国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

小窩蛋白1與腦梗死相關(guān)性研究進(jìn)展

2024-04-04 07:17李曉嵐黃建敏
關(guān)鍵詞:動脈粥樣硬化腦梗死

李曉嵐 黃建敏

【摘要】 小窩蛋白1(caveolin-1,Cav-1)是小窩中的一種支架蛋白和膽固醇結(jié)合蛋白,是細(xì)胞膜穴樣內(nèi)陷的主要結(jié)構(gòu)成分,在脂質(zhì)轉(zhuǎn)運(yùn)、細(xì)胞生長分化、血管生成等方面有著重要的作用。Cav-1在中樞神經(jīng)系統(tǒng)的內(nèi)皮細(xì)胞、周細(xì)胞、星形膠質(zhì)細(xì)胞等許多細(xì)胞中表達(dá)。現(xiàn)有研究表明Cav-1與多種中樞神經(jīng)系統(tǒng)疾病之間存在密切聯(lián)系,本文簡要概述Cav-1與腦梗死的關(guān)系。

【關(guān)鍵詞】 小窩蛋白1 腦梗死 動脈粥樣硬化 血管生成

Research Progress in the Correlation between Caveolin-1 and Cerebral Infarction/LI Xiaolan, HUANG Jianmin. //Medical Innovation of China, 2024, 21(05): -179

[Abstract] Caveolin-1 (Cav-1) is a scaffold protein and cholesterol binding protein in caveolae. It is the main structural component of cell membrane hole-like invagination, and plays an important role in lipid transport, cell growth and differentiation, angiogenesis and other aspects. Cav-1 is expressed in many other cells, including endothelial cells, pericytes, and astrocytes of the central nervous system. Existing studies indicate a close link between Cav-1 and multiple central nervous system diseases, which provide a brief overview of the relationship between Cav-1 and cerebral infarction.

[Key words] Caveolin-1 Cerebral infarction Atherosclerosis Angiogenesis

腦梗死是嚴(yán)重危害人類健康的常見疾病,其發(fā)生發(fā)展是一個包含動脈粥樣硬化、神經(jīng)炎癥、神經(jīng)功能修復(fù)等在內(nèi)的復(fù)雜病理生理過程,隨著溶栓、介入治療等醫(yī)學(xué)技術(shù)的進(jìn)步,目前治療效果仍不理想。越來越多研究表明小窩蛋白1(caveolin-1,Cav-1)在腦梗死中起著重要作用,Cav-1參與調(diào)節(jié)炎癥反應(yīng)、血腦屏障通透性、血管生成等過程,因此期望通過充分認(rèn)識Cav-1在腦梗死中的作用,為臨床治療腦梗死提供新的靶點(diǎn)。本文就Cav-1與腦梗死的相關(guān)性進(jìn)行綜述。

1 小窩及Cav-1

小窩(caveolae)是細(xì)胞質(zhì)膜中50~100 nm的內(nèi)陷結(jié)構(gòu),富含膽固醇和鞘糖脂,普遍存在于多種細(xì)胞類型中,在維持細(xì)胞功能和信號傳導(dǎo)中起著重要作用。小窩蛋白(caveolin)是小窩的重要蛋白,caveolin具有Cav-1、Cav-2、Cav-3三種亞型,Cav-1和Cav-2分布廣泛,而Cav-3主要在血管平滑肌、骨骼肌和心肌細(xì)胞中表達(dá)。Cav-1基因位于人類染色體7q31.1-31.2,處于D7S522與D7S2460位點(diǎn)之間[1],Cav-1是小窩蛋白的主要成分,是小窩的特異性標(biāo)志物,在調(diào)節(jié)細(xì)胞生長分化、內(nèi)吞作用、膽固醇運(yùn)輸、細(xì)胞衰老等多種細(xì)胞過程中發(fā)揮重要作用[2],還參與調(diào)控血管生成、神經(jīng)炎癥反應(yīng)、氧化應(yīng)激反應(yīng)等病理生理過程。

2 Cav-1可能的作用機(jī)制

2.1 Cav-1與炎癥反應(yīng)

炎癥是生物體對組織損傷做出反應(yīng)的過程,涉及免疫細(xì)胞募集和炎癥介質(zhì)釋放。炎癥反應(yīng)貫穿在腦卒中的發(fā)生發(fā)展過程中。組織損傷后,淋巴細(xì)胞通過血管內(nèi)皮上受損的緊密連接(tight junction,TJ)蛋白或小窩進(jìn)入組織中而誘發(fā)組織炎癥,Cav-1可以促進(jìn)Th1細(xì)胞進(jìn)入中樞神經(jīng)系統(tǒng),進(jìn)而誘發(fā)腦組織炎癥反應(yīng)[3]。Cav-1缺乏的小鼠其主動脈內(nèi)皮細(xì)胞的自噬作用減弱,血管炎癥和動脈粥樣硬化相對較輕[4]。Cav-1可以抑制小鼠主動脈外膜上巨噬細(xì)胞的炎癥反應(yīng)并調(diào)節(jié)其細(xì)胞功能[5]。研究發(fā)現(xiàn),在短暫大腦中動脈閉塞(transient middle cerebral artery occlusion,tMCAO)的小鼠模型中,Cav-1缺失后血管內(nèi)皮細(xì)胞屏障結(jié)構(gòu)有明顯損傷,伴有廣泛微血栓形成,增強(qiáng)內(nèi)皮Cav-1表達(dá)后小鼠的梗死體積減小、血管通透性降低和血栓炎癥減輕[6]。在創(chuàng)傷性腦損傷小鼠中,Cav-1敲除小鼠的腦損傷體積較大,同側(cè)大腦半球的炎癥介質(zhì)白細(xì)胞介素-2、白細(xì)胞介素-6表達(dá)水平增加,Cav-1可能有調(diào)節(jié)腦損傷的神經(jīng)炎癥反應(yīng)和神經(jīng)保護(hù)的作用[7]。Cav-1基因敲除的腦出血小鼠,腦組織白細(xì)胞浸潤、炎癥介質(zhì)表達(dá)、活性氧的產(chǎn)生均減少,Cav-1缺失在腦出血中起到腦保護(hù)作用[8]。這些研究結(jié)果提示Cav-1具有抗炎作用,Cav-1可能通過調(diào)節(jié)免疫細(xì)胞募集、內(nèi)皮屏障通透性等途徑參與調(diào)節(jié)腦梗死的炎癥反應(yīng),目前作用機(jī)制仍有待進(jìn)一步研究探討。

2.2 Cav-1與動脈粥樣硬化

動脈粥樣硬化(atherosclerosis,AS)是膽固醇大量沉積于血管壁,進(jìn)一步形成粥樣硬化斑塊,導(dǎo)致血管壁增厚和管腔狹窄的一種慢性炎癥改變。正常血管平滑肌細(xì)胞豐富表達(dá)Cav-1,Cav-1上有低密度脂蛋白、高密度脂蛋白、B類清道夫受體Ⅰ型的受體[9],可以介導(dǎo)細(xì)胞及細(xì)胞膜上小窩區(qū)域膽固醇轉(zhuǎn)運(yùn)和流出,在脂質(zhì)穩(wěn)態(tài)和動脈粥樣硬化中發(fā)揮重要作用。嚴(yán)鵬科等[10]研究發(fā)現(xiàn)將低密度脂蛋白與正常血管平滑肌細(xì)胞(vascular smooth muscle cell,VSMC)共同孵育96 h后,Cav-1 mRNA和蛋白表達(dá)明顯升高,細(xì)胞內(nèi)膽固醇流出量增多,Cav-1可介導(dǎo)細(xì)胞膽固醇轉(zhuǎn)運(yùn)和流出,參與調(diào)節(jié)血管平滑肌細(xì)胞膽固醇平衡。Cav-1/caveolae缺失后抑制了低密度脂蛋白跨內(nèi)皮的轉(zhuǎn)運(yùn)和促動脈粥樣硬化纖連蛋白沉積,并擾亂了血流介導(dǎo)的內(nèi)皮細(xì)胞炎癥[11]。巨噬細(xì)胞在動脈粥樣硬化中有重要作用,Cav-1缺失可降低巨噬細(xì)胞含量,減少炎癥相關(guān)細(xì)胞因子和趨化因子的釋放[12]。肝臟X受體(liver X receptors,LXR)是巨噬細(xì)胞中膽固醇流出和炎癥基因反應(yīng)的關(guān)鍵轉(zhuǎn)錄因子,Cav-1參與調(diào)節(jié)LXR依賴性膽固醇流出和炎癥反應(yīng)[13]。

動脈粥樣硬化是多種因素參與的病理過程,Cav-1和自噬途徑參與低密度脂蛋白(low-density lipoprotein,LDL)跨內(nèi)皮細(xì)胞的轉(zhuǎn)胞吞作用,而微管相關(guān)蛋白1的輕鏈3B(microtubule-associated protein 1 light chain 3B,LC3B)是一種自噬標(biāo)志物,Cav-1和小窩相關(guān)蛋白1(caveolae associated protein 1,Cavin-1)的敲低激活了人臍靜脈內(nèi)皮細(xì)胞中的自噬作用,高葡萄糖抑制Cav-1-Cavin-1-LC3B介導(dǎo)的Cav-1自噬降解,促進(jìn)致動脈粥樣化脂質(zhì)的內(nèi)皮下滯留[14]。紅景天苷激活-磷酸腺苷活化的蛋白激酶、增強(qiáng)活性Src和Cav-1的自噬降解,使Cav-1水平降低,抑制LDL跨內(nèi)皮細(xì)胞的轉(zhuǎn)胞吞作用,減少血管壁中的脂質(zhì)積累[15]。丹皮酚可通過上調(diào)Cav-1的表達(dá)并抑制核轉(zhuǎn)錄因子κB(nuclear transcription factor kappa B,NF-κB)途徑的活化來減輕動脈粥樣硬化大鼠的血管炎癥,發(fā)揮抗動脈粥樣硬化的作用[16]。Cav-1可能通過調(diào)節(jié)脂質(zhì)轉(zhuǎn)運(yùn)、血管炎癥反應(yīng)等途徑參與動脈粥樣硬化過程,因此通過調(diào)節(jié)Cav-1的表達(dá)可能延緩動脈粥樣硬化進(jìn)程,有望成為動脈粥樣硬化性腦梗死的一個重要治療靶點(diǎn)。

2.3 Cav-1與血腦屏障

血腦屏障(blood-brain barrier,BBB)位于中樞神經(jīng)系統(tǒng)與外周血液循環(huán)之間,由腦血管內(nèi)皮細(xì)胞、周細(xì)胞、星形膠質(zhì)細(xì)胞和神經(jīng)元組成,腦微血管內(nèi)皮細(xì)胞起主要作用。幾乎所有的中樞神經(jīng)系統(tǒng)疾病的發(fā)生都有血腦屏障通透性的改變。Cav-1廣泛表達(dá)于血腦屏障血管內(nèi)皮細(xì)胞上,可通過抑制基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)、調(diào)節(jié)緊密連接蛋白5(claudin-5,CLDN5)發(fā)揮保護(hù)血腦屏障的作用,對于大鼠腦缺血模型的研究發(fā)現(xiàn)中Cav-1過表達(dá)可以抑制TJ蛋白的降解,進(jìn)而減輕BBB分解和血管源性腦水腫[17]。有研究發(fā)現(xiàn),腦組織缺血早期(4.5 h內(nèi)),腦組織的Cav-1和基質(zhì)金屬蛋白酶9(MMP-9)表達(dá)上調(diào),CLDN5表達(dá)下調(diào),參與早期血腦屏障損傷[18]。阻斷Cav-1介導(dǎo)的細(xì)胞內(nèi)轉(zhuǎn)運(yùn)可改善缺氧內(nèi)皮細(xì)胞中TJ的完整性,并有效抑制急性低壓缺氧動物BBB通透性和腦水腫的增加[19]。Cav-1的敲低在一定程度上抑制了內(nèi)皮CLDN5在細(xì)胞膜上的重新分布,進(jìn)一步起到保護(hù)BBB作用[20]。

血腦屏障在中樞神經(jīng)系統(tǒng)疾病的發(fā)生發(fā)展中扮演重要角色,可能是疾病治療的一個重要靶點(diǎn)。藥物蘇合香(Storax)可以抑制細(xì)胞膜小窩介導(dǎo)的轉(zhuǎn)胞吞作用,抑制內(nèi)皮細(xì)胞中的Cav-1,從而減弱BBB的超微結(jié)構(gòu)破壞[21]。Cav-1通過調(diào)節(jié)Cav-1依賴性TJ蛋白從內(nèi)皮細(xì)胞膜到細(xì)胞質(zhì)的內(nèi)吞作用,損害急性腦梗死的BBB通透性;應(yīng)用間充質(zhì)干細(xì)胞和腦內(nèi)皮細(xì)胞來源的細(xì)胞外囊泡治療均減少了BBB滲漏和梗死體積,并改善神經(jīng)功能缺損情況[22]。血管內(nèi)皮通透性在血腦屏障功能中起重要作用,有研究發(fā)現(xiàn)槲皮素可通過抑制氧化應(yīng)激下內(nèi)皮細(xì)胞中Cav-1的磷酸化來保護(hù)血管內(nèi)皮[23]。Cav-1可能通過調(diào)節(jié)細(xì)胞膜上蛋白功能、分布等途徑來影響血腦屏障的功能,作用機(jī)制仍待進(jìn)一步研究。

2.4 Cav-1與神經(jīng)再生、分化

神經(jīng)發(fā)生包括神經(jīng)干細(xì)胞(neural stem cells,NSC)的增殖、遷移和分化,神經(jīng)干細(xì)胞可以分化為神經(jīng)元、室管膜細(xì)胞、星形膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞等多種細(xì)胞[24]。既往觀念認(rèn)為神經(jīng)不可再生,但隨著研究的深入,發(fā)現(xiàn)神經(jīng)可再生,但過程復(fù)雜。有研究發(fā)現(xiàn),與野生型小鼠相比,Cav-1敲除小鼠顯示出更多的少突膠質(zhì)細(xì)胞分化,β-連環(huán)蛋白表達(dá)水平較低,Cav-1可以通過調(diào)節(jié)β-連環(huán)蛋白的表達(dá)來抑制神經(jīng)祖細(xì)胞(neural progenitor cells,NPC)的少突膠質(zhì)細(xì)胞分化[25]。Cav-1可以在豬少突膠質(zhì)細(xì)胞分化和再生過程中發(fā)揮調(diào)節(jié)作用[26]。Cav-1下調(diào)有助于增強(qiáng)神經(jīng)元分化,Cav-1可以通過下調(diào)血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)、p44/42絲裂活化蛋白激酶(mitogenactivated protein kinases,MAPK)、蛋白激酶B(AKT)、信號轉(zhuǎn)導(dǎo)子與轉(zhuǎn)錄激活子3信號通路來抑制神經(jīng)祖細(xì)胞的神經(jīng)元分化,VEGF信號是Cav-1作用的關(guān)鍵靶點(diǎn)[27]。Cav-1和VEGF的總蛋白表達(dá)經(jīng)運(yùn)動后增加,跑步機(jī)運(yùn)動可以通過Cav-1/VEGF信號通路促進(jìn)缺血性大鼠大腦的神經(jīng)發(fā)生[28]。研究發(fā)現(xiàn),Cav-1參與腦組織中的鐵代謝過程,激活Cav-1可增加海馬區(qū)神經(jīng)元的數(shù)量、改善小鼠的認(rèn)知功能[29]。神經(jīng)系統(tǒng)損傷后神經(jīng)再生、分化過程需要多種因子參與,Cav-1在其中的作用機(jī)制尚不明確,Cav-1或許可以促進(jìn)中樞神經(jīng)系統(tǒng)損傷后的神經(jīng)發(fā)生和神經(jīng)可塑性,但相關(guān)研究較少,且缺乏相應(yīng)臨床資料。

2.5 Cav-1與血管生成

血管生成是指從現(xiàn)有脈管系統(tǒng)中長出新的微血管,主要包括血管內(nèi)皮細(xì)胞的激活、增殖、遷移、黏附,管腔的形成等過程。血管生成過程有多種細(xì)胞因子參與,VEGF在血管生成過程占據(jù)重要地位,可刺激血管內(nèi)皮祖細(xì)胞的成熟和分化,促進(jìn)血管內(nèi)皮細(xì)胞黏附和遷移。Cav-1參與調(diào)節(jié)血管內(nèi)皮生長因子受體2(vascular endothelial factor receptor 2,VEGFR2)的自磷酸化及下游血管生成信號的激活過程,降低人臍靜脈內(nèi)皮細(xì)胞(human umbilical vein endothelial cell,HUVEC)中的Cav-1會損害VEGF/VEGFR2誘導(dǎo)的信號傳導(dǎo),減少內(nèi)皮細(xì)胞分化、小管形成和細(xì)胞遷移,研究表明Cav-1可促進(jìn)血管生成[30]。Cav-1過表達(dá)可誘導(dǎo)VEGF的表達(dá)上調(diào),促進(jìn)血管新生,改善肢體缺血情況[31]。內(nèi)皮細(xì)胞Cav-1可以調(diào)節(jié)活性氮和活性氧的蛋白修飾,在小鼠后肢缺血的血管生成中發(fā)揮重要作用[32]。Cav-1表達(dá)過高和過低均抑制內(nèi)皮祖細(xì)胞(endothelial progenitor cells,EPCs)形成血管的功能,使磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)和AKT蛋白表達(dá)水平降低,Cav-1可能通過調(diào)節(jié)PI3K/AKT信號通路來調(diào)節(jié)EPCs的血管生成能力[33]。Cav-1作為中介因子,可以參與調(diào)節(jié)血管生成過程,miR-204-5p可降低大鼠血管平滑肌細(xì)胞(VSMC)中的Cav-1蛋白的表達(dá),影響VSMC增殖活性,促進(jìn)增殖信號通路蛋白磷酸化磷脂酰肌醇3-激酶/磷脂酰肌醇3-激酶(PPI3K/PI3K)的表達(dá)[34]。以上提示Cav-1可能可以促進(jìn)血管的生成,有望成為腦損傷后側(cè)支循環(huán)形成治療的新思路。

2.6 Cav-1與腦梗死

腦梗死包括神經(jīng)元丟失、BBB損傷、小膠質(zhì)細(xì)胞激活、神經(jīng)炎癥、星形膠質(zhì)細(xì)胞增生和缺血再灌注損傷等病理生理過程[35]。Cav-1呈波動性表達(dá),在腦梗死急性期患者中Cav-1表達(dá)水平低于健康對照組,隨著發(fā)病天數(shù)增加表達(dá)水平逐漸下降,在發(fā)病第7天Cav-1表達(dá)水平仍低于正常水平[36]。溶栓后Cav-1表達(dá)下降可改善神經(jīng)功能障礙、腦血管儲備功能,促進(jìn)神經(jīng)功能修復(fù)[37]。Zhang等[38]研究發(fā)現(xiàn)與高Cav-1水平的患者相比,低Cav-1水平的急性腦梗死患者發(fā)生腦微出血的風(fēng)險增加了3倍。內(nèi)源性Cav-1在缺血后最初幾天可以促進(jìn)新血管形成、星形膠質(zhì)細(xì)胞增生和瘢痕形成,具有潛在的神經(jīng)保護(hù)作用[39]。腦卒中后Cav-1敲除的小鼠反應(yīng)性星形膠質(zhì)細(xì)胞形態(tài)學(xué)變化明顯減少,腦組織腫脹增加[40]。大腦中動脈閉塞大鼠的跑步機(jī)運(yùn)動相關(guān)研究發(fā)現(xiàn),跑步機(jī)運(yùn)動可通過上調(diào)Cav-1/VEGF信號通路促進(jìn)缺血半暗帶的樹突和突觸可塑性,使局灶性腦缺血/再灌注引起的神經(jīng)功能缺損得到改善[41],并可以通過影響Cav-1/瞬時受體電位香草素受體4型通道/水通道蛋白4通路改善腦水腫[42]。一項關(guān)于前循環(huán)大血管閉塞并進(jìn)行機(jī)械取栓術(shù)患者的研究表明,血清Cav-1水平升高的患者其3個月后的預(yù)后較好[43]。Cav-1在腦梗死中的作用受多種因素影響,是否表現(xiàn)為神經(jīng)保護(hù)作用仍需進(jìn)一步研究。

3 總結(jié)及展望

Cav-1在中樞神經(jīng)系統(tǒng)發(fā)生、發(fā)展過程中發(fā)揮舉重若輕的作用,不僅表現(xiàn)在上述疾病,在其他疾病中亦發(fā)揮重要作用,在阿爾茨海默病的病理前體中,恢復(fù)Cav-1的水平后,學(xué)習(xí)和記憶障礙癥狀改善[44]。Cav-1支架結(jié)構(gòu)域肽通過抑制多種酪氨酸激酶活性的機(jī)制逆轉(zhuǎn)大腦中與衰老相關(guān)的纖維化、微血管滲漏和器官功能障礙[45]。Cav-1可能在腦梗死中發(fā)揮腦保護(hù)作用,或許可以通過調(diào)節(jié)Cav-1水平來延緩進(jìn)展,而為現(xiàn)有治療方案予以補(bǔ)充、擴(kuò)展,但這一設(shè)想仍有待更多的實驗室結(jié)果及臨床證據(jù)來支撐。相信隨著科技進(jìn)步、研究工作深入,未來對于Cav-1在腦梗死中作用機(jī)制的認(rèn)識會越來越清晰,可能會給臨床診療工作帶來新的目標(biāo)。

參考文獻(xiàn)

[1] HURLSTONE A F,REID G,REEVES J R,et al.Analysis of the caveolin-1 gene at human chromosome 7q31.1 in primary tumours and tumour-derived cell lines[J].Oncogene,1999,18(10):1881-1890.

[2] NGUYEN K C,CHO K A.Versatile functions of caveolin-1 in aging-related diseases[J].Chonnam Med J,2017,53(1):28-36.

[3] LUTZ S E,SMITH J R,KIM D H,et al.Caveolin1 is REQUIRED for Th1 cell infiltration, but not tight junction remodeling, at the blood-brain barrier in autoimmune neuroinflammation[J].Cell Rep,2017,21(8):2104-2117.

[4] ZHANG X,RAMIREZ C M,ARYAL B,et al.Cav-1 (caveolin-1) deficiency increases autophagy in the endothelium and attenuates vascular inflammation and atherosclerosis[J].Arterioscler Thromb Vasc Biol,2020,40(6):1510-1522.

[5] MIERKE J,CHRISTOPH M,AUGSTEIN A,et al.Influence of caveolin-1 and endothelial nitric oxide synthase on adventitial inflammation in aortic transplants[J].Kardiol Pol,2020,78(2):124-130.

[6] ZHANG X,GONG P,ZHAO Y,et al.Endothelial caveolin-1 regulates cerebral thrombo-inflammation in acute ischemia/reperfusion injury[J].EBioMedicine,2022,84:104275.

[7] NIESMAN I R,SCHILLING J M,SHAPIRO L A,et al.Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice[J].J Neuroinflammation,2014,11:39.

[8] CHANG C F,CHEN S F,LEE T S,et al.Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage[J].Am J Pathol,2011,178(4):1749-1761.

[9] GRAF G A,MATVEEV S V,SMART E J.Class B scavenger receptors, caveolae and cholesterol homeostasis[J].United States: Elsevier Inc,1999,9(8):221-225.

[10]嚴(yán)鵬科,廖端芳,楊永宗.Caveolin-1表達(dá)對血管平滑肌細(xì)胞膽固醇逆轉(zhuǎn)運(yùn)的調(diào)節(jié)作用[J].中國動脈硬化雜志,2002,10(5):379-383.

[11] RAM?REZ C M,ZHANG X,BANDYOPADHYAY C,et al.Caveolin-1 regulates atherogenesis by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation[J].Circulation,2019,140(3):225-239.

[12] WANG D X,PAN Y Q,LIU B,et al.Cav-1 promotes atherosclerosis by activating JNK-associated signaling[J].Biochemical and Biophysical Research Communications,2018,503(2):513-520.

[13] RAM?REZ C M,TORRECILLA P M,PARDO M V,et al.Crosstalk between LXR and caveolin-1 signaling supports cholesterol efflux and anti-inflammatory pathways in macrophages[J].Frontiers in Endocrinology,2021,12:635923.

[14] BAI X,YANG X,JIA X,et al.CAV1-CAVIN1-LC3B-mediated autophagy regulates high glucose-stimulated LDL transcytosis[J].Autophagy,2020,16(6):1111-1126.

[15] BAI X,JIA X,LU Y,et al.Salidroside-mediated autophagic targeting of active src and caveolin-1 suppresses low-density lipoprotein transcytosis across endothelial cells[J].Oxidative Medicine and Cellular Longevity,2020,2020:9595036.

[16] LIU Y R,SHAO Q,ZHANG H H,et al.Inhibitory effect of paeonol on aortic endothelial inflammation in atherosclerotic rats by up-regulation of caveolin-1 expression and suppression of NF-κB pathway[J].Zhongguo Zhong Yao Za Zhi,2020,45(11):2578-2585.

[17] CHOI K,KIM H,PARK M,et al.Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation[J].Oncotarget,2016,7(42):67857-67867.

[18]鐘巍,唐湘祁.大鼠腦缺血早期cav-1、MMP-2/9、緊密連接蛋白的表達(dá)和血腦屏障損傷的關(guān)系[C]//中華醫(yī)學(xué)會第十七次全國神經(jīng)病學(xué)學(xué)術(shù)會議,2014.

[19] XUE Y,WANG X,WAN B,et al.Caveolin-1 accelerates hypoxia-induced endothelial dysfunction in high-altitude cerebral edema[J].Cell Commun Signal,2022,20(1):160.

[20] YANG Z,LIN P,CHEN B,et al.Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5)[J].Autophagy,2021,17(10):3048-3067.

[21] ZHOU M,LI D,SHEN Q,et al.Storax inhibits caveolae-mediated transcytosis at blood-brain barrier after ischemic stroke in rats[J].Front Pharmacol,2022,13:876235.

[22] LI Y,LIU B,ZHAO T,et al.Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke[J].J Nanobiotechnology,2023,21(1):70.

[23] KONDO-KAWAI A,SAKAI T,TERAO J,et al.Suppressive effects of quercetin on hydrogen peroxide-induced caveolin-1 phosphorylation in endothelial cells[J].J Clin Biochem Nutr,2021,69(1):28-36.

[24] KOH S H,PARK H H.Neurogenesis in stroke recovery[J].Transl Stroke Res,2017,8(1):3-13.

[25] LI Y,LAU W M,SO K F,et al.Caveolin-1 inhibits oligodendroglial differentiation of neural stem/progenitor cells through modulating β-catenin expression[J].Neurochemistry International,2011,59(2):114-121.

[26] SCHMITZ M,KL?PPNER S,KLOPFLEISCH S,et al.Mutual effects of caveolin and nerve growth factor signaling in pig oligodendrocytes[J].Journal of Neuroscience Research,2010,88(3):572-588.

[27] LI Y,LUO J M,LAU W M,et al.Caveolin-1 plays a crucial role in inhibiting neuronal differentiation of neural stem/progenitor cells via VEGF signaling-dependent pathway[J/OL].PLoS One,2018,6(8):e22901.https://pubmed.ncbi.nlm.nih.gov/21826216/.

[28] ZHAO Y,PANG Q,LIU M,et al.Treadmill exercise promotes neurogenesis in ischemic rat brains via Caveolin-1/VEGF signaling pathways[J].Neurochemical Research,2017,42(2):389-397.

[29]李成程.Caveolin-1在血管緊張素Ⅱ誘導(dǎo)的腦小血管病中的作用和機(jī)制研究[D].重慶:西南大學(xué),2020.

[30] TAHIR S A,PARK S,THOMPSON T C.Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells[J].Cancer Biology & Therapy,2009,8(23):2286-2296.

[31]李明.Caveolin-1上調(diào)VEGF的表達(dá)對糖尿病大鼠下肢缺血的影響[D].衡陽:南華大學(xué),2016.

[32] ITO A,SHIROTO T,GODO S,et al.Important roles of endothelial caveolin-1 in endothelium-dependent hyperpolarization and ischemic angiogenesis in mice[J].American Journal of Physiology Heart and Circulatory Physiology,2019,316(4):H900-H910.

[33]黃燕鳳,劉玉花,翟露,等.小凹蛋白-1改善2型糖尿病小鼠內(nèi)皮祖細(xì)胞血管生成的機(jī)制研究[J].現(xiàn)代預(yù)防醫(yī)學(xué),2020,47(7):1275-1280.

[34]關(guān)雪峰.MiR-204-5p通過靶基因Cav-1調(diào)節(jié)大鼠血管平滑肌細(xì)胞增殖的研究[D].長春:吉林大學(xué),2019.

[35] PAUL M G,GARY K S.Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments[J].Neuron,2015,87(2):297-309.

[36]李才明,陳禮錕,孔令恩,等.急性腦梗死患者血清小凹蛋白-1水平的動態(tài)變化研究[J].繼續(xù)醫(yī)學(xué)教育,2022,36(11):93-96.

[37]王平江,白粉娥,巨彥龍,等.尤瑞克林聯(lián)合瑞替普酶靜脈溶栓對急性輕型缺血性卒中患者神經(jīng)功能及血清Cav-1、PTX3水平的影響[J].海南醫(yī)學(xué),2020,31(23):3017-3021.

[38] ZHANG J,ZHU W S,XIAO L L,et al.Lower serum caveolin-1 is associated with cerebral microbleeds in patients with acute ischemic stroke[J].Oxidative Medicine and Cellular Longevity,2016,2016:9026787.

[39] CAMILLE B,LARA B,TIFENN C,et al.Involvement of caveolin-1 in neurovascular unit remodeling after stroke: effects on neovascularization and astrogliosis[J].Journal of Cerebral Blood Flow & Metabolism,2020,40(1):163-476.

[40] FILCHENKO I,BLOCHET C,BUSCEMI L,et al.Caveolin-1 regulates perivascular aquaporin-4 expression after cerebral ischemia[J].Frontiers in Cell and Developmental Biology,2020,8:371.

[41] XIE Q F,CHENG J Y,PAN G Y,et al.Treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic modification and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways[J].Experimental Neurology,2018,313:60-78.

[42] ZHU A Q,LIN Y,HU X B,et al.Treadmill exercise decreases cerebral edema in rats with local cerebral infarction by modulating AQP4 polar expression through the caveolin-1/TRPV4 signaling pathway[J].Brain Research Bulletin,2022,188:155-168.

[43] WANG Q G,CAO H,E Y,et al.The prognostic value of caveolin-1 levels in ischemic stroke patients after mechanical thrombectomy[J].Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology,2023,44(6):2081-2086.

[44] BONDS J A,SHETTI A,BHERI A,et al.Depletion of caveolin-1 in type 2 diabetes model induces Alzheimer's disease pathology precursors[J].J Neurosci,2019,39(43):8576-8583.

[45] KUPPUSWAMY D,CHINNAKKANNU P,REESE C,et al.The caveolin-1 scaffolding domain peptide reverses aging-associated deleterious changes in multiple organs[J].The Journal of Pharmacology and Experimental Therapeutics,2021,378(1):1-9.

猜你喜歡
動脈粥樣硬化腦梗死
磁共振彌散加權(quán)成像對急性腦梗死的診斷作用探討
帕金森病伴動脈粥樣硬化老年患者給予辛伐他汀聯(lián)合美多芭治療的臨床效果觀察
阿托伐他汀聯(lián)合普羅布考對41例動脈粥樣硬化的治療效果分析
擴(kuò)大的血管周圍間隙與腦小血管病變關(guān)系的臨床研究
短暫性腦缺血發(fā)作患者ABCD2評分與血漿同型半胱氨酸水平的關(guān)系
山楂水煎液對高脂血癥大鼠早期動脈粥樣硬化形成過程的干預(yù)機(jī)制
急性腦梗死的CT腦灌注成像分析
脈血康膠囊治療老年恢復(fù)期腦梗死30例
參芎龍蝎湯治療腦梗死臨床研究
中西醫(yī)結(jié)合治療腦梗死43例