張傲,岑山,李曉宇
綜 述
N-腺苷甲基化修飾及其對(duì)LINE-1的調(diào)控機(jī)制
張傲,岑山,李曉宇
中國醫(yī)學(xué)科學(xué)院&北京協(xié)和醫(yī)學(xué)院,醫(yī)藥生物技術(shù)研究所免疫生物學(xué)室,北京 100050
長(zhǎng)散布元件-1 (long interspersed elements-1,LINE-1)是現(xiàn)今在人類基因組中唯一具有自主轉(zhuǎn)座能力的轉(zhuǎn)座子,其轉(zhuǎn)座會(huì)引起細(xì)胞基因組結(jié)構(gòu)和功能的改變,是導(dǎo)致多種嚴(yán)重疾病的重要因素。在轉(zhuǎn)座過程中,LINE-1 mRNA是轉(zhuǎn)座中間體的核心,宿主細(xì)胞對(duì)其進(jìn)行相關(guān)修飾直接影響轉(zhuǎn)座。N-腺苷甲基化修飾(m6A)是真核細(xì)胞RNA上最豐富且動(dòng)態(tài)可逆的表觀遺傳修飾。目前發(fā)現(xiàn)m6A修飾也存在于LINE-1 mRNA上,參與LINE-1整個(gè)生命周期的調(diào)控,影響其轉(zhuǎn)座和基因組中LINE-1相鄰基因的表達(dá),進(jìn)而影響基因組穩(wěn)定性、細(xì)胞自我更新與分化潛能,在人類發(fā)育和疾病中具有重要作用。本文介紹了LINE-1 m6A修飾的位置、功能以及相關(guān)機(jī)制,并總結(jié)了LINE-1的m6A修飾對(duì)其轉(zhuǎn)座調(diào)控的研究進(jìn)展,以期為相關(guān)疾病發(fā)生發(fā)展的機(jī)制研究和治療提供新的思路。
m6A修飾;逆轉(zhuǎn)錄轉(zhuǎn)座子;LINE-1;基因組;基因組穩(wěn)定性
長(zhǎng)散布元件(long interspersed elements,LINE-1)是一種非長(zhǎng)末端重復(fù)序列(non-long terminal repeats,non-LTR)逆轉(zhuǎn)錄轉(zhuǎn)座子。據(jù)統(tǒng)計(jì)大約45%的人類基因組衍生自轉(zhuǎn)座子(transposable elements,TEs),其中LINE-1約占人基因組的17%,是目前人類基因組中唯一證實(shí)具有自主轉(zhuǎn)座活性的轉(zhuǎn)座子[1,2]。LINE-1以RNA為媒介進(jìn)行轉(zhuǎn)座,是一種RNA轉(zhuǎn)座子[3],全長(zhǎng)約6 kb,其編碼的兩個(gè)蛋白ORF1蛋白(ORF1p)和ORF2蛋白(ORF2p),在細(xì)胞質(zhì)中與LINE-1 mRNA形成核糖核蛋白復(fù)合物(ribonu-cleoprotein complexes,RNPs),后利用ORF2p核酸內(nèi)切酶及逆轉(zhuǎn)錄酶活性,以LINE-1 mRNA為模板逆轉(zhuǎn)錄產(chǎn)生cDNA,形成RNA:DNA雜交體,該過程被稱為“靶點(diǎn)引導(dǎo)逆轉(zhuǎn)錄過程”(target-site primed reverse transcription,TPRT)[4,5],是LINE-1復(fù)制的關(guān)鍵步驟。基因組中大多數(shù)LINE-1 5′ UTR區(qū)缺失或倒置,喪失轉(zhuǎn)座活性,僅80~100個(gè)LINE-1拷貝結(jié)構(gòu)完整,是具有逆轉(zhuǎn)座活性的LINE-1 (retrotransposition-competent LINE-1s,RC-L1s)。從物種進(jìn)化上來看,活躍的逆轉(zhuǎn)錄轉(zhuǎn)座子在生物進(jìn)化、物種形成和胚胎發(fā)育、記憶形成等方面發(fā)揮生理學(xué)作用[6,7],但對(duì)個(gè)體而言,轉(zhuǎn)座的發(fā)生會(huì)對(duì)宿主細(xì)胞基因組的結(jié)構(gòu)和功能產(chǎn)生嚴(yán)重影響,LINE-1在基因組DNA中的插入、缺失和重組,會(huì)改變宿主基因的表達(dá),導(dǎo)致衰老、癌癥、基因疾病、代謝性疾病、神經(jīng)退行性疾病和自身免疫性疾病等多種疾病的發(fā)生[8~11]。此外,LINE-1還可以協(xié)助不具有自主轉(zhuǎn)座能力的非LTR轉(zhuǎn)座子短散布元件(short interspersed elements,SINEs) Alu和加工后的假基因進(jìn)行轉(zhuǎn)座,進(jìn)而誘發(fā)疾病[12]。因此宿主對(duì)正常體細(xì)胞中LINE-1的表達(dá)與轉(zhuǎn)座活性是嚴(yán)格控制的,而且這種調(diào)控是多層次、多方面的,包括表觀遺傳修飾[13,14]、非編碼小RNA[15,16]以及多種宿主限制因子[17~19]等調(diào)控。
除研究較多的DNA、組蛋白甲基化外,N-甲基化腺嘌呤(N-methylated adenine,m6A)陸續(xù)在細(xì)菌DNA、細(xì)菌和酵母的RNA和哺乳動(dòng)物mRNA中被發(fā)現(xiàn),m6A甲基化對(duì)RNA代謝和功能調(diào)控具有多樣性[20~23]。隨著對(duì)LINE-1轉(zhuǎn)座調(diào)控機(jī)制的深入研究,研究者們發(fā)現(xiàn)在LINE-1上存在的m6A修飾對(duì)其轉(zhuǎn)座調(diào)控也發(fā)揮著重要的作用。本文主要介紹m6A修飾的生物學(xué)功能,以及該修飾對(duì)LINE-1各階段的調(diào)控機(jī)制和LINE-1周圍染色質(zhì)狀態(tài)、基因表達(dá)的影響,以期對(duì)m6A修飾的生物學(xué)功能研究擴(kuò)展及宿主對(duì)LINE-1調(diào)控網(wǎng)絡(luò)的探究提供新的思路。
m6A一般發(fā)生在RNA中腺苷酸的N位置上,是通過特定的甲基轉(zhuǎn)移酶進(jìn)行的甲基化修飾(圖1),在mRNA和其他類型核內(nèi)RNA,如轉(zhuǎn)運(yùn)RNA (transfer RNA,tRNA)、核糖體RNA(ribosomal RNA,rRNA)、小核RNA(small nuclear RNA,snRNA)均有分布。m6A甲基化具有RRACH共同識(shí)別序列(其中R表示A或G,H表示A、C或U),受多種調(diào)控因子調(diào)控,通過“編碼器”m6A甲基轉(zhuǎn)移酶裝配,并可被“讀碼器”m6A結(jié)合蛋白識(shí)別或被“消碼器”去甲基化酶移除[24,25]。m6A主要在終止密碼子和3′非翻譯區(qū)(3′UTR)附近富集,在內(nèi)含子和5′非翻譯區(qū)(5′UTR)也有低豐度的m6A。
m6A甲基化對(duì)RNA代謝過程的多個(gè)環(huán)節(jié)均具有重要的影響,包括RNA剪接[26,27]、核輸出[28]、降解[29,30]和翻譯[31,32]。在RNA剪接過程中,m6A被相應(yīng)蛋白識(shí)別并結(jié)合,通過招募YTHDC1蛋白、抑制剪接因子或改變RNA局部構(gòu)象來調(diào)節(jié)mRNA前體(pre-mRNA)選擇性剪接[26,27]。在核輸出過程中,m6A被YTHDC1蛋白識(shí)別,促進(jìn)RNA與核輸出組分的相互作用,調(diào)控mRNA的亞細(xì)胞定位[28]。m6A還可以被YTHDF2蛋白識(shí)別進(jìn)而降解m6A修飾的靶轉(zhuǎn)錄本[29,30]。此外,m6A對(duì)mRNA轉(zhuǎn)錄后調(diào)控也具有一定的作用,mRNA的翻譯方式與m6A在轉(zhuǎn)錄本的位置有關(guān)。正常生理?xiàng)l件下,m6A修飾主要位于RNA 的3′UTR區(qū),被YTHDF1蛋白或YTHDF3蛋白識(shí)別,招募真核細(xì)胞翻譯起始因子eIF3,促進(jìn)帽依賴性翻譯[31,32]。而在應(yīng)激條件下,5′UTR區(qū)的m6A作為m6A誘導(dǎo)的核糖體進(jìn)入位點(diǎn)(m6A-induced ribosome engagement site,MIRES),促進(jìn)mRNA進(jìn)行帽非依賴性翻譯,這種m6A介導(dǎo)的帽非依賴性翻譯同樣需要m6A“讀碼器”eIF3的識(shí)別[33]。另有研究表明,mRNA上的m6A可影響轉(zhuǎn)錄本與tRNAs的相互作用進(jìn)而抑制翻譯[34]。
圖1 腺苷酸甲基化修飾結(jié)構(gòu)示意圖
RNA腺苷酸N位置的甲基化修飾通過m6A甲基轉(zhuǎn)移酶裝配,被m6A結(jié)合蛋白識(shí)別或被去甲基化酶移除。
m6A還參與哺乳動(dòng)物多種病理生理學(xué)過程,包括胚胎發(fā)育[35]、神經(jīng)發(fā)生[36]、晝夜節(jié)律[37]、應(yīng)激反應(yīng)[38]、腫瘤發(fā)生[24,39]和病毒感染[40]等。隨著m6A甲基化組學(xué)分析的發(fā)展,m6A在腫瘤發(fā)生發(fā)展的相關(guān)機(jī)制研究取得了主要突破。RNA m6A甲基化水平改變影響細(xì)胞的增殖、分化與自我更新[41]。m6A是腫瘤代謝的重要調(diào)節(jié)因子,腫瘤代謝應(yīng)激反應(yīng)可導(dǎo)致異常的m6A甲基化,調(diào)節(jié)代謝重組相關(guān)的信號(hào)通路、轉(zhuǎn)錄因子和代謝酶[42]。目前已有多項(xiàng)研究發(fā)現(xiàn),m6A修飾異常與多種癌癥的發(fā)生發(fā)展相關(guān),不同底物的m6A修飾會(huì)促進(jìn)或抑制腫瘤的發(fā)展,具有促癌和抑癌的雙重作用,是一把雙刃劍[24]。機(jī)體對(duì)LINE-1的調(diào)控影響基因組穩(wěn)定性,含有m6A修飾的LINE-1 mRNA具有宿主逃逸機(jī)制,被正向選擇并表達(dá),從而促進(jìn)疾病的發(fā)生發(fā)展。研究發(fā)現(xiàn),是口腔鱗狀細(xì)胞癌(oral squamous cell carcinoma,OSCC)的原癌基因,其編碼的HNRNPA2B1蛋白可能作為m6A“讀碼器”促進(jìn)LINE-1 mRNA翻譯,進(jìn)而通過LINE-1/TGF-β1/Smad2/Slug信號(hào)通路靶向上皮細(xì)胞-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),促進(jìn)腫瘤細(xì)胞增殖、遷移和侵襲[43]。這提示m6A修飾的LINE-1可能與多種癌癥致病機(jī)制均相關(guān),為癌癥預(yù)防及治療提供了新的思路。根據(jù)m6A修飾的不同位置,將其分為4個(gè)部分:具有轉(zhuǎn)座活性的LINE-1 5′ UTR、位于宿主基因內(nèi)含子區(qū)域和形成R-環(huán)的LINE-1的m6A修飾,以及LINE-1 DNA的6mA修飾(圖2A)。近年來,研究人員發(fā)現(xiàn)m6A對(duì)LINE-1的整個(gè)復(fù)制周期均有調(diào)控作用,“編碼器”對(duì)各階段LINE-1進(jìn)行m6A修飾,該修飾被“讀碼器”識(shí)別,或被“消碼器”移除,影響LINE-1的轉(zhuǎn)座活性及轉(zhuǎn)錄與翻譯水平(圖2B)。
最新的一項(xiàng)研究表明,LINE-1轉(zhuǎn)錄本是人類細(xì)胞中主要的m6A修飾RNA。與DNA和一些組蛋白甲基化的抑制作用相反,如組蛋白H3K9me3,RC-L1s的RNA m6A修飾可促進(jìn)其表達(dá)與轉(zhuǎn)座。m6A偏向于修飾年輕的LINE-1,這些LINE-1結(jié)構(gòu)完整,并具有豐富的RRACH序列。除了帽依賴性翻譯外,m6A還啟動(dòng)LINE-1 RNA帽非依賴性翻譯。該研究發(fā)現(xiàn),在LINE-1 5′ UTR第333位發(fā)生m6A獲得性突變后,形成m6A共識(shí)別序列,使得第332位腺苷上發(fā)生m6A修飾,eIF3識(shí)別該修飾位點(diǎn)后,提高ORF1的翻譯速率,刺激ORF2p合成,產(chǎn)生具有逆轉(zhuǎn)錄活性的LINE-1 核糖核蛋白R(shí)NP,促進(jìn)LINE-1逆轉(zhuǎn)錄轉(zhuǎn)座[44,45]。LINE-1的5′ UTR m6A修飾是其產(chǎn)生逆轉(zhuǎn)錄轉(zhuǎn)座功能所必需的,只有具有完整5′ UTR,m6A修飾相關(guān)酶才可調(diào)控LINE-1的表達(dá)[46]。此外,m6A修飾可以改變RNA-蛋白相互作用或RNA二級(jí)結(jié)構(gòu),這可能影響LINE-1 ORF2p的酶活性[45]。目前已發(fā)現(xiàn),m6A甲基化酶METTL3使LINE-1 m6A水平升高,促進(jìn)其逆轉(zhuǎn)座[45]。相反,m6A去甲基化酶ALKBH5使LINE-1 m6A水平降低,抑制其逆轉(zhuǎn)座[45]。m6A甲基化酶METTL14和ZC3H13或其識(shí)別蛋白YTHDC1缺失將降低宿主中m6A標(biāo)記的年輕LINE-1的水平[46]。雖然m6A修飾提高LINE-1 RNA的翻譯效率,但不改變LINE-1 RNA在細(xì)胞內(nèi)定位[45]。此外,m6A僅對(duì)年輕LINE-1的表達(dá)和逆轉(zhuǎn)座活性有促進(jìn)作用,在較老或低甲基化的LINE-1中有抑制作用,當(dāng)m6A識(shí)別蛋白缺陷時(shí),古老的LINE-1轉(zhuǎn)座活性反而增加[46]。
基因組中多數(shù)LINE-1 5′ UTR區(qū)域缺失或突變,失去逆轉(zhuǎn)座活性。研究發(fā)現(xiàn),基因內(nèi)含子中經(jīng)m6A修飾后的無逆轉(zhuǎn)座活性的LINE-1 (m6A-marked intronic LINE-1s,MILs)是一種新的調(diào)控元件,優(yōu)先駐留在長(zhǎng)基因中,作為轉(zhuǎn)錄“障礙”阻礙宿主基因的表達(dá),但具體機(jī)制尚不清楚[46]。這些長(zhǎng)基因在DNA損傷修復(fù)(DNA damage repair,DDR)等生理過程中發(fā)揮關(guān)鍵作用。研究發(fā)現(xiàn),m6A識(shí)別蛋白SAFB/SAFB2復(fù)合體以m6A增強(qiáng)的方式結(jié)合RC-L1s和MILs RNA來抑制其表達(dá)[46]。此外,SAFB/SAFB2還可糾正MILs對(duì)重要宿主基因的轉(zhuǎn)錄阻斷作用,以保護(hù)宿主基因的轉(zhuǎn)錄,但SAFB并不與m6A發(fā)生特異性結(jié)合,可能通過m6A改變局部RNA結(jié)構(gòu)以實(shí)現(xiàn)RNA-RBP (RNA結(jié)合蛋白)相互作用(即“m6A開關(guān)”),形成的LINE-1 RNA高級(jí)結(jié)構(gòu)允許更強(qiáng)的L1-SAFB結(jié)合[46]。MILs通過影響長(zhǎng)基因轉(zhuǎn)錄,使m6A調(diào)節(jié)的L1-宿主相互作用在基因調(diào)控、基因組完整性、人類發(fā)育和疾病中發(fā)揮廣泛作用[46,47]。
圖2 m6A修飾對(duì)LINE-1的影響
A:LINE-1的結(jié)構(gòu)。LINE-1由開放閱讀框ORF0、ORF1、ORF2和非編碼區(qū)5′UTR、3′UTR構(gòu)成,5′UTR 有兩個(gè)啟動(dòng)子,是雙向的:正義啟動(dòng)子活性可轉(zhuǎn)錄 ORF1、ORF2,反義啟動(dòng)子(ASP)能夠啟動(dòng)與LINE-1方向相反的轉(zhuǎn)錄物轉(zhuǎn)錄。B:m6A修飾酶影響LINE-1復(fù)制周期模式圖。①LINE-1 DNA可能富集6mA甲基化修飾,抑制mRNA轉(zhuǎn)錄;②LINE-1 mRNA與ORF1p、ORF2p結(jié)合生成LINE-1 RNP復(fù)合物,入核后進(jìn)行“TPRT”生成cDNA,插入宿主基因組;③在細(xì)胞質(zhì)中,翻譯起始因子eIF3與m6A特異性相互作用,提高翻譯水平;④METTL3、YTHDC1促進(jìn)LINE-1逆轉(zhuǎn)座,ALKBH5、SAFB/SAFB2抑制LINE-1逆轉(zhuǎn)座;⑤SAFB/SAFB2可糾正MILs對(duì)重要宿主基因的轉(zhuǎn)錄阻斷。
R-環(huán)普遍存在于高轉(zhuǎn)錄基因中,并在重復(fù)序列中積累,其中包括逆轉(zhuǎn)錄轉(zhuǎn)座子LINE-1[48]。LINE-1逆轉(zhuǎn)錄轉(zhuǎn)座過程中,RNP剪切基因組DNA雙鏈,形成由LINE-1 RNA:DNA雜交分子和未配對(duì)單鏈DNA組成的R-環(huán),R環(huán)在細(xì)胞分裂S期達(dá)到頂峰,參與了從轉(zhuǎn)錄調(diào)控到DNA修復(fù)等諸多重要生物學(xué)過程[49]。Abakir等[50]發(fā)現(xiàn),在人多能性干細(xì)胞(human pluripotent stem cells,hPSCs)RNA:DNA雜交體中有大量m6A修飾,m6A修飾存在于RNA:DNA雜交體的RNA鏈上,含有m6A的R環(huán)在細(xì)胞周期G2/M期積累,在G0/G1期耗盡。在正常生理?xiàng)l件下,R-環(huán)在基因啟動(dòng)子區(qū)和終止區(qū)富集,參與mRNA轉(zhuǎn)錄起始和終止,調(diào)控基因表達(dá)。當(dāng)R-環(huán)沒有被正常分解時(shí),其積累會(huì)導(dǎo)致DNA損傷和/或復(fù)制叉停滯,破壞基因組的穩(wěn)定性[51~53]。m6A修飾可調(diào)控R環(huán)的積累,不同的m6A結(jié)合蛋白識(shí)別R環(huán),維持基因組的穩(wěn)定性。目前已發(fā)現(xiàn)甲基轉(zhuǎn)移酶METTL3、識(shí)別蛋白HNRNPA2B1、促進(jìn)mRNA翻譯的YTHDF1以及促進(jìn)mRNA降解的YTHDF2均與富集R環(huán)的位點(diǎn)相互作用[50]。已有研究表明,YTHDF2可阻止含有m6A的LINE-1 RNA:DNA雜交體積累,有助于修復(fù)哺乳動(dòng)物中R-環(huán)依賴性DNA損傷,維護(hù)基因組穩(wěn)定性[50]。
DNAN-甲基化腺嘌呤(6mA)修飾在原核生物中廣泛分布,而在哺乳動(dòng)物細(xì)胞中豐度極低[54,55]。早期研究人員利用SMRT-ChIP在小鼠胚胎干細(xì)胞(mouse embryonic stem cells,mESCs)中發(fā)現(xiàn)6mA修飾,證明6mA修飾與LINE-1轉(zhuǎn)座子的進(jìn)化年齡呈負(fù)相關(guān),在年輕、完整的LINE-1元件中強(qiáng)烈富集。與LINE-1 RNA的m6A甲基化沉積位置相似,6mA大多數(shù)富集在年輕全長(zhǎng)LINE-1的5′ UTR和ORF1上。在6mA去甲基化酶ALKBH1缺陷的細(xì)胞中,DNA 6mA水平增加導(dǎo)致轉(zhuǎn)錄沉默。6mA修飾與LINE-1轉(zhuǎn)座子及其鄰近增強(qiáng)子和基因的表觀遺傳沉默相關(guān),在胚胎干細(xì)胞分化過程中抵抗基因激活信號(hào)[56]。與其他常染色體相比,較年輕的全長(zhǎng)LINE-1在X染色體上強(qiáng)烈富集,經(jīng)6mA修飾后沉默位于X染色體上的基因[56,57]。不同于6mA在其他生物基因中的激活作用,它在哺乳動(dòng)物進(jìn)化中表現(xiàn)出表觀遺傳沉默的新作用。然而,該研究結(jié)果存在很大爭(zhēng)議,其他研究者對(duì)真核生物中DNA 6mA的存在表示懷疑,認(rèn)為已有方法受污染源的影響容易產(chǎn)生假陽性結(jié)果。故作者使用6mASCOPE方法對(duì)6mA定量去卷積,結(jié)果排除非特異性偏倚后,不支持HEK293中年輕LINE-1具有6mA富集特點(diǎn)[54]。但這項(xiàng)研究仍存在局限性,需要進(jìn)一步優(yōu)化檢測(cè)方法。
LINE-1上修飾的m6A不僅調(diào)控其自身的復(fù)制過程,對(duì)其相鄰基因的表觀遺傳調(diào)控、塑造基因組結(jié)構(gòu)和維持基因組穩(wěn)定性方面也具有廣泛的作用。染色體相關(guān)調(diào)控RNA (chromat-in-associated regulatory RNAs,carRNAs)上的m6A修飾可以全局調(diào)控染色質(zhì)狀態(tài)和轉(zhuǎn)錄,依賴于METTL3甲基化的carRNAs包括啟動(dòng)子相關(guān)RNA、增強(qiáng)子RNA和重復(fù)序列RNA(如LINE-1)。carRNAs m6A修飾可以維持基因間區(qū)域染色質(zhì)濃縮,而YTHDC1識(shí)別m6A后,通過核外泌體靶向(nuclear exosome targeting,NEXT)復(fù)合物促進(jìn)carRNAs降解。m6A甲基化缺失導(dǎo)致染色質(zhì)開放和轉(zhuǎn)錄本富集,這與活性組蛋白H3K4me3和H3K27ac修飾增加相關(guān),后續(xù)招募表觀遺傳因子如組蛋白乙酰轉(zhuǎn)移酶(EP-300)來維持開放的染色質(zhì)構(gòu)象和下游轉(zhuǎn)錄。此外,carRNAs中“重復(fù)序列RNA”在m6A高甲基化和轉(zhuǎn)錄下調(diào)之間表現(xiàn)出強(qiáng)相關(guān)性,其中LINE-1受影響最大,影響細(xì)胞自我更新和分化潛能[58~60]。
另有研究發(fā)現(xiàn),識(shí)別蛋白YTHDC1通過多種機(jī)制參與逆轉(zhuǎn)錄轉(zhuǎn)座子的調(diào)控和染色質(zhì)修飾。在mESCs中,YTHDC1與m6A修飾的LINE-1轉(zhuǎn)錄本結(jié)合,募集組蛋白甲基轉(zhuǎn)移酶SETDB1、TRIM28和核仁素(nucleolin,NCL),共同形成沉默復(fù)合物,促進(jìn)H3K9me3的富集,沉默逆轉(zhuǎn)錄轉(zhuǎn)座子[59,60]。此外,YTHDC1識(shí)別細(xì)胞核中LINE-1 RNA上的m6A,招募轉(zhuǎn)錄調(diào)控因子KAP1,并調(diào)控LINE1-NCL復(fù)合物的形成和KAP1在染色質(zhì)上的募集,形成LINE1-NCL-KAP1復(fù)合物,抑制2細(xì)胞期(two-cell stage,2C)胚胎特異性轉(zhuǎn)錄的主要激活因子Dux,關(guān)閉2C基因表達(dá)程序。同時(shí),LINE1-NCL-KAP1復(fù)合物可與核糖體DNA(rDNA)結(jié)合,促進(jìn)rRNA合成和mESCs自我更新[59,61]。KAP1在LINE-1上的富集同樣也促進(jìn)H3K9me3沉積,導(dǎo)致在mESCs和內(nèi)細(xì)胞團(tuán)(ICM)細(xì)胞中組蛋白修飾位點(diǎn)的轉(zhuǎn)錄沉默,降低染色質(zhì)開放狀態(tài),有助于識(shí)別mESCs并促進(jìn)胚胎發(fā)育,調(diào)節(jié)mESCs從2C樣狀態(tài)退出[62]。另一項(xiàng)研究發(fā)現(xiàn),在mESCs中發(fā)現(xiàn)肥胖蛋白FTO是LINE-1 m6A去甲基化酶,促進(jìn)LINE-1相鄰基因位點(diǎn)的染色質(zhì)開放。FTO與LINE-1 RNA和LINE-1 RNA-DNA相互作用的消失導(dǎo)致染色質(zhì)濃縮、抑制性組蛋白標(biāo)記富集,順式調(diào)控相鄰基因,降低相鄰基因表達(dá)。有趣的是,與YTHDC1作用相反,F(xiàn)TO敲除后,LINE-1 RNA反式調(diào)節(jié)不相鄰的2C基因,使2C基因去抑制,導(dǎo)致類似2C狀態(tài)發(fā)生和mESCs狀態(tài)丟失,使得多功能性基因的表達(dá)減少,細(xì)胞分化和自我更新受損,因此FTO-LINE-1軸對(duì)于胚胎發(fā)育是必不可少的[63,64]。
m6A修飾對(duì)LINE-1的調(diào)控機(jī)制目前正在深入研究中,一些問題仍需要進(jìn)一步探究闡述,如LINE-1 RNA上的m6A被YTHDC1識(shí)別后促進(jìn)抑制性組蛋白富集,抑制基因表達(dá)。但另有研究發(fā)現(xiàn),m6A“讀碼器”YTHDC1協(xié)同轉(zhuǎn)錄使組蛋白H3K9me2去甲基化,促進(jìn)基因表達(dá)[65]。多種表觀遺傳信號(hào)共同調(diào)節(jié)基因的表達(dá),故仍需進(jìn)一步探究LINE-1不同表觀轉(zhuǎn)錄組修飾間的相互影響,以及與染色質(zhì)修飾的相互作用關(guān)系。此外,LINE-1 DNA 6mA是否具有顯著性富集特點(diǎn)也有待進(jìn)一步探討。若LINE-1 DNA 上6mA修飾富集且抑制其活性,而LINE-1 RNA m6A修飾促進(jìn)其轉(zhuǎn)座,那么兩者是否在發(fā)育或疾病中相互干擾,以及如何介導(dǎo)LINE-1活性或宿主基因表達(dá),是未來研究的重要內(nèi)容。此外,LINE-1 m6A修飾調(diào)控組蛋白修飾,阻止染色質(zhì)開放狀態(tài)及相鄰基因的表達(dá)。但由不同m6A相關(guān)酶介導(dǎo)調(diào)控的2C基因表達(dá)作用相反,出現(xiàn)這種差異是由于m6A調(diào)控相關(guān)蛋白具有特異性還是其他調(diào)控系統(tǒng)參與其中仍不可知。另外,值得注意的是,m6A對(duì)不同的逆轉(zhuǎn)錄轉(zhuǎn)座子家族具有截然相反的影響:YTHDC1識(shí)別某些TEs上m6A修飾后破壞其穩(wěn)定性,如IAPs[60];m6A通過招募YTHDF家族縮短IAP mRNA半衰期[66]。這表明在TEs可能發(fā)生了額外的依賴于m6A的調(diào)控,如依賴于其他m6A甲基轉(zhuǎn)移酶(METTL5、METTL16和ZCCHC4)或識(shí)別結(jié)合蛋白的活性,這些蛋白可以通過翻譯后修飾或與其他分子相互作用進(jìn)行調(diào)控[60]。隨著高通量測(cè)序等新技術(shù)的發(fā)展,研究人員對(duì)m6A的研究有望發(fā)現(xiàn)新的生物調(diào)節(jié)系統(tǒng),LINE-1的m6A修飾也有望成為未來疾病治療與診斷的新靶點(diǎn)。
在腫瘤疾病研究方面,LINE-1可作為診斷癌癥的生物標(biāo)志物和潛在的治療靶點(diǎn)[67]。其中,LINE-1 DNA或組蛋白的大量低甲基化,被認(rèn)為是大多數(shù)惡性轉(zhuǎn)化的標(biāo)志,是一種很有前途的癌癥發(fā)展的候選生物標(biāo)志物[8]。而LINE-1雖通常被認(rèn)為具有促癌功能,但在急性髓系粒細(xì)胞白血病(AML)中發(fā)揮抑癌作用[68]。這是宿主不同調(diào)控機(jī)制的作用結(jié)果。LINE-1 m6A甲基化修飾研究的突破性進(jìn)展或許將有助于解開LINE-1相關(guān)疾病研究的許多未解之謎。
[1] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Bl?cker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J, International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome, 2001, 409(6822): 860–921.
[2] Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health, 2008, 18(3): 343–358.
[3] Goodier JL, Kazazian HH. Retrotransposons revisited: the restraint and rehabilitation of parasites, 2008, 135(1): 23–35.
[4] Babushok DV, Kazazian HH. Progress in understanding the biology of the human mutagen LINE-1, 2007, 28(6): 527–539.
[5] Zhang X, Zhang R, Yu JP. New understanding of the relevant role of LINE-1 retrotransposition in human disease and immune modulation, 2020, 8: 657.
[6] Jachowicz JW, Bing XY, Pontabry J, Bo?kovi? A, Rando OJ, Torres-Padilla ME. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo, 2017, 49(10): 1502– 1510.
[7] Mao Y, Li XY. Advances in the study of LINE-1 retrotransposition in nervous system, 2019, 16(5): 27–29, 46.毛洋, 李曉宇. 神經(jīng)系統(tǒng)中LINE-1轉(zhuǎn)座的研究進(jìn)展. 中國醫(yī)藥導(dǎo)報(bào), 2019, 16(5): 27–29, 46.
[8] Ponomaryova AA, Rykova EY, Gervas PA, Cherdyntseva NV, Mamedov IZ, Azhikina TL. Aberrant methylation of LINE-1 transposable elements: a search for cancer biomarkers, 2020, 9(9): 2017.
[9] Burns KH. Our conflict with transposable elements and its implications for human disease, 2020, 15: 51–70.
[10] Gorbunova V, Seluanov A, Mita P, McKerrow W, Feny? D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. The role of retrotransposable elements in ageing and age- associated diseases, 2021, 596(7870): 43–53.
[11] Liu Q, Wang JH, Li XY, Cen S. The connection between LINE-1 retrotransposition and human tumorigenesis, 2016, 38(2): 93–102.劉茜, 王瑾暉, 李曉宇, 岑山. 逆轉(zhuǎn)錄轉(zhuǎn)座子LINE-1與腫瘤的發(fā)生和發(fā)展. 遺傳, 2016, 38(2): 93–102.
[12] Ostertag EM, Goodier JL, Zhang Y, Kazazian HH. SVA elements are nonautonomous retrotransposons that cause disease in humans, 2003, 73(6): 1444– 1451.
[13] Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond, 2012, 13(7): 484–492.
[14] Fukuda K, Shinkai Y. SETDB1-mediated silencing of retroelements, 2020, 12(6): 596.
[15] Hamdorf M, Idica A, Zisoulis DG, Gamelin L, Martin C, Sanders KJ, Pedersen IM. miR-128 represses L1 retrotransposition by binding directly to L1 RNA, 2015, 22(10): 824–831.
[16] De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A, Funaya C, Antony C, Moreira PN, Enright AJ, O’Carroll D. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements, 2011, 480(7376): 259–263.
[17] Choi J, Hwang SY, Ahn K. Interplay between RNASEH2 and MOV10 controls LINE-1 retrotransposition, 2018, 46(4): 1912–1926.
[18] Goodier JL. Restricting retrotransposons: a review, 2016, 7: 16.
[19] Hu SQ, Li J, Xu FW, Mei S, Le Duff Y, Yin LJ, Pang XJ, Cen S, Jin Q, Liang C, Guo F. SAMHD1 inhibits LINE-1 retrotransposition by promoting stress granule formation, 2015, 11(7): e1005367.
[20] Dunn DB, Smith JD. Occurrence of a new base in the deoxyribonucleic acid of a strain of, 1955, 175(4451): 336–337.
[21] Littlefield JW, Dunn DB. Natural occurrence of thymine and three methylated adenine bases in several ribonucleic acids, 1958, 181(4604): 254–255.
[22] Adler M, Weissmann B, Gutman AB. Occurrence of methylated purine bases in yeast ribonucleic acid, 1958, 230(2): 717–723.
[23] Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells, 1974, 71(10): 3971–3975.
[24] Sun T, Wu RY, Ming L. The role of m6A RNA methylation in cancer, 2019, 112: 108613.
[25] Shi HL, Wei JB, He C. Where, when, and how: context- dependent functions of RNA methylation writers, readers, and erasers, 2019, 74(4): 640–650.
[26] Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, Wang X, Ma HL, Huang CM, Yang Y, Huang N, Jiang GB, Wang HL, Zhou Q, Wang XJ, Zhao YL, Yang YG. Nuclear m6A reader YTHDC1 regulates mRNA splicing, 2016, 61(4): 507–519.
[27] Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing, 2017, 45(19): 11356–11370.
[28] Roundtree IA, Luo GZ, Zhang ZJ, Wang X, Zhou T, Cui YQ, Sha JH, Huang XX, Guerrero L, Xie P, He E, Shen B, He C. YTHDC1 mediates nuclear export ofN- methyladenosine methylated mRNAs, 2017, 6: e31311.
[29] Wang X, Lu ZK, Gomez A, Hon GC, Yue YN, Han DL, Fu Y, Parisien M, Dai Q, Jia GF, Ren B, Pan T, He C.N-methyladenosine-dependent regulation of messenger RNA stability, 2014, 505(7481): 117–120.
[30] Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism, 2018, 28(6): 616–624.
[31] Wang X, Zhao BS, Roundtree IA, Lu ZK, Han DL, Ma HH, Weng XC, Chen K, Shi HL, He C.N-methyladenosine modulates messenger RNA translation efficiency, 2015, 161(6): 1388–1399.
[32] Shi HL, Wang X, Lu ZK, Zhao BS, Ma HH, Hsu PJ, Liu C, He C. YTHDF3 facilitates translation and decay ofN-methyladenosine-modified RNA, 2017, 27(3): 315–328.
[33] Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5′ UTR m6A promotes cap-independent translation, 2015, 163(4): 999–1010.
[34] Boulias K, Greer EL. Biological roles of adenine methylation in RNA, 2023, 24(3): 143– 160.
[35] McGraw S, Vigneault C, Sirard MA. Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovineembryo development, 2007, 133(3): 597–608.
[36] Deng JH, Chen XH, Chen AD, Zheng XC. m6A RNA methylation in brain injury and neurodegenerative disease, 2022, 13: 995747.
[37] Xu ZJ, Lv BB, Qin Y, Zhang B. Emerging roles and mechanism of m6A methylation in cardiometabolic diseases, 2022, 11(7): 1101.
[38] Wilkinson E, Cui YH, He YY. Context-dependent roles of RNA modifications in stress responses and diseases, 2021, 22(4): 1949.
[39] Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM, Chen ZS. m6A modification: recent advances, anticancer targeted drug discovery and beyond, 2022, 21(1): 52.
[40] Loh D, Reiter RJ. Melatonin: regulation of viral phase separation and epitranscriptomics in post-acute sequelae of COVID-19, 2022, 23(15): 8122.
[41] Pan YT, Ma P, Liu Y, Li W, Shu YQ. Multiple functions of m6A RNA methylation in cancer, 2018, 11(1): 48.
[42] An YY, Duan H. The role of m6A RNA methylation in cancer metabolism, 2022, 21(1): 14.
[43] Zhu FY, Yang TR, Yao MF, Shen T, Fang CY. HNRNPA2B1, as a m6A reader, promotes tumorigenesis and metastasis of oral squamous cell carcinoma, 2021, 11: 716921.
[44] Dmitriev SE, Andreev DE, Terenin IM, Olovnikov IA, Prassolov VS, Merrick WC, Shatsky IN. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5′ untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated, 2007, 27(13): 4685–4697.
[45] Hwang SY, Jung H, Mun S, Lee S, Park K, Baek SC, Moon HC, Kim H, Kim B, Choi Y, Go YH, Tang WXF, Choi J, Choi JK, Cha HJ, Park HY, Liang P, Kim VN, Han K, Ahn K. L1 retrotransposons exploit RNA m6A modification as an evolutionary driving force, 2021, 12(1): 880.
[46] Xiong F, Wang RY, Lee JH, Li SL, Chen SF, Liao ZA, Hasani LA, Nguyen PT, Zhu XY, Krakowiak J, Lee DF, Han L, Tsai KL, Liu Y, Li WB. RNA m6A modification orchestrates a LINE-1-host interaction that facilitates retrotransposition and contributes to long gene vulnerability, 2021, 31(8): 861–885.
[47] Billon V, Cristofari G. Nascent RNA m6A modification at the heart of the gene-retrotransposon conflict, 2021, 31(8): 829–831.
[48] Niehrs C, Luke B. Regulatory R-loops as facilitators of gene expression and genome stability, 2020, 21(3): 167–178.
[49] Mita P, Wudzinska A, Sun XJ, Andrade J, Nayak S, Kahler DJ, Badri S, LaCava J, Ueberheide B, Yun CY, Feny? D, Boeke JD. LINE-1 protein localization and functional dynamics during the cell cycle, 2018, 7: e30058.
[50] Abakir A, Giles TC, Cristini A, Foster JM, Dai N, Starczak M, Rubio-Roldan A, Li MM, Eleftheriou M, Crutchley J, Flatt L, Young L, Gaffney DJ, Denning C, Dalhus B, Emes RD, Gackowski D, Corrêa IR, Garcia-Perez JL, Klungland A, Gromak N, Ruzov A. N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells, 2020, 52(1): 48–55.
[51] Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression, 2014, 28(13): 1384–1396.
[52] García-Muse T, Aguilera A. R loops: from physiological to pathological roles, 2019, 179(3): 604–618.
[53] Duda KJ, Ching RW, Jerabek L, Shukeir N, Erikson G, Engist B, Onishi-Seebacher M, Perrera V, Richter F, Mittler G, Fritz K, Helm M, Knuckles P, Bühler M, Jenuwein T. m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin, 2021, 49(10): 5568–5587.
[54] Kong YM, Cao L, Deikus G, Fan Y, Mead EA, Lai WY, Zhang YZ, Yong R, Sebra R, Wang HL, Zhang XS, Fang G. Critical assessment of DNA adenine methylation in eukaryotes using quantitative deconvolution, 2022, 375(6580): 515–522.
[55] Chen LQ, Zhang Z, Chen HX, Xi JF, Liu XH, Ma DZ, Zhong YH, Ng WH, Chen T, Mak DW, Chen Q, Chen YQ, Luo GZ. High-precision mapping reveals rareN- deoxyadenosine methylation in the mammalian genome, 2022, 8(1): 138.
[56] Wu TP, Wang T, Seetin MG, Lai YQ, Zhu SJ, Lin KX, Liu YF, Byrum SD, Mackintosh SG, Zhong M, Tackett A, Wang GL, Hon LS, Fang G, Swenberg JA, Xiao AZ. DNA methylation onN-adenine in mammalian embryonic stem cells, 2016, 532(7599): 329–333.
[57] Bailey JA, Carrel L, Chakravarti A, Eichler EE. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis, 2000, 97(12): 6634–6639.
[58] Liu J, Dou XY, Chen CY, Chen C, Liu C, Xu MM, Zhao SQ, Shen B, Gao YW, Han DL, He C.N-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription, 2020, 367(6477): 580– 586.
[59] Liu JD, Gao MW, He JP, Wu KX, Lin SY, Jin LM, Chen YP, Liu H, Shi JJ, Wang XW, Chang L, Lin YY, Zhao YL, Zhang XF, Zhang M, Luo GZ, Wu GM, Pei DQ, Wang J, Bao XC, Chen JK. The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity, 2021, 591(7849): 322–326.
[60] Selmi T, Lanzuolo C. Driving chromatin organisation through N6-methyladenosine modification of RNA: what do we know and what lies ahead?, 2022, 13(2): 340.
[61] Percharde M, Lin CJ, Yin YF, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen XH, Ramalho-Santos M. A LINE1-Nucleolin partnership regulates early development and ESC identity, 2018, 174(2): 391–405.e19.
[62] Chen C, Liu WQ, Guo JY, Liu YY, Liu XL, Liu J, Dou XY, Le RR, Huang YX, Li C, Yang LY, Kou XC, Zhao YH, Wu Y, Chen JY, Wang H, Shen B, Gao YW, Gao SR. Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos, 2021, 12(6): 455-474.
[63] Sommerkamp P. Substrates of the m6A demethylase FTO: FTO-LINE1 RNA axis regulates chromatin state in mESCs, 2022, 7(1): 212.
[64] Wei JB, Yu XB, Yang L, Liu XL, Gao BY, Huang BX, Dou XY, Liu J, Zou ZY, Cui XL, Zhang LS, Zhao XS, Liu QZ, He PC, Sepich-Poore C, Zhong N, Liu WQ, Li YH, Kou XC, Zhao YH, Wu Y, Cheng XJ, Chen C, An YM, Dong XY, Wang HY, Shu Q, Hao ZY, Duan T, He YY, Li XK, Gao SR, Gao YW, He C. FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development, 2022, 376(6596): 968–973.
[65] Li Y, Xia LJ, Tan KF, Ye XD, Zuo ZX, Li MC, Xiao R, Wang ZH, Liu XN, Deng MQ, Cui JR, Yang MT, Luo QZ, Liu S, Cao X, Zhu HR, Liu TQ, Hu JX, Shi JF, Xiao S, Xia LX.N-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2, 2020, 52(9): 870–877.
[66] Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S, Dossin F, Fouassier C, Lameiras S, Bourc’his D. m6A RNA methylation regulates the fate of endogenous retroviruses, 2021, 591(7849): 312–316.
[67] Rodic N. LINE-1 activity and regulation in cancer, 2018, 23(9): 1680–1686.
[68] Gu ZM, Liu YX, Zhang Y, Cao H, Lyu JH, Wang X, Wylie A, Newkirk SJ, Jones AE, Lee M, Botten GA, Deng M, Dickerson KE, Zhang CC, An WF, Abrams JM, Xu J. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia, 2021, 53(5): 672–682.
N-adenosine methylation and the regulatory mechanism on LINE-1
Ao Zhang, Shan Cen, Xiaoyu Li
Long interspersed elements-1(LINE-1) is the only autonomous transposon in human genome,and its retrotransposition results in change of cellular genome structure and function, leading occurrence of various severe diseases. As a central key intermediated component during life cycle of LINE-1 retrotransposition, the host modification of LINE-1 mRNA affects the LINE-1 transposition directly.N-adenosine methylation(m6A), the most abundant epigenetic modification on eukaryotic RNA, is dynamically reversible. m6A modification is also found on LINE-1 mRNA, and it participants regulation of the whole LINE-1 replication cycle, with affecting LINE-1 retrotransposition as well as its adjacent genes expression, followed by influencing genomic stability, cellular self-renewal, and differentiation potential, which plays important roles in human development and diseases. In this review, we summarize the research progress in LINE-1 m6A modification, including its modification positions, patterns and related mechanisms, hoping to provide a new sight on the mechanism research and treatment of related diseases.
m6A modification; retrotransposon; LINE-1; genome; genome stability
2023-11-10;
2023-12-28;
2024-01-19
國家自然科學(xué)基金面上項(xiàng)目(編號(hào):31870164)資助[Supported by the National Natural Science Foundation of China (No.31870164)]
張傲,碩士研究生,專業(yè)方向:LINE-1與腫瘤維持機(jī)制的研究。E-mail: za1632649341@163.com
岑山,博士,研究員,研究方向:病毒學(xué)。E-mail: shancen@hotmail.com
李曉宇,博士,研究員,研究方向:病毒學(xué)。E-mail: xiaoyulik@hotmail.com
10.16288/j.yczz.23-248
(責(zé)任編委: 宋旭)