石丹丹 寧梓淇 劉美霞 劉劍剛
【摘要】心血管結(jié)構(gòu)和功能損傷是許多心血管疾病的重要病理基礎(chǔ),許多研究表明氧化應(yīng)激在缺血性心臟病、動脈粥樣硬化、高血壓等諸多病理性心血管損傷中發(fā)揮重要作用。NADPH氧化酶(Nox)是調(diào)控氧化還原信號的關(guān)鍵酶,而血管內(nèi)的活性氧主要來源于Nox4。隨著研究的不斷深入,發(fā)現(xiàn)Nox4在不同階段或不同刺激下會發(fā)揮不同甚至截然相反的作用,如雙向調(diào)節(jié)動脈粥樣硬化的進展、雙向作用影響血壓等?,F(xiàn)總結(jié)Nox4在不同心血管損傷中的不同影響及作用機制,為后續(xù)的研究提供一定的理論基礎(chǔ)。
【關(guān)鍵詞】NADPH氧化酶4;活性氧;心血管損傷
【DOI】10.16806/j.cnki.issn.1004-3934.2024.02.000
Mechanism of the Role of Reduced Nicotinamide Adenine Dinucleotide Phosphate Oxidase?4 in Cardiovascular Injury
SHI Dandan1,2,NING Ziqi1,2,LIU Meixia1,LIU Jiangang1
(1.Xiyuan Hospital,Chinese Academy of Chinese Medical Sciences,Institute of Geriatrics of Chinese Academy of Chinese Medical Sciences,Beijing 100091,China; 2. Graduate School of China Academy of Chinese Medicial Sciences,Beijing 100700,China)
【Abstract】The damage of cardiovascular structure and function is an important pathological basis of many cardiovascular diseases. Many studies have shown that oxidative stress plays an important role in many pathological cardiovascular injuries,such as ischemic heart disease,atherosclerosis,hypertension,etc. Reduced nicotinamide adenine dinucleotide phosphate oxidase (Nox)?is a key enzyme in the regulation of redox signaling,and intravascular reactive oxygen species are mainly originated from Nox4.With the deepening of the research,it has been found that Nox4 plays different or even opposite roles at different stages or under different stimuli,such as bidirectional regulation of atherosclerosis progression,bidirectional effects affecting blood pressure,etc. This article summarizes the different roles and mechanisms of Nox4 in different cardiovascular injuries,providing a theoretical basis for subsequent research.
【Keywords】Reduced nicotinamide adenine dinucleotide phosphate oxidase 4; Reactive oxygen species; Cardiovascular injury
據(jù)世界衛(wèi)生組織調(diào)查,心血管疾病每年導(dǎo)致近1?790萬的死亡,是全球死亡的主要原因,嚴重威脅著人類的生命健康[1]。眾多研究結(jié)果證實,氧化應(yīng)激損傷在其中扮演關(guān)鍵角色。氧化應(yīng)激是指體內(nèi)氧化與抗氧化作用紊亂(更傾向于氧化),導(dǎo)致產(chǎn)生大量的活性氧(reactive oxygen species,ROS)在體內(nèi)蓄積,進而損傷核酸、蛋白質(zhì)和脂質(zhì)等生物大分子。在心血管疾病中,氧化應(yīng)激是重要的介導(dǎo)者。
ROS的來源眾多,主要包括線粒體呼吸鏈以及NADPH氧化酶(reduced nicotinamide adenine dinucleotide phosphate oxidase,Nox),其中Nox4是血管內(nèi)ROS的主要來源[2]。Nox4參與心血管的各種生理病理過程,對維持心血管結(jié)構(gòu)和功能起著關(guān)鍵作用。多種研究表明,在心肌梗死、高血壓、動脈粥樣硬化等心血管疾病的不同階段或不同刺激下,Nox4所發(fā)揮的作用也不同。現(xiàn)主要從以下幾個方面闡明Nox4在心血管損傷中的雙向作用。
1??Nox4的結(jié)構(gòu)和功能
Nox是特殊的產(chǎn)生ROS的酶類家族,由胞膜成分、細胞色素b558[gp91phox和p22phox,其中g(shù)p91phox有NADPH、黃素腺嘌呤二核苷酸(flavin adenine dinucleotide,F(xiàn)AD)潛在結(jié)合位點]、3種胞質(zhì)蛋白(p67phox、p47phox和p40phox)及小G蛋白Rac組成,其主要生物學功能是產(chǎn)生ROS,以維持細胞正常的生理活動。但是在異常情況下,Nox家族蛋白出現(xiàn)異常表達或激活,不僅導(dǎo)致細胞內(nèi)ROS過量產(chǎn)生和蓄積,還會作用于線粒體及其他ROS相關(guān)酶系統(tǒng)(如線粒體電子傳遞鏈)導(dǎo)致其功能異常,繼而引發(fā)ROS的繼發(fā)性蓄積,最終形成惡性循環(huán),持續(xù)不斷地對組織造成損傷[3]。目前已經(jīng)鑒定出Nox的七個亞型,包括Nox1-5和雙重氧化酶(dual oxidase,DUOX)1及DUOX2,其中Nox1、Nox2、Nox4和Nox5在血管系統(tǒng)中被發(fā)現(xiàn),而在血管內(nèi)皮細胞(endothelial cell,EC)中,Nox4的表達則高于其他Nox亞型[4],被認為是血管內(nèi)ROS的主要來源[2]。
在Nox家族中,Nox4最為特殊:(1)Nox4為構(gòu)成性活性,與穩(wěn)定的p22phox胞膜亞基結(jié)合后具有活性,其活性被聚合酶-δ相互作用蛋白2(polymerase delta-interacting protein 2,Poldip2)調(diào)節(jié),其激活無需額外的調(diào)控亞基;(2)Nox家族其他亞基生成超氧化物自由基O2·-,O2·-自由基依次發(fā)生歧化反應(yīng)生成H2O2,而Nox4可直接產(chǎn)生H2O2[5-6]。這是由于其獨特的內(nèi)在激活的Nox4脫氫酶結(jié)構(gòu)域。Nox4包括C端的脫氫酶結(jié)構(gòu)域(包含F(xiàn)AD和NADPH結(jié)合位點)和N端的6個跨越膜的α-螺旋(包括環(huán)A-E),位于協(xié)調(diào)兩個血紅素在第三和第五跨膜螺旋上。正常情況下電子從NADPH通過FAD和兩個血紅素基傳遞給O2產(chǎn)生O2-,由于Nox4上的E環(huán)上結(jié)構(gòu),O2-被快速歧化為H2O2。見表1及圖1。
2??Nox4對心血管損傷的影響及作用機制
2.1??Nox4調(diào)控EC的定向遷移,促進血管生成
血管的生成是一個復(fù)雜的過程,與EC密切相關(guān)。在促血管生成的刺激下,EC進行增殖、遷移和分化,并招募血管平滑肌細胞(vascular smooth muscle cell,VSMC)或周細胞來覆蓋以形成新的血管。Nox4介導(dǎo)的血管生成受多種因素如缺氧、缺血、血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)等的調(diào)控。當機體處于缺氧缺血狀態(tài)時,缺氧誘導(dǎo)因子-1α(hypoxia inducible factor-1α,HIF-1α)隨即生成。HIF-1α一方面刺激Nox4的表達,生成ROS,另一方面,HIF-1α激活下游靶標VEGF[11,12]。VEGF作為最有效的內(nèi)皮特異性血管生成生長因子,與血管內(nèi)皮生長因子受體-2(vascular endothelial growth factor receptor 2 ,VEGFR-2)相結(jié)合,激活酪氨酸激酶途徑,促進EC的增殖、遷移,從而加速體內(nèi)血管的形成。血管生成素2(angiopoietin2,Ang2)與VEGF相互協(xié)調(diào)促進血管生成。VEGF可促進Ang2的表達,破壞血管穩(wěn)定性,從而促使血管生成增加[13]。實驗[14,15]證明,Nox4可降低VEGF和HIF-1α的水平,Nox4缺失時VEGF、VEGFR-2、Ang2的表達顯著降低。此外,Nox4的激活使得血管內(nèi)生成大量H2O2,NO增多,高水平的H2O2減少核轉(zhuǎn)錄因子紅系2相關(guān)因子2(nuclear factor-erythroid 2-related factor 2 ,Nrf2)的降解,促進血紅素加氧酶-1(heme oxygenase 1,HO-1)的生成,發(fā)揮血管保護功能[16]。已有實驗證明,股動脈結(jié)扎的全身Nox4敲除小鼠相較于對照組來說,其體內(nèi)內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)、NO及HO-1的表達降低,Nrf2蛋白水平降低,且小鼠的血流恢復(fù)顯著減弱[17]。轉(zhuǎn)化生長因子-β1(transforming growth factor-β1,TGF-β1)是血管生成的另一個重要調(diào)節(jié)因子,在Nox4信號傳導(dǎo)中發(fā)揮重要作用。實驗[18]證明,經(jīng)TGF-β1誘導(dǎo)的人臍靜脈EC中Nox4蛋白的表達上調(diào),而在Nox4敲除小鼠的心臟EC中,TGF-β1誘導(dǎo)EC細胞增殖、遷移和管形成被消除;在體內(nèi),TGF-β1誘導(dǎo)的血管生成在Nox4敲除的小鼠中顯著降低。體外實驗[19]中使用Nox4敲除的人臍靜脈EC進行血管生成實驗,結(jié)果顯示血管生成顯著減少。
綜上,Nox4在血管生成中發(fā)揮重要的調(diào)控作用,特別是在缺血狀態(tài)下的血運重建中起積極作用。Nox4參與調(diào)控多種與血管生成密切相關(guān)的細胞因子如VEGF、HIF-1α、TGF-β1等的信號傳導(dǎo),從而促進新血管的生成(見圖2)。正因為Nox4在血管生成中的關(guān)鍵作用,它已成為治療癌癥、外周動脈疾病、腦梗死、心肌梗死等疾病的重要靶標之一。已有研究[20]表明Nox4與某些腫瘤,如纖維肉瘤、膠質(zhì)母細胞瘤、星型膠質(zhì)瘤等的血管生成相關(guān)。因此,Nox4可能成為腫瘤治療中具有潛力的靶點之一,其抑制可能有助于抑制腫瘤的血管生成。
圖2 ?Nox4調(diào)控血管生成的機制
2.2??Nox4雙向調(diào)節(jié)參與動脈粥樣硬化性血管損傷的發(fā)生發(fā)展
Nox4在動脈粥樣硬化(atherosclerosis,AS)中具有復(fù)雜作用。在AS進展過程中,Nox4生成的ROS促進氧化型低密度脂蛋白(oxidized low-density lipoprotein,ox-LDL)的生成和泡沫細胞的形成。同時,具有細胞毒性的ox-LDL還通過信號轉(zhuǎn)導(dǎo)激活NF-κB信號通路,降低eNOS活性,減少NO生成,同時增加炎癥因子如白細胞介素-8(interleukin-8,IL-8)、Nod樣受體蛋白3(nod-like receptor protein 3,NLRP3)等釋放,引起EC功能障礙,從而進一步促進AS的形成。實驗[21]證明,在AS中可觀察到Nox4表達上調(diào),而在全身性Nox4敲除小鼠中AS進展緩慢。
值得注意的是,有其他學者提出Nox4對內(nèi)皮功能也有一定的保護作用。Nox4產(chǎn)生的H2O2不與NO相互作用,不會導(dǎo)致過氧亞硝酸鹽的生成,從而保護血管內(nèi)皮。在低密度脂蛋白受體缺失的小鼠中,Nox4的表達可抑制EC功能障礙和AS的發(fā)展[22]。最新研究[23]發(fā)現(xiàn),EC的Nox4功能紊亂,可能通過增加內(nèi)質(zhì)網(wǎng)應(yīng)激、上調(diào)水溶性環(huán)氧化合物水解酶(soluble epoxide hydrolase,sEH)水平,從而誘導(dǎo)血管炎癥,加速AS進程(見圖3)。
圖3 ?Nox4在AS中的作用機制
此外,關(guān)于Nox4在AS中的雙向作用,還可能與細胞類型有關(guān)。有研究者發(fā)現(xiàn),VSMC的Nox4與EC的Nox4在AS中發(fā)揮相反的作用:VSMC的Nox4可能對AS起保護作用,EC的Nox4可能促進AS的進展[23]。AS是一個復(fù)雜的疾病過程,多個因素參與其中,對于Nox4在AS中的作用機制和具體調(diào)控方式仍需要更深入的研究和驗證。
2.3??Nox4影響血管舒縮功能從而影響血壓
Nox4在高血壓的發(fā)生發(fā)展中發(fā)揮重要作用。VSMC異常增殖和向內(nèi)膜遷移是高血壓發(fā)生和發(fā)展的關(guān)鍵階段,而基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)降解VSMC的細胞外基質(zhì)是其遷移的必要步驟。Nox4可介導(dǎo)胰島素樣生長因子1誘導(dǎo)的MMP-2和MMP-9的激活,從而啟動VSMC的遷移、增殖[2]。動物實驗[24]表明,高線粒體Nox4表達的小鼠主動脈僵硬度顯著增加。在鹽敏感型高血壓大鼠中敲除Nox4基因,鹽敏感型大鼠模型對高鹽的血壓反應(yīng)減弱[25]。
關(guān)于Nox4在高血壓中的作用,目前還存在一些爭議。其他研究[26-27]發(fā)現(xiàn)高血壓患者中Nox4水平較低,過表達的Nox4可增強血管舒張作用,降低血壓,對心血管系統(tǒng)發(fā)揮保護作用。這些結(jié)果之間的矛盾可能與不同的實驗條件、樣本來源和研究方法有關(guān)??傮w而言,Nox4在高血壓中的作用仍處于早期階段,進一步的研究將有助于更好地理解Nox4與高血壓之間的關(guān)系,以及發(fā)掘其在治療高血壓方面的潛在作用。
2.4??Nox4加重心肌缺血再灌注損傷
缺血性心肌病是心血管損傷的基礎(chǔ)和重要因素之一。Hearse[28]等發(fā)現(xiàn),當恢復(fù)血流時心肌損傷反而加重,被稱為“再灌注損傷”。ROS是心肌缺血再灌注損傷的潛在介質(zhì),通過介導(dǎo)線粒體功能障礙和內(nèi)質(zhì)網(wǎng)應(yīng)激,從而損傷心肌細胞。Nox4作為心肌細胞中主要的Nox亞型,抑制Nox4衍生的ROS可防止線粒體功能障礙和內(nèi)質(zhì)網(wǎng)應(yīng)激,從而減輕心肌缺血再灌注損傷。研究[29-30]發(fā)現(xiàn),心臟特異性Nox4過表達小鼠在心肌缺血再灌注期間表現(xiàn)出ROS產(chǎn)生與梗死面積的增加,而心臟特異性Nox4敲除小鼠心肌損傷顯著減少。另一項研究[31]發(fā)現(xiàn),下調(diào)Nox4的表達后,小鼠心肌缺血再灌注后梗死面積減小。這些發(fā)現(xiàn)表明,Nox4在心肌缺血再灌注損傷中起有害作用。
2.5??Nox4可促進心血管細胞的衰老與凋亡
年齡被認為是心血管疾病的主要危險因素,隨著年齡的增長,機體抗氧化能力減弱,使得氧化系統(tǒng)和抗氧化系統(tǒng)之間的平衡向氧化應(yīng)激傾斜,最終導(dǎo)致心血管損傷。在主動脈VSMC和線粒體中,Nox4的表達和ROS水平隨年齡增加而增加,老年主動脈中Nox4 mRNA和蛋白的表達明顯高于年輕主動脈。體外實驗[32]同樣表明,內(nèi)質(zhì)網(wǎng)ROS及其相關(guān)Nox4的表達和活性都隨著衰老而增加。血管Nox4水平與年齡呈正相關(guān),這提示Nox4可能成為治療衰老性心血管疾病的潛在治療靶點。
此外,Nox4可通過多種機制觸發(fā)細胞凋亡。過表達的Nox4可活化促分裂原活化的蛋白激酶(mitogen-activated protein kinase,MAPK)途徑,進而激活p53。這個過程伴隨著促凋亡蛋白B細胞淋巴瘤-2相關(guān)X蛋白(B-cell lymphoma-2 related X protein,Bax)和caspace信號通路中caspace-9、caspace-3的上調(diào),增加心肌細胞的凋亡[33]。TGF-β依賴于Nox4的上調(diào)和ROS的產(chǎn)生,通過調(diào)節(jié)p38、PTP1B/VEGFR/Akt和Notch信號通路影響EC功能[34],誘導(dǎo)EC凋亡。此外,Nox4還可以通過引發(fā)內(nèi)質(zhì)網(wǎng)功能障礙從而促進細胞凋亡[35],其具體機制為Nox4與內(nèi)質(zhì)網(wǎng)膜的肌醇需求酶1α(inositol requiring enzyme 1 alpha,IRE1α)作用,募集腫瘤壞死因子受體相關(guān)因子2(tumor necrosis factor receptor-associated factor?2,TRAF2),并與凋亡信號調(diào)節(jié)激酶1(apoptosis signal regulating kinase-1,ASK1)形成IRE1α-TRAF2-ASK1復(fù)合體,進而激活c-Jun氨基端蛋白激酶(c-Jun N-terminal protein?kinase,JNK)的磷酸化,激活凋亡信號,誘導(dǎo)細胞凋亡。死亡受體5(death receptor 5,DR5)是外源性凋亡通路的主要組成部分,由p53依賴的轉(zhuǎn)錄激活介導(dǎo)。Nox4下調(diào)阻止了ROS/p53/DR5軸的激活,從而抑制細胞凋亡[36]。此外,Nox4還會通過破壞線粒體功能導(dǎo)致細胞衰老和死亡。Nox4直接產(chǎn)生H2O2會破壞線粒體,從而導(dǎo)致線粒體功能障礙,促進細胞的衰老和凋亡[37](見圖4)。
圖4 ?Nox4調(diào)控細胞衰老及凋亡的作用機制
3??總結(jié)與展望
Nox4作為血管中ROS的主要來源,常常發(fā)揮雙向調(diào)控作用,在不同的心血管疾病作用不同。隨著眾多學者對Nox4研究的不斷深入,關(guān)于Nox4的幾個關(guān)鍵問題仍待解答。(1)Nox4功能的細胞類型特異性:目前尚不清楚Nox4在不同細胞類型中的具體功能和調(diào)控機制,還有待進一步研究;(2)Nox4的亞細胞定位和作用:Nox4被發(fā)現(xiàn)存在于多個亞細胞位置如內(nèi)質(zhì)網(wǎng)、線粒體、核內(nèi)等,目前對于Nox4亞細胞定位的調(diào)控機制了解還比較有限,需要進一步的研究來揭示其詳細信息;(3)如何調(diào)控Nox4的雙向作用,有賴于確定不同狀態(tài)下ROS的不同水平。了解不同狀態(tài)下ROS水平的變化以及其對細胞功能的影響,是調(diào)控Nox4雙向作用的關(guān)鍵。新的特異性Nox4抑制劑可能為AS、高血壓、冠心病等心血管性疾病的治療帶來新的前景。
參考文獻
[1] Jung YS. Natural antioxidant in cardiovascular and cerebrovascular diseases[J]. Antioxidants (Basel),2022,11(6):1159-1161.
[2] Gola L,Bierhansl L,Csatári J,et al. NOX4-derived ROS are neuroprotective by balancing intracellular calcium stores[J]. Cell Mol Life Sci,2023,80(5):127-145.
[3] Vermot A,Petit-H?rtlein I,Smith S,et al. NADPH oxidases(NOX):an overview from discovery,molecular mechanisms to physiology and pathology[J]. Antioxidants (Basel),2021,10(6):890-945.
[4] Tang X,Wang J,Abboud HE,et al. Sustained upregulation of endothelial Nox4 mediates retinal vascular pathology in type 1 diabetes[J]. Diabetes,2023,72(1):112-125.
[5] Lee H,Jose P. Coordinated contribution of NADPH oxidase- and mitochondria-derived reactive oxygen species in metabolic syndrome and its implication in renal dysfunction[J]. Front Pharmacol,2021,12:670076-600094.
[6] Moghadam ZM,Henneke P,Kolter J. From flies to men:ROS and the NADPH oxidase in phagocytes[J]. Front Cell Dev Biol,2021,9:628991-629007.
[7] Gimenez M,Schickling BM,Lopes LR,et al. Nox1 in cardiovascular diseases:regulation and pathophysiology[J]. Clin Sci (Lond),2016,130(3):151-165.
[8] Bode K,Hauri M,Jaquet V,et al. Unlocking the power of NOX2:a comprehensive review on its role in immune regulation[J]. Redox Biol,2023,64:102795-102812.
[9] García JG,Ansorena E,Izal I,et al. Structure,regulation,and physiological functions of NADPH oxidase 5 (NOX5)[J]. J Physiol Biochem,2023,79(2):383-395.
[10] Ashtiwi NM,Sarr D,Rada B. DUOX1 in mammalian disease pathophysiology[J]. J Mol Med (Berl),2021,99(6):743-754.
[11] Islam R,Dash D,Singh R. An antioxidant ameliorates allergic airway inflammation by inhibiting HDAC 1 via HIF-1α/VEGF axis suppression in mice[J]. Sci Rep,2023,13(1):9637-9651.
[12] Ding H,Tang C,Wang W,et al. Polydatin ameliorates high fructose-induced podocyte oxidative stress via suppressing HIF-1α/NOX4 pathway[J]. Pharmaceutics,2022,14(10):2202-2230.
[13] Niapour A,Miran M,Seyedasli N,et al. Anti-angiogenic effects of aqueous extract from Agrostemma githago L. seed in human umbilical vein endothelial cells via regulating Notch/VEGF,MMP2/9,ANG2,and VEGFR2[J]. Environ Sci Pollut Res Int,2023,30(9):22413-22429.
[14] Chai D,Zhang L,Xi S,et al. Nrf2 activation induced by Sirt1 ameliorates acute lung injury after intestinal ischemia/reperfusion through NOX4-mediated gene regulation[J]. Cell Physiol Biochem,2018,46(2):781-792.
[15] Miyano K,Okamoto S,Yamauchi A,et al. The NADPH oxidase NOX4 promotes the directed migration of endothelial cells by stabilizing vascular endothelial growth factor receptor 2 protein[J]. J Biol Chem,2020,295(33):11877-11890.
[16] Wang Y,Wang W,Zhou S,et al. Poldip2 knockdown protects against lipopolysaccharide-induced acute lung injury via Nox4/Nrf2/NF-κB signaling pathway[J]. Front Pharmacol,2022,13:958916.
[17] Schr?der K,Zhang M,Benkhoff S,et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase[J]. Circulation research,2012,110(9):1217-1225.
[18] Shah MH,Chan EC,van Bergen NJ,et al. Nox4 facilitates TGFβ1-induced fibrotic response in human Tenons fibroblasts and promotes wound collagen accumulation in murine model of glaucoma filtration surgery[J]. Antioxidants (Basel),2020,9(11):1126-1140.
[19] Song IK,Kim HJ,Magesh V,et al. Ubiquitin C-terminal hydrolase-L1 plays a key role in angiogenesis by regulating hydrogen peroxide generated by NADPH oxidase 4[J]. Biochem Biophys Res Commun,2018,495(1):1567-1572.
[20] Barlin M,Clements J,Held J. Nox4 regulates cancer cell plasticity influencing autophagy state of cells[J]. Free Radic Biol Med,2022,192:97-98.
[21] Zhou T,Li S,Yang L,et al. microRNA-363-3p reduces endothelial cell inflammatory responses in coronary heart disease via inactivation of the NOX4-dependent p38 MAPK axis[J]. Aging (Albany NY),2021,13(8):11061-11082.
[22] Langbein H,Brunssen C,Hofmann A,et al. NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice[J]. Eur Heart J,2016,37(22):1753-1761.
[23] Kim SA,Lee AS,Lee HB,et al. Soluble epoxide hydrolase inhibitor,TPPU,attenuates progression of atherosclerotic lesions and vascular smooth muscle cell phenotypic switching[J]. Vascul Pharmacol,2022,145:107086-107098.
[24] Canugovi C,Stevenson MD,Vendrov AE,et al. Increased mitochondrial NADPH oxidase 4 (NOX4) expression in aging is a causative factor in aortic stiffening[J]. Redox Biol,2019,26:101288.
[25] Cowley AW Jr,Yang C,Zheleznova NN,et al. Evidence of the importance of Nox4 in production of hypertension in Dahl salt-sensitive rats[J]. Hypertension,2016,67(2):440-450.
[26] Meister ML,Najjar RS,Danh JP,et al. Berry consumption mitigates the hypertensive effects of a high-fat,high-sucrose diet via attenuation of renal and aortic AT1R expression resulting in improved endothelium-derived NO bioavailability[J]. J Nutr Biochem,2023,112:109225.
[27] Zhang K,Kan H,Mao A,et al. Single-cell analysis of salt-induced hypertensive mouse aortae reveals cellular heterogeneity and state changes[J]. Exp Mol Med,2021,53(12):1866-1876.
[28] Hearse DJ,Humphrey SM,Chain EB. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart:a study of myocardial enzyme release[J]. J Mol Cell Cardiol,1973,5(4):395-407.
[29] Yu Q,Lee CF,Wang W,et al. Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury[J]. J Am Heart Assoc,2014,3(1):e000555.
[30] Matsushima S,Kuroda J,Ago T,et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator–activated receptor-α[J]. Circ Res,2013,112(8):1135-1149.
[31] Olejnik A,Banaszkiewicz M,Krzywonos-Zawadzka A,et al. The Klotho protein supports redox balance and metabolic functions of cardiomyocytes during ischemia/reperfusion injury[J]. Cardiol J,2022,29(5):836-849.
[32] Lee HY,Kim HK,Hoang TH,et al. The correlation of IRE1α oxidation with Nox4 activation in aging-associated vascular dysfunction[J].?Redox Biol,2020,37:101727.
[33] Wang Y,Zhong L,Liu X,et al. ZYZ-772 prevents cardiomyocyte injury by suppressing Nox4-derived ROS production and apoptosis[J]. Molecules,2017,22(2):331-343.
[34] Yan F,Wang Y,Wu X,et al. Nox4 and redox signaling mediate TGF-β-induced endothelial cell apoptosis and phenotypic switch[J]. Cell Death Dis,2014,5(1):e1010.
[35] Riaz TA,Junjappa RP,Handigund M,et al. Role of endoplasmic reticulum stress sensor IRE1α in cellular physiology,calcium,ROS signaling,and metaflammation[J]. Cells,2020,9(5):1160.
[36] Song C,Shi D,Chang K,et al. Sodium fluoride activates the extrinsic apoptosis via regulating NOX4/ROS-mediated p53/DR5 signaling pathway in lung cells both in vitro and in vivo[J]. Free Radic Biol Med,2021,169:137-148.
[37] Zhong Y,Wang L,Jin R,et al. Diosgenin inhibits ROS generation by modulating NOX4 and mitochondrial respiratory chain and suppresses apoptosis in diabetic nephropathy[J]. Nutrients,2023,15(9):2164.
收稿日期:2023-07-26