)等進(jìn)行了綜述,從二元合金體系到多元合金體系,系統(tǒng)介紹了典型鋁基非晶合金成分體系,并進(jìn)一步概述了成分設(shè)計(jì)準(zhǔn)則。對(duì)粉末狀、薄帶狀、塊狀鋁基非晶合金的制備方法進(jìn)行了介紹,包括粉末制備的氣霧化法與機(jī)械合金化法、薄帶制備的單輥甩帶法、塊體制備的直接凝固法與粉末冶金法,概述了各制備方法的原理與典型應(yīng)用成分。由于具有特殊的原子排布,鋁基非晶合金表現(xiàn)出一系列優(yōu)于傳統(tǒng)晶態(tài)材料的性能特點(diǎn),本文針對(duì)力學(xué)性能、熱學(xué)性能、耐蝕性能等方面進(jìn)行了詳細(xì)介紹,列出了典型鋁基非晶合金的性能數(shù)據(jù)。
目前,鋁基非晶合金在應(yīng)用上的最大瓶頸在于非晶形成能力不足,難以制備大塊的非晶合金樣品,因此需根據(jù)成分設(shè)計(jì)準(zhǔn)則,結(jié)合非晶形成能力判據(jù)與高通量實(shí)驗(yàn)技術(shù),在非晶合金成分設(shè)計(jì)上實(shí)現(xiàn)新的突破。同時(shí),目前有望實(shí)現(xiàn)大尺寸鋁基非晶合金樣品制備的技術(shù)是粉末冶金方法,在粉末制備、粉末成形等工藝上要進(jìn)一步優(yōu)化,實(shí)現(xiàn)單一非晶態(tài)與非晶/納米晶復(fù)合結(jié)構(gòu)的可調(diào)可控,以適用于不同的應(yīng)用場(chǎng)景。最后,涂層是目前鋁基非晶合金最具應(yīng)用前景的工程化方式,要持續(xù)針對(duì)涂層成分、噴涂工藝、后處理工藝等進(jìn)行優(yōu)化設(shè)計(jì),找準(zhǔn)應(yīng)用場(chǎng)景(如海洋防腐等),實(shí)現(xiàn)鋁基非晶合金的工程化應(yīng)用。
[1] 郭威, 余圣, 呂書林, 等. 非晶基復(fù)合材料研究進(jìn)展與展望[J]. 特種鑄造及有色合金, 2022, 42(6): 661-671.
GUO W, YU S, LYU S L, et al. Progress and Prospect on Amorphous Alloy Matrix Composites[J]. Special Casting & Nonferrous Alloys, 2022, 42(6): 661-671.
[2] WANG M Z, LYU S L, WU S S, et al. Rejuvenation Behavior of Cu-Zr-Al Metallic Glass under Different Thermal Treatment: Experiments and Simulation[J]. Journal of Alloys and Compounds, 2023, 934: 168058.
[3] QIAO J C, WANG Q, PELLETIER J M, et al. Structural Heterogeneities and Mechanical Behavior of Amorphous Alloys[J]. Progress in Materials Science, 2019, 104: 250-329.
[4] 王兵, 高選喬, 喬吉超. 金屬玻璃弛豫行為及其機(jī)理的模擬研究進(jìn)展[J]. 稀有金屬材料與工程, 2024, 53(1) 70-77.
WANG B, GAO X Q, QIAO J C. Relaxation Behavior in Metallic Glasses and Related Mechanisms by Simulation Method: A Brief Review[J]. Rare Metal Materials and Engineering, 2024, 53(1): 70-77.
[5] ZHU C, ZHAO Z H, ZHU Q F, et al. Structures and Macrosegregation of a 2024 Aluminum Alloy Fabricated by Direct Chill Casting with Double Cooling Field[J]. China Foundry, 2022, 19(1): 1-8.
[6] DAVIES H A, HULL J B. A Non-Crystalline Phase in Splat-Quenched Germanium[J]. Scripta Metallurgica, 1973, 7(6): 637-641.
[7] GUO W, NIIYAMA T, YAMADA R, et al. Synthesis and Mechanical Properties of Highly Structure-Controlled Zr-Based Metallic Glasses by Thermal Rejuvenation Technique[J]. Journal of Physics: Condensed Matter, 2023, 35(15): 154004.
[8] BURTON J J, RAY R P. Crystallization of an Amorphous Palladium Silicon Alloy[J]. Journal of Non-Crys-ta-lline Solids, 1971,6(4): 393-396.
[9] FURRER P, WARLIMONT H. Crystalline and Amorphous Structures of Rapidly Solidified AlCr Alloys[J]. Materials Science and Engineering, 1977, 28(1): 127-137.
[10] LARSON D J, PETFORD-LONG A K, CEREZO A, et al. Three-Dimensional Atom Probe Studies of Metallic Multilayers[J]. Acta Materialia, 1999, 47(15): 4019-4024.
[11] LARSON D J, FOORD D T, PETFORD-LONG A K, et al. Focused Ion-Beam Milling for Field-Ion Specimen Preparation:[J]. Ultramicroscopy, 1998, 75(3): 147-159.
[12] SHAO Y M, ZHENG W J, GUO W, et al. In Situ Fe-Rich Particle Reinforced Mg-Based Metallic Glass Matrix Composites via Dealloying in Metallic Melt[J]. Materials Letters, 2021, 285: 129165.
[13] LOUZGUINE D V, INOUE A. Crystallization Behaviour of Al-Based Metallic Glasses below and above the Glass-Transition Temperature[J]. Journal of Non-Crys-ta--lline Solids, 2002, 311(3): 281-293.
[14] LOUZGUINE-LUZGIN D V, INOUE A. Comparative Study of the Effect of Cold Rolling on the Structure of Al- RE-Ni-Co (RE = Rare-Earth Metals) Amorphous and Glassy Alloys[J]. Journal of Non Crystalline Solids, 2006, 352(36/37): 3903-3909.
[15] WANG M Z, LYU S L, WU S S, et al. Rejuvenation Behaviors of Recovery-Annealed Cu–Zr Metallic Glass with Different Thermal Treatment Conditions: A Molecular Dynamics Study[J]. Journal of Materials Research and Technology, 2022, 20: 3355-3362.
[16] WANG M Z, GUO W, LYU S L, et al. Effect of Deep Cryogenic Cycling Treatment on Structure and Properties of Metallic Glass: A Review[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(10): 2879-2897.
[17] SAKSL K, JóVáRI P, FRANZ H, et al. Atomic Structure of Al88Y7Fe5Metallic Glass[J]. Journal of Applied Physics, 2005, 97(11): 113507-1-8.
[18] HEBERT R J, PEREPEZKO J H, R?SNER H, et al. Dislocation Formation during Deformation-Induced Synthesis of Nanocrystals in Amorphous and Partially Crystalline Amorphous Al88Y7Fe5Alloy[J]. Scripta Materialia, 2006, 54(1): 25-29.
[19] GANGOPADHYAY A K, CROAT T K, KELTON K F. The Effect of Phase Separation on Subsequent Crystall-ization in Al88Gd6La2Ni4[J]. Acta Materialia, 2000, 48(16): 4035- 4043.
[20] SAHU K K, MAURO N A, LONGSTRETH-SPOOR L, et al. Phase Separation Mediated Devitrification of Al88Y7Fe5Glasses[J]. Acta Materialia, 2010, 58(12): 4199-4206.
[21] 全翔, 韋啟榮, 李佳斌, 等. 稀土Y對(duì)再生6061鋁合金微觀組織和性能的影響[J]. 粉末冶金材料科學(xué)與工程, 2023, 28(4): 368-378.
QUAN X, WEI Q R, LI J B, et al. EFFECTS OF RARE EARTH Y ON THE MICROSTRUCTURE AND PROP-E-RTIES OF RECYCLED 6061 ALUMINIUM ALLOY[J]. MATERIALS SCIENCE AND ENGINEERING OF POWDER METALLURGY, 2023, 28(4): 368-378.
[22] LI X M, WANG Y, YI J J, et al. Influence of Substitut-ion of La by Gd on Crystallization Behavior of Al-Ni- La Metallic Glasses[J]. Journal of Alloys and Compounds, 2019, 790: 626-632.
[23] STRATTON W G, HAMANN J, PEREPEZKO J H, et al. Aluminum Nanoscale Order in Amorphous Al92Sm8 Measured by Fluctuation Electron Microscopy[J]. App-lied Physics Letters, 2005, 86(14): 141910-13.
[24] INOUE A, KITAMURA A, MASUMOTO T. The Effect of Aluminium on Mechanical Properties and Thermal Stability of (Fe, Co, Ni)-Al-B Ternary Amorphous All-oys[J]. Journal of Materials Science, 1981, 16(7): 1895- 1908.
[25] INOUE A, KIMURA H M, MASUMOTO T, et al. Al- Ge-(Cr or Mn) and Al-Si-(Cr or Mn) Quasicrystals with High Metalloid Concentration Prepared by Rapid Quenching[J]. Journal of Materials Science Letters, 1987, 6(7): 771-774.
[26] INOUE A, OHTERA K, MASUMOTO T. New Amorp-hous Al-Y, Al-La and Al-Ce Alloys Prepared by Melt Spinning[J]. Japanese Journal of Applied Physics, 1988, 27(5A): L736.
[27] INOUE A, OHTERA K, KITA K, et al. New Amorphous Alloys with Good Ductility in Al-Ce-M (M=NB, Fe, Co, Ni or Cu) Systems[J]. Japanese Journal of Applied Physics, 1988, 27(10A): L1796.
[28] INOUE A, OHTERA K, TSAI A P, et al. New Amorp-hous Alloys with Good Ductility in Al-Y-M and Al-La- M (M=Fe, Co, Ni or Cu) Systems[J]. Japanese Journal of Applied Physics, 1988, 27(3A): L280.
[29] INOUE A. Amorphous, Nanoquasicrystalline and Nano--c-r-ys-talline Alloys in Al-Based Systems[J]. Progress in Materials Science, 1998, 43(5): 365-520.
[30] 梁秀兵, 周志丹, 張志彬, 等. 鋁基非晶材料研究與再制造應(yīng)用前景[J]. 材料導(dǎo)報(bào), 2021, 35(1): 3-10.
LIANG X B, ZHOU Z D, ZHANG Z B, et al. Al-Based Amorphous Materials: Research and Remanufacturing Application Prospects[J]. Materials Reports, 2021, 35(1): 3-10.
[31] ZHANG W, CHEN S Q, ZHU Z W, et al. Effect of Substituting Elements on Thermal Stability and Glass- Forming Ability of an Al-Based Al Ni Er Metallic Glass[J]. Journal of Alloys and Compounds, 2017, 707: 97-101.
[32] 李曉峰. Al-Ni-Zr/Ce系合金非晶形成能力及力學(xué)和電化學(xué)性能研究[D]. 長(zhǎng)沙: 中南大學(xué), 2013.
LI X F. Research on Glass Forming Ability of Al-Ni-Zr/ Ce Alloy and Its Mechanical and Electrochemical Properties[D].Changsha: Central South University, 2013.
[33] HUANG Z H, LI J F, RAO Q L, et al. Effects of Replacing Ni by Co on the Crystallization Behaviors of Al–Ni–La Amorphous Alloys[J]. Intermetallics, 2008, 16(5): 727-731.
[34] EGAMI T, WASEDA Y. Atomic Size Effect on the Formability of Metallic Glasses[J]. Journal of Non Crystalline Solids, 1984, 64(1): 113-134.
[35] Sá LISBOA R D, BOLFARINI C, BOTTA F W J, et al. Topological Instability as a Criterion for Design and Selection of Aluminum-Based Glass-Former Alloys[J]. Applied Physics Letters, 2005, 86(21): 211904-1-3.
[36] KIM T S, HONG S J, LEE J H, et al. Structural Change of the Melt Spun Al–10Ni–5Y by the Addition of 1%Sr[J]. Materials Science and Engineering: A, 2001, 311(1/2): 226-231.
[37] SAHU A, MAURYA R S, LAHA T. Advances in Synthesis and Characterization of Aluminum-Based Amorphous Alloys: A Review[J]. Advanced Engineering Materials, 2024, 26(1): 2301150.
[38] 張章, 熊賢仲, 乙姣姣, 等. Al-Ni-RE非晶合金的晶化行為和熱穩(wěn)定性[J]. 物理學(xué)報(bào), 2013, 62(13): 428-435.
ZHANG Z, XIONG X Z, YI J J, et al. Crystallization Behavior and Thermal Stability of Al-Ni-RE Metallic Glasses[J]. Acta Physica Sinica, 2013, 62(13): 428-435.
[39] MA C S, ZHANG J, HOU W L, et al. Efficient Atomic Packing Clusters and Glass Formation in Ternary Al-Based Metallic Glasses[J]. Philosophical Magazine Letters, 2008, 88(8): 599-605.
[40] SHENG H W, CHENG Y Q, LEE P L, et al. Atomic Packing in Multicomponent Aluminum-Based Metallic Glasses[J]. Acta Materialia, 2008, 56(20): 6264-6272.
[41] SHAO Y M, ZHANG Z, GUO W, et al. Development of Zr-Based Metallic Glass Matrix Composites with Hybrid Reinforcing Structures[J]. Intermetallics, 2021, 137: 107294.
[42] 劉祖銘, 黃伯云, 劉詠, 等. 氬氣霧化制備Al82Ni10Y8非晶態(tài)結(jié)構(gòu)粉末[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2004, 35(5): 707-713.
LIU Z M, HUANG B Y, LIU Y, et al. Fabrication of Al82Ni10Y8Amorphous Structured Powders by Argon Gas Atomization[J]. Journal of Central South University (Science and Technology), 2004, 35(5): 707-713.
[43] 鄧姍珊. 鋁基非晶/納米晶合金復(fù)合材料制備及動(dòng)態(tài)力學(xué)行為[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2018.
DENG S S. Preparation and Dynamic Mechanical Behavior of Aluminum-Based Amorphous/Nanocrystalline Alloy Composites[D].Harbin: Harbin Institute of Technology, 2018.
[44] WANG L Y, JIANG J L, WANG D K, et al. Control of Atomic-Scale Structure and Properties of Metallic Glasses: A Review of Cryogenic Treatment[J]. Rare Metal Materials Engineering, 2024, 53(1): 78-84.
[45] 袁明. 高壓燒結(jié)法制備Al60Cu20Ti15Zr5/Al非晶復(fù)合材料及其力學(xué)性能研究[D]. 湘潭: 湘潭大學(xué), 2013.
YUAN M. Study on Preparation and Mechanical Properties of Al60Cu20Ti15Zr5/Al Amorphous Composites by High Pressure Sintering Method[D]. Xiangtan: Xiangtan University, 2013.
[46] SUN B A, PAN M X, ZHAO D Q, et al. Aluminum-Rich Bulk Metallic Glasses[J]. Scripta Materialia, 2008, 59(10): 1159-1162.
[47] TSAI A P, INOUE A, MASUMOTO T. Formation of Metal-Metal Type Aluminum-Based Amorphous Alloys[J]. Metallurgical Transactions A, 1988, 19(5): 1369-1371.
[48] YANG B J, LU W Y, ZHANG J L, et al. Melt Fluxing to Elevate the Forming Ability of Al-Based Bulk Metallic Glasses[J]. Scientific Reports, 2017, 7: 11053.
[49] 周志丹. 鋁基非晶涂層的制備及損傷行為研究[D]. 徐州: 中國(guó)礦業(yè)大學(xué), 2021.
ZHOU Z D. Preparation and Damage Behavior of Aluminum-Based Amorphous Coatings[D]. Xu Zhou:China University of Mining and Technology, 2021.
[50] 吳念初. 鋁基塊體金屬玻璃結(jié)構(gòu)模型及其玻璃形成能力的研究[D]. 沈陽: 東北大學(xué), 2014.
WU N C. Study on Structural Model of Aluminum-Based Bulk Metallic Glass and Its Glass-Forming Ability[D].Shenyang: Northeastern University, 2014.
[51] ZHANG Z, ZHOU W, XIONG X Z, et al. Glass Forming Ability and Primary Crystallization Behavior of Al–Ni–Ce Alloys[J]. Intermetallics, 2012, 24: 1-6.
[52] WANG J Q, LIU Y H, IMHOFF S, et al. Enhance the Thermal Stability and Glass Forming Ability of Al-Based Metallic Glass by Ca Minor-Alloying[J]. Intermetallics, 2012, 29: 35-40.
[53] MASUMOTO T. Recent Progress in Amorphous Metallic Materials in Japan[J]. Materials Science and Engineering: A, 1994, 179/180: 8-16.
[54] 曹帥. 粉末冶金制備大塊Al基非晶合金及其力學(xué)性能研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2010.
CAO S. Preparation and Mechanical Properties of Bulk Al-Based Amorphous Alloys by Powder Metallurgy[D]. Harbin: Harbin Institute of Technology, 2010.
[55] TAN Z, WANG L, XUE Y F, et al. Strength-Improved Al65Cu16.5Ti18.5Amorphous/Crystalline Alloy Synthesized by Spark Plasma Sintering[J]. Materials Science and Engineering: A, 2015, 642: 377-380.
[56] MULA S, MONDAL K, GHOSH S, et al. Structure and Mechanical Properties of Al–Ni–Ti Amorphous Powder Consolidated by Pressure-Less, Pressure-Assisted and Spark Plasma Sintering[J]. Materials Science and Engineering: A, 2010, 527(16/17): 3757-3763.
[57] GUO W, SHAO Y M, QIN Z H, et al. Development of In-Situ Hybrid Phase Reinforced Mg-Based Metallic Glass Matrix Composites[J]. Journal of Alloys and Compounds, 2020, 829: 154544.
[58] CHEN H X, KONG D J. Effects of Laser Remelting Speeds on Microstructure, Immersion Corrosion, and Electrochemical Corrosion of Arc–Sprayed Amorphous Al–Ti–Ni Coatings[J]. Journal of Alloys and Compounds, 2019, 771: 584-594.
[59] PRESUEL-MORENO F, JAKAB M A, TAILLEART N, et al. Corrosion-Resistant Metallic Coatings[J]. Materials Today, 2008, 11(10): 14-23.
[60] GUO W, WANG M Z, QIN Z H, et al. Improving the Glass-Forming Ability and Plasticity of a TiCu-Based Bulk Metallic Glass Composite by Minor Ta Doping[J]. Journal of Alloys and Compounds, 2021, 884: 161054.
[61] TAN C L, ZHU H M, KUANG T C, et al. Laser Cladding Al-Based Amorphous-Nanocrystalline Composite Coatings on AZ80 Magnesium Alloy under Water Cooling Condition[J]. Journal of Alloys and Compounds, 2017, 690: 108-115.
[62] 李浩然, 王高松. 熱噴涂及鋁基防腐涂層的研究現(xiàn)狀[J]. 有色金屬加工, 2023, 52(3): 1-5.
LI H R, WANG G S. Research Status of Thermal Spraying and Aluminum-Based Anticorrosive Coatings[J]. Nonferrous Metals Processing, 2023, 52(3): 1-5.
[63] 楊龍崗. 鋁基非晶防護(hù)涂層的制備與耐蝕性能的研究[D]. 沈陽: 東北大學(xué), 2014.
YANG L G. Study on Preparation and Corrosion Resistance of Aluminum-Based Amorphous Protective Coating[D].Shenyang: Northeastern University, 2014.
[64] 張志彬, 梁秀兵, 陳永雄, 等. 熱噴涂工藝制備鋁基非晶態(tài)合金材料研究進(jìn)展[J]. 材料工程, 2012, 40(2): 86-90.
ZHANG Z B, LIANG X B, CHEN Y X, et al. Research Progress of Al-Based Amorphous Alloy Materials Prepared by Thermal Spraying Process[J]. Journal of Materials Engineering, 2012, 40(2): 86-90.
[65] GAO M H, LU W Y, YANG B J, et al. High Corrosion and Wear Resistance of Al-Based Amorphous Metallic Coating Synthesized by HVAF Spraying[J]. Journal of Alloys and Compounds, 2018, 735: 1363-1373.
[66] 袁嘉馳. 面向船舶艉軸再制造的鋁基非晶涂層制備與性能研究[D]. 徐州: 中國(guó)礦業(yè)大學(xué), 2023.
YUAN J C. Preparation and Properties of Aluminum-Based Amorphous Coating for Remanufacturing of Ship Stern Shaft[D]. Xu Zhou:China University of Mining and Technology, 2023.
[67] 毛軒. 冷噴涂鐵基非晶合金涂層的制備及組織性能研究[D]. 西安: 西安建筑科技大學(xué), 2022.
MAO X. Preparation, Microstructure and Properties of Cold Sprayed Fe-Based Amorphous Alloy Coatings[D].Xi’an: Xi’an University of Architecture and Technology, 2022.
[68] 梁秀兵, 徐濱士, 魏世丞, 等. 熱噴涂亞穩(wěn)態(tài)復(fù)合涂層研究進(jìn)展[J]. 材料導(dǎo)報(bào), 2009, 23(5): 1-4.
LIANG X B, XU B S, WEI S C, et al. Research Progress in Thermal Spraying Metastable Composite Coatings[J]. Materials Reports, 2009, 23(5): 1-4.
[69] ZHANG Z B, LIANG X B, CHEN Y X, et al. Abrasion Resistance of Al-Ni-mm-Fe Amorphous and Nanocrystalline Composite Coating on the Surface of AZ91 Magnesium Alloy[J]. Physics Procedia, 2013, 50: 156-162.
[70] TAILLEART N R, GAUTHIER B, EIDELMAN S, et al. Metallurgical and Physical Factors Controlling the Multi-Functional Corrosion Properties of Pulsed Thermal-Sprayed Al-Co-Ce Coatings[J]. CORROSION, 2012, 68(3): 35006-1-035006-26.
[71] 孫澄川. 冷噴涂鋁基非晶合金的制備及預(yù)熱對(duì)顆粒沉積行為的影響[D]. 北京: 北京科技大學(xué), 2020.
SUN C C. Preparation of Cold Sprayed Aluminum- based Amorphous Alloy and Effect of Preheating on Particle Deposition Behavior[D]. Beijing: Beijing University of Science and Technology, 2020.
[72] 周香林, 張濟(jì)山, 巫湘坤. 先進(jìn)冷噴涂技術(shù)與應(yīng)用[M]. 北京: 機(jī)械工業(yè)出版社, 2011.
ZHOU X L, ZHANG J S, WU X K. Advanced Cold Spraying Technology and Its Application[M]. Beijing: China Machine Press, 2011.
[73] KIM Y H, CHOI G S, KIM I G, et al. High-Temperature Mechanical Properties and Structural Change in Amorphous Al-Ni-Fe-Nd Alloys[J]. Materials Transactions, JIM, 1996, 37(9): 1471-1478.
[74] INOUE A, KIMURA H. Fabrications and Mechanical Properties of Bulk Amorphous, Nanocrystalline, Nanoquasicrystalline Alloys in Aluminum-Based System[J]. Journal of Light Metals, 2001, 1(1): 31-41.
[75] TAN Z, WANG L, XUE Y F, et al. High-Entropy Alloy Particle Reinforced Al-Based Amorphous Alloy Composite with Ultrahigh Strength Prepared by Spark Plasma Sintering[J]. Materials & Design, 2016, 109: 219-226.
[76] CARDOSO K R, ESCORIAL A G, LIEBLICH M, et al. Amorphous and Nanostructured Al–Fe–Nd Powders Obtained by Gas Atomization[J]. Materials Science and Engineering: A, 2001, 315(1/2): 89-97.
[77] 金穎. 高硬度耐熱鋁基非晶納米晶合金的制備及晶化行為研究[D]. 天津: 天津大學(xué), 2020.
JIN Y.Study on Preparation and Crystallization Behavior of High Hardness and Heat Resistant Al-based Amorphous Nanocrystalline Alloy[D].Tianjin: Tianjin University, 2020.
[78] ALI MOUSAVI S, HASHEMI S H, ASHRAFI A, et al. Characterization and Corrosion Behavior of Al–Co– Rare Earth (Ce-La) Amorphous Alloy[J]. Journal of Rare Earths, 2023, 41(5): 771-779.
[79] FUKUHARA M, WADA T, INOUE A. Ultrasonic Characteristics of Porous Pd42.5Cu30Ni7.5P20 Glassy Alloys[J]. Journal of Applied Physics, 2007, 102(8): 083502-1-7.
[80] 回麗, 周松, 許良, 等. 鹽水環(huán)境對(duì)預(yù)腐蝕鋁合金腐蝕疲勞性能的影響[J]. 航空材料學(xué)報(bào), 2012, 32(3): 73-78.
HUI L, ZHOU S, XU L, et al. Influence of Saline Environment on Fatigue Property of Pre-Corroded Aluminum Alloy[J]. Journal of Aeronautical Materials, 2012, 32(3): 73-78.
[81] LAHIRI D, GILL P, SCUDINO S, et al. Cold Sprayed Aluminum Based Glassy Coating: Synthesis, Wear and Corrosion Properties[J]. Surface & Coatings Technology, 2013, 232: 33-40.
[82] PITCHUKA S B, BOESL B, ZHANG C, et al. Dry Sliding Wear Behavior of Cold Sprayed Aluminum Amorphous/Nanocrystalline Alloy Coatings[J]. Surface and Coatings Technology, 2014, 238: 118-125.
[83] BABU P S, VENKATESH L, JYOTHIRMAYI A, et al. Salt Spray (Fog) Corrosion Behavior of Cold-Sprayed Aluminum Amorphous/Nanocrystalline Alloy Coating[J]. Journal of Thermal Spray Technology, 2022, 31(4): 1173-1183.
[84] WEN S, WANG X M, REN Z Q. Microstructure and Corrosion Resistance of an HVAF-Sprayed Al-Based Amorphous Coating on Magnesium Alloys[J]. Coatings, 2022, 12(4): 425.
[85] 王曉明, 朱勝, 楊柏俊, 等. 磁場(chǎng)輔助激光熔覆鋁基金屬玻璃覆層[J]. 航空學(xué)報(bào), 2018, 39(11): 226-234.
WANG X M, ZHU S, YANG B J, et al. Aluminum- Based Metallic Glass Coatings Prepared with Magnetic Field Assisted Laser Cladding[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 226-234.
[86] 邱實(shí), 張連民, 胡紅祥, 等. HVAF制備鋁基非晶合金涂層及其腐蝕行為研究[J]. 中國(guó)艦船研究, 2020, 15(4): 89-96.
QIU S, ZHANG L M, HU H X, et al. Preparation of HVAF Prepared Al-Based Amorphous Coating and Its Corrosion Behavior Characterization[J]. Chinese Journal of Ship Research, 2020, 15(4): 89-96.
[87] 梁秀兵, 范建文, 張志彬, 等. 鋁基非晶納米晶復(fù)合涂層顯微組織與腐蝕性能研究[J]. 金屬學(xué)報(bào), 2018, 54(8): 1193-1203.
LIANG X B, FAN J W, ZHANG Z B, et al. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. Acta Metallurgica Sinica, 2018, 54(8): 1193-1203.
[88] 王琦, 張鎖德, 王建強(qiáng).氯離子環(huán)境下非晶鋁合金腐蝕特性研究[C]//第十一屆全國(guó)腐蝕與防護(hù)大會(huì)論文摘要集. 沈陽: 2021, 182-183.
WANG Q, ZHANG S J, WANG J Q. Study on Corrosion Characteristics of Amorphous Aluminum Alloy in Chloride Environment[C]//Abstract of the 11th National Congress on corrosion and Protection. Shen Yang: 2021, 182-183.
[89] 邱實(shí), 呂威閆, 王琦, 等. 孔隙特性對(duì)鋁基非晶合金涂層腐蝕行為的影響[J/OL]. 材料工程(2024-01-19) [2024- 02-02]. http://kns.cnki.net/kcms/detail/11.1800. tb.20240118. 1701.008.html.
QIUN S, LYU W Y, WANG Q. Effect of Pore Characteristics on Corrosion Behavior of Al-based Amorphous Alloy Coating[J/OL]. Material engineering(2024-01-19) [2024-02-02]. http://kns.cnki.net/kcms/detail/11.1800.tb. 20240118. 1701.008.html.
[90] 沈瑩瑩. Al-Ni-Y-Co-Fe鋁基非晶態(tài)及部分晶化態(tài)合金的磁性研究[D]. 沈陽: 沈陽工業(yè)大學(xué), 2015.
SHEN Y Y.Study on Magnetic Properties of Al-Ni-Y- Co-Fe Al-based Amorphous and Partially Crystallized Alloys[D].Shenyang: Shenyang University of Technology, 2015.
[91] XU X C, QIU K Q. Electrocoagulation Degradation of Oily Wastewater by Using Al-Based Amorphous Alloy[J]. Engineering Science, 2021, 6(1): 12.
[92] GAO M, PEREPEZKO J H. Al-Based Amorphous Metallic Plastics[J]. Advanced Engineering Materials, 2019, 21(4): 1800930.
Progress in Research on Preparation, Properties and Application of Al-based Amorphous Alloys
CAO Ziheng1, GUO Wei1,2,3*, LYU Shulin1, WANG Jincheng2, WU Shusen1
(1. State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China; 3. Research Institute of Huazhong University of Science and Technology in Shenzhen, Guangdong Shenzhen 518057, China)
Aluminum-based amorphous alloys have a wide application prospect in many fields because of their unique physical and chemical properties. The composition system, preparation methods, properties and application of aluminum-based amorphous alloys were reviewed in this paper. First of all, the development history and composition system of aluminum-based amorphous alloys were introduced. At present, aluminum-based amorphous alloys can be divided into three major systems of binary, ternary and multicomponent systems, and two aspects of comprehensive properties and forming ability. At present, the aluminum-based amorphous system is mainly more than ternary system, gradually developing to multicomponent system. Secondly, the preparation methods of aluminum-based amorphous alloys were systematically introduced, including the preparation of powder, thin ribbon and bulk samples. Compared with the preparation of amorphous ribbons, the preparation methods of bulk and powder are more abundant. Powdered amorphous is usually used as the prefabricated material of aluminum-based amorphous coating. Then, the performance characteristics, application status and development trend of aluminum-based amorphous alloy were introduced in detail. From the point of view of properties, aluminum-based amorphous alloy performs well in strength, hardness and corrosion resistance. At present, it is mainly used in the form of coating. There are also some applications as functional materials by using the magnetic and thermoplastic properties of aluminum amorphous alloys, but due to the limitation of glass forming ability, they are rarely used as structural materials. Finally, the prospect of its application in the future was prospected. It is considered that the coating is the most promising engineering method for aluminum-based amorphous alloys at present.
Al-based amorphous alloys; composition system; preparation method; performance characteristics; application status
10.3969/j.issn.1674-6457.2024.03.006
TG456
A
1674-6457(2024)03-0062-14
2024-02-21
2024-02-21
曹梓恒, 郭威, 呂書林, 等. 鋁基非晶合金的制備、性能與應(yīng)用研究進(jìn)展[J]. 精密成形工程, 2024, 16(3): 62-75.
CAO Ziheng, GUO Wei, LYU Shulin, et al. Progress in Research on Preparation, Properties and Application of Al-based Amorphous Alloys[J]. Journal of Netshape Forming Engineering, 2024, 16(3): 62-75.
(Corresponding author)