席華澤 周俊林
[摘要] 目的:探討分形維數(shù)(FD)評估高級別膠質(zhì)瘤(HGG)異檸檬酸脫氫酶-1(IDH-1)基因突變狀態(tài)和腫瘤細(xì)胞的增殖活躍程度的價值。方法:收集經(jīng)病理證實為HGG并測定IDH-1突變狀態(tài)和Ki-67指數(shù)的患者75例,其中,IDH-1野生型52例,IDH-1突變型23例。術(shù)前在T1WI、T2WI、DWI圖像最大層面及其上下2個層面上自動勾畫腫瘤邊界及瘤周水腫范圍,測定外邊緣FD值,取3個層面的平均值為測定值。比較IDH-1突變型和野生型組間FD值的差異;使用ROC曲線分析不同F(xiàn)D值對評估IDH-1突變的效能;使用logistic回歸分析評估FD是否為IDH-1突變的獨立危險因素;使用Pearson相關(guān)分析評估不同F(xiàn)D值與Ki-67指數(shù)之間的關(guān)系。結(jié)果:IDH-1野生型T1(腫瘤)-FD、T2(腫瘤)-FD、T2(水腫)-FD、DWI(腫瘤)-FD均低于IDH-1突變型(均P<0.05);且在DWI上的FD值診斷效能最高,AUC為0.868,特異度為0.696,敏感度為0.923,且DWI(腫瘤)-FD是IDH-1突變預(yù)測的獨立危險因素;各FD值與Ki-67指數(shù)均呈正相關(guān),T2(腫瘤)-FD與Ki-67指數(shù)相關(guān)性最高(r=0.485 3,P<0.000 1)。結(jié)論:基于HGG患者M(jìn)RI圖像測定的FD值可評估患者IDH-1基因突變狀態(tài),且與Ki-67指數(shù)呈正相關(guān)。
[關(guān)鍵詞] 膠質(zhì)瘤;異檸檬酸脫氫酶;基因突變;Ki-67指數(shù);分形維數(shù);磁共振成像
Value of fractal dimension in evaluating IDH-1 mutation status and Ki-67 index of high-grade gliomas
[Abstract] Objective:To analyze the value of fractal dimension (FD) in evaluating the mutation status and proliferation activity of IDH-1 gene of high grade gliomas (HGG). Methods:A total of 75 patients with HGG confirmed by pathology were included,and IDH-1 status and Ki-67 index were tested,and 52 cases were IDH-1 wild-type and 23 cases were IDH-1 mutation-type. The tumor and the peritumoral edema were automatically delineated at the maximum level and above and below the maximum level on the preoperative T1WI,T2WI and DWI,respectively. The FD values at the outer edge were determined,and the FD value at the three levels was averaged as the measured value. The difference of FD values between the IDH-1 wild-type group and the mutation-type group was compared,and the ROC curve was used to analyze the efficacy of FD value for evaluating IDH-1 mutation. Logistics regression was used to analyze whether FD value was an independent risk factor for IDH-1 mutation,and Pearson correlation analysis was used to evaluate the relationship between different FD values and Ki-67 index. Results:The FD values of tumors on T1WI,T2WI and DWI and the FD value of peritumoral edema on T2WI in the IDH-1 wild-type group were lower than those in the IDH-1 mutation-type group (all P<0.05). The FD value on DWI had the highest diagnostic efficiency,with an AUC of 0.868,a specificity of 0.696,and a sensitivity of 0.923,and the FD value of tumor on DWI was an independent risk factor for IDH-1 mutation prediction. All FD values were positively correlated with Ki-67 indices,and the correlation between the FD value of peritumoral edema measured on T2WI and Ki-67 index was the strongest (r=0.485 3,P<0.000 1). Conclusions:FD value based on MRI can be used to evaluate the IDH-1 mutation status in HGG patients,and it is positively correlated with Ki-67 index.
[Key words] Glioma;Isocitrate dehydrogenase;Gene mutation mutation;Ki-67 index;Fractal dimension;Magnetic resonance imaging
2021年版WHO中樞神經(jīng)系統(tǒng)腫瘤分類將高級別膠質(zhì)瘤(high grade gliomas,HGG)定義為異檸檬酸脫氫酶-1(isocitrate dehydrogenase-1,IDH-1)基因突變型Ⅳ級星形細(xì)胞瘤和IDH-1野生型膠質(zhì)母細(xì)胞瘤,是一種高度惡性的腦腫瘤[1],是具有遺傳不穩(wěn)定性和高度浸潤性細(xì)胞的異質(zhì)群體,患者常預(yù)后不良,死亡率高,中位生存期僅12個月[2]。IDH-1基因突變被認(rèn)為在神經(jīng)膠質(zhì)瘤發(fā)生中起重要作用,與IDH-1野生型相比,IDH-1突變型患者預(yù)后更好且生存期更長;因此,IDH-1狀態(tài)可作為臨床預(yù)后評估指標(biāo)[3-4]。Ki-67指數(shù)可評估腫瘤的增殖能力和惡性程度,已廣泛應(yīng)用于臨床[5]。
分形維數(shù)(fractal dimension,F(xiàn)D)是描述形態(tài)復(fù)雜度的參數(shù),與影像組學(xué)中對圖形內(nèi)部灰度和紋理的分析不同,F(xiàn)D可量化描述腫瘤生長過程中的抽象形態(tài),是一個較新穎的形態(tài)學(xué)參數(shù)。因此,術(shù)前評估IDH-1突變狀態(tài)及Ki-67指數(shù)對治療方案的選擇具有重要意義。本研究測定了MRI多個序列上腫瘤邊緣與水腫帶邊緣的FD值,探討FD值和Ki-67指數(shù)術(shù)前無創(chuàng)評估HGG患者IDH-1突變情況及腫瘤細(xì)胞增殖活性的價值。
1? 資料與方法
1.1? 一般資料
回顧性收集2020年6月至2023年6月我院經(jīng)病理確診為HGG并測定IDH-1突變狀態(tài)和Ki-67指數(shù)的患者75例。IDH-1野生型52例,男27例,女25例,年齡33~71歲,平均(52.48±14.51)歲;IDH-1突變型23例,男13例,女10例,年齡29~76歲,平均(47.04±16.02)歲。排除標(biāo)準(zhǔn):①顱腦外傷;②先天性腦血管畸形;③其他顱內(nèi)腫瘤;④中樞神經(jīng)系統(tǒng)傳染?。虎菹忍煨陨窠?jīng)系統(tǒng)疾?。虎迴呙枨敖邮芊暖?、化療等治療;⑦圖像質(zhì)量不佳。
本研究已通過醫(yī)院倫理審查委員會批準(zhǔn)(2020A-070),由于為回顧性研究,免除了患者的知情同意書。
1.2? 儀器與方法
采用Siemens Verio 3.0 T MRI掃描儀和頭顱16通道相控陣線圈?;颊呷⊙雠P位,頭部固定。掃描參數(shù):T1WI,TE 16 ms,TR 2 170 ms,矩陣256×256,層厚5 mm;T2WI,TE 95 ms,TR 4 000 ms,矩陣256×256,層厚5 mm;DWI,TE 87 ms,TR 4 800 ms,層厚5 mm,矩陣256×256,b值取0、1 000 s/mm2。
1.3? 圖像分析
1.4? 病理分析
由2位病理科醫(yī)師采用雙盲法進(jìn)行病理學(xué)分析,意見不一致時,由第3位醫(yī)師作出最終決定。病理學(xué)分析采用HE染色。使用免疫組織化學(xué)分析評估IDH-1突變狀態(tài)及Ki-67指數(shù)。Ki-67計算方式為染色密度最高區(qū)域中,1 000個細(xì)胞范圍內(nèi)陽性細(xì)胞與總細(xì)胞數(shù)的比值。IDH-1突變狀態(tài)通過評估細(xì)胞質(zhì)陽性染色的腫瘤細(xì)胞確定,染色細(xì)胞數(shù)≥10%的腫瘤細(xì)胞數(shù)為陽性(IDH-1突變型),≤10%為陰性(IDH-1野生型),對陽性患者進(jìn)一步測序確定IDH-1突變狀態(tài)。
1.5? 統(tǒng)計學(xué)方法
采用SPSS 26.0與MedCalc軟件進(jìn)行統(tǒng)計學(xué)分析。計量資料均服從正態(tài)分布,以[x]±s表示,組間比較行獨立樣本t檢驗。使用ROC曲線評估T1(腫瘤)-FD、T2(腫瘤)-FD、T2(水腫)-FD、DWI(腫瘤)-FD及綜合參數(shù)對HGG患者IDH-1突變狀態(tài)的預(yù)測效能,并對T1(腫瘤)-FD、T2(腫瘤)-FD、T2(水腫)-FD、DWI(腫瘤)-FD與Ki-67指數(shù)行Pearson相關(guān)分析。以P<0.05為差異有統(tǒng)計學(xué)意義。
2? 結(jié)果
2.1? 不同IDH-1基因型HGG患者的FD值比較
各序列測得的IDH-1野生型FD值均高于IDH-1突變型(表1)。
2.2? 不同F(xiàn)D值對IDH-1突變的預(yù)測效能
使用ROC曲線分析不同F(xiàn)D值對IDH-1突變的預(yù)測效能,其中DWI(腫瘤)-FD效果最好,AUC為0.868,預(yù)測截斷值1.305 5(表2,圖2)。綜合4個參數(shù)對IDH-1突變預(yù)測的AUC為0.892。多因素logistic回歸分析顯示,DWI(腫瘤)-FD是IDH-1突變的獨立危險因素,OR=3.962(1.296~12.111)(表3)。
2.3? 不同F(xiàn)D值與Ki-67指數(shù)的相關(guān)性
T1(腫瘤)-FD、T2(腫瘤)-FD、T2(水腫)-FD、DWI(腫瘤)-FD與Ki-67指數(shù)均呈正相關(guān)(r=0.471 3,0.464 1,0.485 3,0.329 8;均P<0.05),當(dāng)Ki-67指數(shù)增加,F(xiàn)D值也隨之增加(圖3)。
3? 討論
HGG是一種預(yù)后極差的惡性神經(jīng)系統(tǒng)腫瘤,其主要治療方法有手術(shù)切除、放療和化療等[7-9]。盡管治療方式較多,但HGG患者由于病程進(jìn)展快、術(shù)前評估復(fù)雜、術(shù)后效果差,生存期仍較短[10],因此術(shù)前準(zhǔn)確評估腫瘤狀態(tài)尤為重要。檢測IDH-1突變或O6-甲基鳥嘌呤-DNA甲基轉(zhuǎn)移酶基因啟動子甲基化狀態(tài)等可指導(dǎo)臨床診斷和治療HGG[11-12]。有學(xué)者通過影像組學(xué)或ADC值等評估膠質(zhì)瘤基因突變情況或預(yù)后,為臨床提供了較多信息,但這些方法均為分析圖像內(nèi)部特征或腫瘤直徑、截面面積、腫瘤與正球體之間相似性等簡單形態(tài)特征,并未考慮腫瘤生長時的整體形態(tài)特征[13-14]。FD則可描述腫瘤的整體生長形態(tài),由于腫瘤細(xì)胞呈明顯異型性改變,腫瘤組織的力學(xué)參數(shù)和周圍組織往往不同,因此導(dǎo)致腫瘤界面呈復(fù)雜且不規(guī)則的幾何形狀,如影像中常見的分葉、成角或彌漫浸潤等。而膠質(zhì)瘤的生長形態(tài)又與其內(nèi)部基因突變關(guān)系密切[15],加之MRI可提供具有出色空間分辨力和質(zhì)量的詳細(xì)幾何信息,可簡單快速地對腫瘤或瘤周水腫的FD進(jìn)行測定,為臨床醫(yī)師提供更多信息。因此,本研究基于MRI圖像對腫瘤及瘤周水腫進(jìn)行分形分析,使用FD值描述腫瘤表面的結(jié)構(gòu)復(fù)雜度并量化腫瘤形態(tài),進(jìn)而評估腫瘤IDH-1突變狀態(tài),探究Ki-67指數(shù)與FD值之間的關(guān)系。
本研究發(fā)現(xiàn),IDH-1野生型和突變型患者中,前者各序列測定的FD值均高于后者,可能與IDH-1野生型膠質(zhì)瘤腫瘤微血管形成且血管通透性增加、腫瘤廣泛浸潤周圍腦組織及腫瘤增殖能力強(qiáng)有關(guān)[16-18]。由于腫瘤惡性程度高,更易形成微血管、出現(xiàn)分葉等改變,導(dǎo)致腫瘤邊界出現(xiàn)更多細(xì)微的褶皺、凸起或引起更大范圍的水腫,使得腫瘤表面的形態(tài)復(fù)雜度明顯增高。高級別腫瘤中細(xì)胞結(jié)構(gòu)的增加限制了組織中水分子的運動,因此具有較低ADC值的組織在DWI上呈高信號[19]。HGG中IDH-1野生型的腫瘤細(xì)胞惡性程度高,細(xì)胞增殖旺盛,細(xì)胞密度增加,導(dǎo)致腫瘤細(xì)胞水分子彌散明顯受限。因此,在DWI圖像上勾畫的ROI即為彌散受限的腫瘤細(xì)胞高密度區(qū)[20],相較于IDH-1突變型,IDH-1野生型細(xì)胞密度進(jìn)一步加大,侵襲性進(jìn)一步增強(qiáng)。因此,本研究中DWI(腫瘤)-FD的預(yù)測性能更優(yōu),且為IDH-1突變的獨立風(fēng)險因素,這與Jiang等[21-22]預(yù)測IDH-1的結(jié)果相同。
另外,本研究還發(fā)現(xiàn)隨著腫瘤Ki-67指數(shù)增加,各序列測定的FD值也會增加,且測定的T2(水腫)-FD與Ki67指數(shù)相關(guān)性最高。Ki-67是一種腫瘤細(xì)胞增殖指數(shù),廣泛用于定量評估膠質(zhì)瘤生長和患者預(yù)后。有研究表明,Ki-67 10%已被用作區(qū)分低級別膠質(zhì)瘤與HGG,并可用于預(yù)測患者的生存率[23]。Ki-67的高表達(dá)與腫瘤生長及對大腦的高侵襲率相關(guān),這與本研究及Yang等[23]的結(jié)論一致。Ki-67高表達(dá)導(dǎo)致腫瘤瘤周水腫帶快速增大,水腫帶的形態(tài)也更加扭曲,并形成HGG中典型的指壓樣水腫形態(tài),使得T2WI測定的瘤周水腫帶FD值明顯增加。
本研究存在的不足:由于納入、排除標(biāo)準(zhǔn)嚴(yán)格,導(dǎo)致樣本量小,且僅包括IDH-1野生型膠質(zhì)母細(xì)胞瘤和IDH-1突變型Ⅳ級星形細(xì)胞瘤。未來應(yīng)擴(kuò)大樣本量,行多中心合作,分析不同組織成分腫瘤的形態(tài)特征,進(jìn)行簡單快捷的量化分析,為臨床醫(yī)師提供更多腫瘤信息。
綜上所述,基于MRI圖像對腫瘤及瘤周水腫的分形分析揭示了更多的膠質(zhì)瘤固有的微觀結(jié)構(gòu)和病理信息,可在術(shù)前無創(chuàng)評估HGG患者IDH-1突變和Ki-67指數(shù),為制訂更精準(zhǔn)的治療方案提供依據(jù)。
[參考文獻(xiàn)]
[1] LOUIS D N,PERRY A,WESSELING P,et al. The 2021 WHO classification of tumors of the central nervous system:a summary[J]. Neuro Oncol,2021,23(8):1231-1251.
[2] DIETTERLE J,WENDE T,WILHELMY F,et al. The prognostic value of peri-operative neurological performance in glioblastoma patients[J]. Acta Neurochir (Wien),2020,162(2):417-425.
[3] VEIKUTIS V,BRAZDZIUNAS M,KELERAS E,et al. Diagnostic approaches to adult-type diffuse glial tumors:comparative literature and clinical practice study[J]. Curr Oncol,2023,30(9):7818-7835.
[4] LI D,PATEL C B,XU G,et al. Visualization of diagnostic and therapeutic targets in glioma with molecular imaging[J]. Front Immunol,2020,11:592389.
[5] 趙君. 構(gòu)建MRI影像組學(xué)及深度學(xué)習(xí)模型預(yù)測少突膠質(zhì)細(xì)胞瘤TERT啟動子狀態(tài)的研究[D]. 蘭州:蘭州大學(xué),2023.
[6] SURYADEVARA C M,VERLA T,SANCHEZ-PEREZ L,et al. Immunotherapy for malignant glioma[J]. Surg Neurol Int,2015,6(Suppl 1):68-77.
[7] TORRE M,WEN P Y,IORGULESCU J B. The predictive value of partial MGMT promoter methylation for IDH-wild-type glioblastoma patients[J]. Neurooncol Pract,2022,10(2):126-131.
[8] JASPERS J P M,TAAL W,VAN NORDEN Y,et al. Early and late contrast enhancing lesions after photon radiotherapy for IDH mutated grade 2 diffuse glioma[J]. Radiother Oncol,2023,184:109674.
[9] JUSUE-TORRES I,LEE J,GERMANWALA A V,et al. Effect of extent of resection on survival of patients with glioblastoma,IDH-Wild-Type,WHO Grade 4 (WHO 2021):systematic review and meta-analysis[J]. World Neurosurg,2023,171:524-532.
[10] SILVANI A. New perspectives:glioma in adult patients[J]. Tumori,2023,109(4):350-355.
[11] DUBINSKI D,WON S Y,RAUCH M,et al. Association of isocitrate dehydrogenase (IDH) status with edema to tumor ratio and its correlation with immune infiltration in glioblastoma[J]. Front Immunol,2021,12:627650.
[12] YANG J,ZHANG X,GAO X,et al. Fiber density and structural brain connectome in glioblastoma are correlated with glioma cell infiltration[J]. Neurosurgery,2023,92(6):1234-1242.
[13] 尹娣,陳國丹,盛玉瑞,等. 常規(guī)MRI聯(lián)合擴(kuò)散峰度成像的影像組學(xué)模型對腦膠質(zhì)瘤分級的預(yù)測[J]. 中國中西醫(yī)結(jié)合影像學(xué)雜志,2022,20(2):117-121,136.
[14] 張萌,耿瑞雯,白源,等. 動脈自旋標(biāo)記和擴(kuò)散張量成像評估腦膠質(zhì)瘤IDH1基因表型的價值研究[J]. 磁共振成像,2023,14(10):58-64.
[15] SARKAR N,CHAUDHURI B B. An efficient differential boxcounting approach to compute fractal dimension of image[J]. IEEE Transactions on Systems,Man,and Cybernetics,1994,24(1):115-120.
[16] LI Y,QIN Q,ZHANG Y,et al. Noninvasive determination of the IDH status of gliomas using MRI and MRI-based radiomics:impact on diagnosis and prognosis[J]. Curr Oncol,2022,29(10):6893-6907.
[17] HAOPENG P,XUEFEI D,ZENGAI C,et al. High-resolution diffusion-weighted imaging of C6 glioma on a 7 T biospec MRI scanner:correlation of tumor cellularity and nuclear-to-cytoplasmic ratio with apparent diffusion coefficient[J]. Acad Radiol,2022,29(Suppl 3):80-87.
[18] BOBHOLZ S A,LOWMAN A K,BREHLER M,et al. Radio-pathomic maps of cell density identify brain tumor invasion beyond traditional MRI-defined margins[J]. AJNR Am J Neuroradiol,2022,43(5):682-688.
[19] CAO M,WANG X,LIU F,et al. A three-component multi-b-value diffusion-weighted imaging might be a useful biomarker for detecting microstructural features in gliomas with differences in malignancy and IDH-1 mutation status[J]. Eur Radiol,2023,33(4):2871-2880.
[20] KOLAKSHYAPATI M,ADHIKARI R B,KARLOWEE V,et al. Nonenhancing peritumoral hyperintense lesion on diffusion-weighted imaging in glioblastoma:a novel diagnostic and specific prognostic indicator[J]. J Neurosurg,2018,128(3):667-678.
[21] JIANG J S,HUA Y,ZHOU X J,et al. Quantitative assessment of tumor cell proliferation in brain gliomas with dynamic contrast-enhanced MRI[J]. Acad Radiol,2019,26:1215-1221.
[22] THERESIA E,MALUEKA R G,PRANACIPTA S,et al. Association between Ki-67 labeling index and histopathological grading of glioma in indonesian population[J]. Asian Pac J Cancer Prev,2020,21(4):1063-1068.
[23] YANG X,HU C,XING Z,et al. Prediction of Ki-67 labeling index,ATRX mutation,and MGMT promoter methylation status in IDH-mutant astrocytoma by morphological MRI,SWI,DWI,and DSC-PWI[J]. Eur Radiol,2023,33(10):7003-7014.