国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

不同干細(xì)胞來源外泌體抗心肌纖維化的研究進(jìn)展及中醫(yī)藥干預(yù)現(xiàn)狀

2024-04-30 02:34:50王文潔周睿邢作英邱伯雍朱明軍王永霞
關(guān)鍵詞:外泌體綜述干細(xì)胞

王文潔 周睿 邢作英 邱伯雍 朱明軍 王永霞

摘要 心肌纖維化是與心力衰竭等多種心血管疾病密切相關(guān)的一種病理表現(xiàn),適度的纖維化有利于保護(hù)心臟,過度纖維化導(dǎo)致嚴(yán)重的心功能不全甚至死亡。因此,積極尋找確切、有效的防治心肌纖維化手段對心血管疾病診療具有重要意義。心肌在體內(nèi)和體外發(fā)生病理性促纖維化病變時,不同干細(xì)胞來源的外泌體可有效阻止或延緩心肌纖維化進(jìn)程,且在中醫(yī)藥干預(yù)作用下增強(qiáng)整體治療效果。綜述不同類型干細(xì)胞來源的外泌體抗心肌纖維化作用及中醫(yī)藥干預(yù)現(xiàn)狀,以期為心血管疾病的防治提供新思路和新方法。

關(guān)鍵詞 心肌纖維化;干細(xì)胞;外泌體;中醫(yī)藥;綜述

doi:10.12102/j.issn.1672-1349.2024.05.014

基金項目 國家自然科學(xué)基金項目(No.82074229);國家中醫(yī)藥管理局中醫(yī)藥循證能力建設(shè)項目(No.2019XZZX-XXG003)

作者單位 1.河南中醫(yī)藥大學(xué)(鄭州? 450000);2.河南中醫(yī)藥大學(xué)第一附屬醫(yī)院(鄭州? 450000)

通訊作者 王永霞,E-mail:wyxchzhq@163.com

引用信息 王文潔,周睿,邢作英,等.不同干細(xì)胞來源外泌體抗心肌纖維化的研究進(jìn)展及中醫(yī)藥干預(yù)現(xiàn)狀[J].中西醫(yī)結(jié)合心腦血管病雜志,2024,22(5):847-851.

心肌纖維化是以成纖維細(xì)胞活化,細(xì)胞外基質(zhì)如膠原蛋白Ⅰ和Ⅲ過度沉積[1],心臟間質(zhì)擴(kuò)張纖維化為特征,存在于高血壓、心力衰竭、心肌梗死、心房顫動、風(fēng)濕性心臟病和擴(kuò)張型心肌病等多種心血管疾病中的一種共性病理表現(xiàn),是心臟重構(gòu)的關(guān)鍵誘因?;罨某衫w維細(xì)胞是心肌纖維化的中心效應(yīng)細(xì)胞,基質(zhì)蛋白產(chǎn)生的主要參與者。膠原蛋白的適度產(chǎn)生可補(bǔ)償損傷產(chǎn)生的死亡細(xì)胞,有利于保持心臟結(jié)構(gòu)完整性,避免心臟破裂。然而,過度沉積導(dǎo)致心肌僵硬,心臟收縮、舒張功能障礙和傳導(dǎo)異常[2],甚至發(fā)生嚴(yán)重心功能不全或心源性猝死[3]。心肌纖維化發(fā)病機(jī)制復(fù)雜,涉及腎素-血管緊張素-醛固酮系統(tǒng)、氧化應(yīng)激[4]、炎癥反應(yīng)、線粒體功能障礙[5]、非編碼RNA[6]等,對其進(jìn)行早期診斷、評估及治療至關(guān)重要。目前臨床用于治療心力衰竭的藥物如血管緊張素轉(zhuǎn)換酶抑制劑、β受體阻滯劑、沙庫巴曲纈沙坦鈉片雖可一定程度延緩心肌纖維化進(jìn)程,但并不能滿足臨床需求,心肌纖維化防治仍需更多安全、可靠的解決方案。

干細(xì)胞療法在心血管保護(hù)、再生修復(fù)、抑制纖維化和凋亡、增強(qiáng)心肌收縮力及改善心功能等方面發(fā)揮著重要作用,但供應(yīng)不穩(wěn)定、輸注毒性、低存活率和免疫排斥等問題限制了干細(xì)胞療法的應(yīng)用[7-8]。進(jìn)一步研究顯示,其有益效果主要是旁分泌產(chǎn)生的外泌體介導(dǎo)的[9]。外泌體是由多種類型細(xì)胞分泌的直徑30~200 nm的細(xì)胞外囊泡,可攜帶特定的蛋白質(zhì)、脂質(zhì)、核酸和糖偶聯(lián)物,參與細(xì)胞間通信[10-11],在調(diào)節(jié)癌癥在內(nèi)的較多疾病生理病理過程中充當(dāng)重要的分子載體[12],并作為藥物載體輸送至靶器官,可增加治療藥物的局部濃度,最大限度地減少副作用,具有低毒性、低免疫原性和高工程性,可能為各種疾病提供無細(xì)胞治療[13-14]。相關(guān)研究表明,在體內(nèi)和體外心肌發(fā)生病理性促纖維化病變時,不同干細(xì)胞來源的外泌體可顯著減小或抑制心肌纖維化,替代干細(xì)胞進(jìn)行心臟修復(fù),在心血管疾病的治療方面具有巨大潛力。綜述不同類型干細(xì)胞來源的外泌體抗心肌纖維化作用的最新研究及中醫(yī)藥干預(yù)現(xiàn)狀,并對外泌體包含的內(nèi)容物進(jìn)行梳理總結(jié)(見表1),以期挖掘出具有潛力的心肌纖維化診斷標(biāo)志物和治療靶點。

1 MSCs

MSCs是從骨髓、臍帶、脂肪和胎盤組織等較多生物來源中分離出的非造血、多能、成體干細(xì)胞[15],外泌體在MSCs相關(guān)的心臟保護(hù)作用中發(fā)揮著重要作用。有研究表明,MSCs來源的外泌體(MSCs-derived exosomes,MSC-Exo)通過抑制zeste基因增強(qiáng)子同源物2(enhancer of zeste homolog 2,EZH2)激活下游高遷移率族蛋白A2(high mobility group A2,HMGA2)并影響磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/AKT)通路,抑制膠原蛋白Ⅰ和膠原蛋白Ⅲ表達(dá),增加上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),減輕心肌梗死大鼠纖維化[16]。MSC-Exo可能通過抑制轉(zhuǎn)化生長因子(TGF)-β1/Smad2/3信號通路抑制高糖誘導(dǎo)的成纖維細(xì)胞轉(zhuǎn)化,降低糖尿病大鼠左心室膠原水平,減輕糖尿病誘導(dǎo)的心肌損傷和纖維化[17-18]。另有研究顯示,源自HIF-1α修飾的MSC-Exo可促進(jìn)心肌梗死大鼠新血管形成,抑制纖維化,保留心臟功能,較單純外泌體治療更有效[19]。來自年輕的MSC-Exo減小纖維化的作用優(yōu)于來自衰老MSC-Exo,上調(diào)衰老MSC-Exo中miR-221-3p表達(dá)可能通過張力蛋白同源物(phosphate and tension homology,PTEN)/AKT通路顯著減小膠原蛋白面積、纖維化區(qū)域,抑制心肌纖維化[20]。MSC-Exo在經(jīng)干擾素-γ處理后外泌體中miR-21顯著上調(diào),并靶向抑制BTG2表達(dá)減少纖維化,改善心功能[21]。

1.1 骨髓間充質(zhì)干細(xì)胞(bone marrow MSCs,BMSCs)

成人MSCs常見的來源是骨髓[22]。BMSCs來源的外泌體(BMSCs-derived exosomes,BMSC-Exo)通過提高miR-133a表達(dá)以下調(diào)決定因子樣蛋白1(mastermind-like 1,MAML1)水平,顯著改善病毒性心肌炎大鼠心功能和心肌纖維化[23]。有研究表明,BMSC-Exo可降低暴露于血管緊張素(Ang)Ⅱ下的成纖維細(xì)胞中膠原蛋白Ⅰ和Ⅲ表達(dá),增加周期蛋白依賴性激酶抑制因子4a(the inhibitor of cyclin-dependent kinase 4a,p16INK4a)表達(dá),促進(jìn)成纖維細(xì)胞衰老,抑制纖維化反應(yīng),減少心臟纖維化[24]。Pu等[25]采用過表達(dá)miR-30e的BMSC-Exo治療心肌梗死大鼠,可抑制血凝素樣氧化型低密度脂蛋白受體1(lectin-like oxidized low density lipoprotein receptor-1,LOX1)的表達(dá),下調(diào)核因子(NF)-κB p65/Caspase-9信號通路活性,改善心肌組織病理損傷和纖維化。Wang等[26]采用過表達(dá)miR-129-5p的BMSC-Exo治療心肌梗死小鼠,表現(xiàn)出對心肌梗死保護(hù)作用并抑制了纖維化。BMSC-Exo過表達(dá)Nrf2通過Nrf2/血紅素加氧酶1(heme oxygenase 1,HO-1)通路減輕心房顫動誘導(dǎo)的心肌纖維化[27]。有研究發(fā)現(xiàn),在脂多糖刺激下產(chǎn)生的BMSC-Exo可降低心肌梗死后小鼠炎性因子表達(dá),改善心肌收縮功能和纖維化[28]。缺氧處理的BMSC-Exo增強(qiáng)了外泌體中miR-210表達(dá),減少了纖維化[29]。有研究將過表達(dá)miR-19a/19b的BMSC-Exo和骨髓間充質(zhì)干細(xì)胞移植聯(lián)合應(yīng)用于心肌梗死的臨床前模型,顯著促進(jìn)了心臟功能的恢復(fù),減小了心臟纖維化面積[30]。

1.2 人臍帶間充質(zhì)干細(xì)胞(human umbilical cord MSCs,UMSCs)

UMSCs來源的外泌體可顯著降低擴(kuò)張型心肌病大鼠α-平滑肌肌動蛋白、Smad2、心肌組織膠原蛋白Ⅰ表達(dá),減輕心肌纖維化水平,改善心功能[31],通過遞送環(huán)狀RNA同源域相互作用蛋白激酶3(circular RNA homeodomain-iteracting protein kinase 3,circHIPK3)降低心肌梗死小鼠梗死區(qū)域纖維化程度[32]。Zou等[33]將UMSCs來源外泌體結(jié)合一種可注射的導(dǎo)電水凝膠,產(chǎn)生Gel@Exo復(fù)合系統(tǒng),Gel@Exo給藥顯著改善了心臟受傷大鼠心臟功能,縮小了纖維化面積,并延長了外泌體在缺血心肌中的保留時間。人白細(xì)胞抗原輕鏈β2微球蛋白缺失的UMSCs來源外泌體中富含miR-24,通過靶向Bim發(fā)揮抑制心臟纖維化作用,較來自UMSCs的外泌體更有效[34]。由巨噬細(xì)胞遷移抑制因子工程化的UMSCs來源外泌體中miR-133a-3p顯著升高,增加了AKT蛋白的磷酸化,在體內(nèi)外均可減少纖維化,保護(hù)心臟功能[35]。

1.3 脂肪間充質(zhì)干細(xì)胞

脂肪干細(xì)胞(adipose derived stem cells,ADSCs)是在毛囊底部的皮下、真皮片、毛囊間真皮和皮下組織中鑒定的間充質(zhì)干細(xì)胞[36]。有研究顯示。ADSCs來源外泌體過表達(dá)miR-126可降低H9c2細(xì)胞纖維化相關(guān)蛋白表達(dá),顯著減輕心肌梗死大鼠心臟纖維化[37]。ADSCs來源外泌體過表達(dá)miR-146a通過下調(diào)早期生長反應(yīng)1(early growth response 1,EGR1)表達(dá)逆轉(zhuǎn)心肌梗死或缺氧誘導(dǎo)的Toll樣受體4(Toll-like receptor 4,TLR4)/NF-κB信號激活,進(jìn)而抑制心肌梗死誘導(dǎo)的纖維化,且作用優(yōu)于單純外泌體治療組[38]。ADSCs來源的外泌體顯著降低了多柔比星/曲妥珠單抗給藥大鼠心臟組織中纖維化標(biāo)志物結(jié)締組織生長因子(connective tissue growth factor,CTGF)、膠原蛋白Ⅰ和基質(zhì)金屬蛋白酶-9(matrix metalloproteinase-9,MMP-9)的mRNA水平[39],可能通過激活1-磷酸鞘氨醇(sphingosine 1-phosphate,S1P)/鞘氨醇激酶1(sphingosine kinase 1,SK1)/1-磷酸鞘氨醇受體1(sphingosine-1-phosphate receptor 1,S1PR1)信號傳導(dǎo)和促進(jìn)巨噬細(xì)胞M2極化,抑制心肌梗死誘導(dǎo)的心肌纖維化,改善心肌梗死后心臟損傷[40]。Wang等[41]將adMSCs來源的外泌體(adipose-derived MSCs-Exo,adMSCs-Exo)作用到氧-葡萄糖剝奪處理的小鼠心肌細(xì)胞中,miR-671在細(xì)胞中顯著上調(diào),并直接靶向轉(zhuǎn)化生長因子β受體2(transforming growth factor β receptor 2,TGFBR2),降低Smad2磷酸化,從而在體內(nèi)和體外減少了心肌纖維化。adMSCs-Exo可能通過降低miR-423-5p表達(dá),抑制PI3K/AKT信號通路,改善心力衰竭大鼠心肌損傷和纖維化[42]。有研究表明,adMSCs-Exo通過上調(diào)沉默信息調(diào)節(jié)因子1(silent information regulator 1,SIRT1)減少急性心肌梗死后梗死面積和心房纖維化面積[43]。

2 CPCs

CPCs又稱為心臟干細(xì)胞,是由心臟干細(xì)胞分化而來。CPCs來源的外泌體高度富集miR-146a-5p,可減弱間質(zhì)膠原蛋白Ⅰ沉積,預(yù)防阿霉素/曲妥珠單抗誘導(dǎo)的心肌纖維化,在心肌細(xì)胞的更新和修復(fù)中發(fā)揮著重要作用[44]。有研究顯示,來自新生兒的CPCs外泌體可減少纖維化,改善心功能,來自較大兒童的CPCs外泌體在缺氧條件下可發(fā)揮修復(fù)作用[45]。

3 CDCs

CDCs是來源于心臟組織本身的干細(xì)胞[46],心臟球來源細(xì)胞分泌的外泌體(CDC-secreted exosome,CDCex)高度富含miR-146a-5p,通過抑制促炎細(xì)胞因子和轉(zhuǎn)錄物減少心肌纖維化[47]。CDCex來源的YF1可逆轉(zhuǎn)肥厚型心肌病相關(guān)纖維化信號通路,降低c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)磷酸化、c-Jun表達(dá)和Smad2磷酸化,減輕AngⅡ誘導(dǎo)的纖維化[48-49]。

4 EPCs

EPCs修復(fù)心臟的作用與旁分泌機(jī)制密切相關(guān)。有研究表明,內(nèi)皮祖細(xì)胞來源的外泌體(endothelial progenitor cell-derived exosomes,EPC-Exos)富含miR-363-3p和miR-218-5p,可上調(diào)p53并下調(diào)調(diào)節(jié)Y蛋白(junctional mediating and regulator Y protein,JMY)表達(dá),通過靶向腫瘤抑制基因p53(tumor suppressor gene p53,p53)/連接介導(dǎo)和JMY信號通路促進(jìn)間充質(zhì)-內(nèi)皮細(xì)胞轉(zhuǎn)化,抑制心肌纖維化[50]。EPC-Exos過表達(dá)miR-1246或miR-1290分別誘導(dǎo)ELF5、SP1表達(dá)增加,抑制心臟組織α-平滑肌肌動蛋白表達(dá),改善心肌梗死后心臟纖維化[51]。人外周血中EPC-Exos在體外可抑制間充質(zhì)-內(nèi)皮轉(zhuǎn)化和降低高遷移率族蛋白1(high mobility group protein 1,HMGB1)、α-平滑肌肌動蛋白、波形蛋白、膠原蛋白Ⅰ及TGF-β、腫瘤壞死因子(TNF)-α心肌纖維化調(diào)節(jié)蛋白表達(dá)[52]。

5 中醫(yī)藥干預(yù)外泌體

中醫(yī)古籍中無關(guān)于心肌纖維化的明確記載,現(xiàn)代醫(yī)家根據(jù)臨床癥狀將其歸屬于“心悸”“心衰”“胸痹”等范疇,病機(jī)特點以氣血陰陽虧損為本,痰、飲、瘀、火擾心為標(biāo)[53]。中醫(yī)藥具有多成分、多靶點、多途徑及整體觀念、辨證論治等特點,在防治心肌纖維化方面顯示出獨特優(yōu)勢。一些中藥復(fù)方及中成藥如生脈飲、黃芪桂枝五物湯、芪參益氣滴丸、參松養(yǎng)心膠囊等,中藥黃芪、鹿茸、川芎、丹參、益母草、三七[53-54]等提取物均對心肌纖維化的治療起到良好的作用。有研究顯示,外泌體在中醫(yī)藥干預(yù)下可增強(qiáng)整體治療效果,中醫(yī)藥有效防治心肌纖維化的機(jī)制可能與調(diào)控外泌體及相關(guān)內(nèi)容物有關(guān),黃芪及其配方的有效活性成分,尤其是黃芪甲苷Ⅳ、黃芪多糖、黃芪總皂苷、黃芪三萜皂苷和環(huán)黃芪醇具有對抗心肌纖維化的潛在作用[55],黃芪甲苷Ⅳ可提高人EPCs分泌的外泌體功能,并增強(qiáng)外泌體中miRNA-126表達(dá)[56]。黃芪總皂苷聯(lián)合甘草酸預(yù)處理的外泌體可抑制細(xì)胞中膠原蛋白Ⅰ和α-平滑肌肌動蛋白表達(dá),發(fā)揮抗纖維化作用[57]。人參皂苷Rh2通過促進(jìn)肌成纖維細(xì)胞衰老和逆轉(zhuǎn)內(nèi)皮-間充質(zhì)轉(zhuǎn)化中已建立的肌成纖維分化減輕纖維化[58],增強(qiáng)BMSCs外泌體對心肌損傷的保護(hù)作用,改善炎癥微環(huán)境[59]。

6 小結(jié)與展望

綜上所述,包括MSCs、CPCs、CDCs、EPCs在內(nèi)多種干細(xì)胞來源的外泌體均可顯著抑制心肌纖維化的發(fā)生發(fā)展,中醫(yī)藥可能通過調(diào)控外泌體及其相關(guān)內(nèi)容發(fā)揮有效抗心肌纖維化作用。然而,目前的研究存在一些不足:1)不同干細(xì)胞來源的外泌體抗心肌纖維化作用是否有差異、供體年齡對其作用的影響及是否具有不良作用需進(jìn)一步探索。2)干細(xì)胞來源的外泌體中包含的內(nèi)容物復(fù)雜,尚未明確哪些在防治心肌纖維化中發(fā)揮關(guān)鍵作用,缺乏大型臨床試驗驗證,應(yīng)結(jié)合現(xiàn)代醫(yī)學(xué)代謝組學(xué)、蛋白組學(xué)、基因組學(xué)技術(shù)等新技術(shù)、新方法深入挖掘其抗心肌纖維化的作用機(jī)制,為今后臨床治療提供充分的科學(xué)依據(jù)。3)干細(xì)胞分泌的外泌體數(shù)量較少,不能滿足臨床試驗需求,提高其穩(wěn)定性、靶向性及延長半衰期的工程化改造外泌體的方法值得研究者在抗心肌纖維化方面進(jìn)行深入研究。4)中醫(yī)藥防治心肌纖維化具有獨特優(yōu)勢,其是否通過調(diào)控外泌體發(fā)揮抗心肌纖維化的作用有待進(jìn)一步體內(nèi)外實驗驗證。今后基于中醫(yī)藥有效成分開發(fā)具有協(xié)同治療效果和靶向能力的外泌體藥物遞送載體以防治心肌纖維化有較大的研究空間。

參考文獻(xiàn):

[1] FAN D,KASSIRI Z.Modulation of cardiac fibrosis in and beyond cells[J].Frontiers in Molecular Biosciences,2021,8:750626.

[2] KUROSE H.Cardiac fibrosis and fibroblasts[J].Cells,2021,10(7):1716.

[3] TRAVERS J G,KAMAL F A,ROBBINS J,et al.Cardiac fibrosis:the fibroblast awakens[J].Circulation Research,2016,118(6):1021-1040.

[4] GYNGYSI M,WINKLER J,RAMOS I,et al.Myocardial fibrosis:biomedical research from bench to bedside[J].European Journal of Heart Failure,2017,19(2):177-191.

[5] LI X Y,ZHANG W,CAO Q T,et al.Mitochondrial dysfunction in fibrotic diseases[J].Cell Death Discovery,2020,6:80.

[6] YU Y H,SUN J H,WANG R,et al.Curcumin management of myocardial fibrosis and its mechanisms of action:a review[J].The American Journal of Chinese Medicine,2019,47(8):1675-1710.

[7] 張海峰,韋植.干細(xì)胞在心血管疾病治療中的應(yīng)用研究[J].微創(chuàng)醫(yī)學(xué),2022,17(3):267-271.

[8] HADE M D,SUIRE C N,SUO Z C.Mesenchymal stem cell-derived exosomes:applications in regenerative medicine[J].Cells,2021,10(8):1959.

[9] BARRECA M M,CANCEMI P,GERACI F.Mesenchymal and induced pluripotent stem cells-derived extracellular vesicles:the new frontier for regenerative medicine?[J].Cells,2020,9(5):1163.

[10] KALLURI R,LEBLEU V S.The biology,function,and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977.

[11] PEGTEL D M,GOULD S J.Exosomes[J].Annual Review of Biochemistry,2019,88:487-514.

[12] ZHU L,SUN H T,WANG S,et al.Isolation and characterization of exosomes for cancer research[J].Journal of Hematology & Oncology,2020,13(1):152.

[13] BATRAKOVA E V,KIM M S.Using exosomes,naturally-equipped nanocarriers,for drug delivery[J].Journal of Controlled Release,2015,219:396-405.

[14] LIANG Y J,DUAN L,LU J P,et al.Engineering exosomes for targeted drug delivery[J].Theranostics,2021,11(7):3183-3195.

[15] MAQSOOD M,KANG M Z,WU X T,et al.Adult mesenchymal stem cells and their exosomes:sources,characteristics,and application in regenerative medicine[J].Life Sciences,2020,256:118002.

[16] JIAO W,HAO J,XIE Y N,et al.EZH2 mitigates the cardioprotective effects of mesenchymal stem cell-secreted exosomes against infarction via HMGA2-mediated PI3K/AKT signaling[J].BMC Cardiovascular Disorders,2022,22(1):95.

[17] LIN Y,ZHANG F,LIAN X F,et al.Mesenchymal stem cell-derived exosomes improve diabetes mellitus-induced myocardial injury and fibrosis via inhibition of TGF-β1/Smad2 signaling pathway[J].Cellular and Molecular Biology,2019,65(7):123-126.

[18] 蘭蓓蓓,王娟娟,邵聯(lián)波,等.間充質(zhì)干細(xì)胞來源的外泌體通過TGF-β1/Smad2/3信號通路抑制高糖誘導(dǎo)的成纖維細(xì)胞轉(zhuǎn)分化[J].中國細(xì)胞生物學(xué)學(xué)報,2017,39(7):916-925.

[19] SUN J C,SHEN H,SHAO L B,et al.HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis[J].Stem Cell Research & Therapy,2020,11(1):373.

[20] SUN L,ZHU W W,ZHAO P C,et al.Down-regulated exosomal microRNA-221-3p derived from senescent mesenchymal stem cells impairs heart repair[J].Frontiers in Cell and Developmental Biology,2020,8:263.

[21] ZHANG J,LU Y,MAO Y M,et al.IFN-γ enhances the efficacy of mesenchymal stromal cell-derived exosomes via miR-21 in myocardial infarction rats[J].Stem Cell Research & Therapy,2022,13(1):333.

[22] LIU Y,HOLMES C.Tissue regeneration capacity of extracellular vesicles isolated from bone marrow-derived and adipose-derived mesenchymal stromal/stem cells[J].Frontiers in Cell and Developmental Biology,2021,9:648098.

[23] LI Q M,JIN Y P,YE X Q,et al.Bone marrow mesenchymal stem cell-derived exosomal microRNA-133a restrains myocardial fibrosis and epithelial-mesenchymal transition in viral myocarditis rats through suppressing MAML1[J].Nanoscale Research Letters,2021,16(1):111.

[24] CHEN F,LI X L,ZHAO J X,et al.Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling[J].In Vitro Cellular & Developmental Biology Animal,2020,56(7):567-576.

[25] PU L M,KONG X Y,LI H,et al.Exosomes released from mesenchymal stem cells overexpressing microRNA-30e ameliorate heart failure in rats with myocardial infarction[J].American Journal of Translational Research,2021,13(5):4007-4025.

[26] WANG S,DONG J J,LI L,et al.Exosomes derived from miR-129-5p modified bone marrow mesenchymal stem cells represses ventricular remolding of mice with myocardial infarction[J].Journal of Tissue Engineering and Regenerative Medicine,2022,16(2):177-187.

[27] XU L J,F(xiàn)AN Y C,WU L T,et al.Exosomes from bone marrow mesenchymal stem cells with overexpressed Nrf2 inhibit cardiac fibrosis in rats with atrial fibrillation[J].Cardiovascular Therapeutics,2022,2022:2687807.

[28] 傅小媚,霍然,鄧賽,等.脂多糖刺激的骨髓間充質(zhì)干細(xì)胞來源外泌體改善小鼠心肌梗死后炎癥和纖維化[J].中國臨床藥理學(xué)與治療學(xué),2019,24(8):841-851.

[29] ZHU J Y,LU K,ZHANG N,et al.Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way[J].Artificial Cells,Nanomedicine,and Biotechnology,2018,46(8):1659-1670.

[30] WANG S,LI L,LIU T,et al.MiR-19a/19b-loaded exosomes in combination with mesenchymal stem cell transplantation in a preclinical model of myocardial infarction[J].Regenerative Medicine,2020,15(6):1749-1759.

[31] 柳爽爽,王本臻,毛成剛,等.人臍帶間充質(zhì)干細(xì)胞外泌體對多柔比星致擴(kuò)張型心肌病大鼠心肌纖維化的影響[J].中華實用兒科臨床雜志,2020,35(11):842-846.

[32] 張雨晴,王燕麗,嚴(yán)兵,等.人臍帶間充質(zhì)干細(xì)胞來源的外泌體通過circHIPK3促進(jìn)心梗修復(fù)[J].復(fù)旦學(xué)報(自然科學(xué)版),2020,59(1):40-47.

[33] ZOU Y,LI L,LI Y,et al.Restoring cardiac functions after myocardial infarction-ischemia/reperfusion via an exosome anchoring conductive hydrogel[J].ACS Applied Materials & Interfaces,2021,13(48):56892-56908.

[34] SHAO L B,ZHANG Y,PAN X B,et al.Knockout of beta-2 microglobulin enhances cardiac repair by modulating exosome imprinting and inhibiting stem cell-induced immune rejection[J].Cellular and Molecular Life Sciences,2020,77(5):937-952.

[35] ZHU W W,SUN L,ZHAO P C,et al.Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p[J].Journal of Nanobiotechnology,2021,19(1):61.

[36] MAZINI L,ROCHETTE L,ADMOU B,et al.Hopes and limits of adipose-derived stem cells(ADSCs) and mesenchymal stem cells(MSCs) in wound healing[J].International Journal of Molecular Sciences,2020,21(4):1306.

[37] LUO Q C,GUO D F,LIU G R,et al.Exosomes from miR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J].Cellular Physiology and Biochemistry,2017,44(6):2105-2116.

[38] PAN J J,ALIMUJIANG M,CHEN Q Y,et al.Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1[J].Journal of Cellular Biochemistry,2019,120(3):4433-4443.

[39] EBRAHIM N,AL SAIHATI H A,MOSTAFA O,et al.Prophylactic evidence of MSCs-derived exosomes in doxorubicin/trastuzumab-induced cardiotoxicity:beyond mechanistic target of NRG-1/Erb signaling pathway[J].International Journal of Molecular Sciences,2022,23(11):5967.

[40] DENG S Q,ZHOU X J,GE Z R,et al.Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization[J].The International Journal of Biochemistry & Cell Biology,2019,114:105564.

[41] WANG X,ZHU Y H,WU C C,et al.Adipose-derived mesenchymal stem cells-derived exosomes carry microRNA-671 to alleviate myocardial infarction through inactivating the TGFBR2/Smad2 axis[J].Inflammation,2021,44(5):1815-1830.

[42] 孫理華,呂忠英,幸世峰,等.微小RNA-423-5p在脂肪間充質(zhì)干細(xì)胞外泌體治療老齡心力衰竭大鼠的作用及機(jī)制[J].中華老年心腦血管病雜志,2020,22(12):1308-1311.

[43] HUANG H,XU Z X,QI Y,et al.Exosomes from SIRT1-overexpressing ADSCs restore cardiac function by improving angiogenic function of EPCs[J].Molecular Therapy Nucleic Acids,2020,21:737-750.

[44] MILANO G,BIEMMI V,LAZZARINI E,et al.Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity[J].Cardiovascular Research,2020,116(2):383-392.

[45] AGARWAL U,GEORGE A,BHUTANI S,et al.Experimental,systems,and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients[J].Circulation Research,2017,120(4):701-712.

[46] ASHUR C,F(xiàn)RISHMAN W H.Cardiosphere-derived cells and ischemic heart failure[J].Cardiology in Review,2018,26(1):8-21.

[47] HIRAI K,OUSAKA D,F(xiàn)UKUSHIMA Y,et al.Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy[J].Science Translational Medicine,2020,12(573):eabb3336.

[48] HUANG F,NA N,IJICHI T,et al.Exosomally derived Y RNA fragment alleviates hypertrophic cardiomyopathy in transgenic mice[J].Molecular Therapy Nucleic Acids,2021,24:951-960.

[49] CAMBIER L,GIANI J F,LIU W X,et al.Angiotensin Ⅱ-induced end-organ damage in mice is attenuated by human exosomes and by an exosomal Y RNA fragment[J].Hypertension,2018,72(2):370-380.

[50] KE X,YANG R F,WU F,et al.Exosomal miR-218-5p/miR-363-3p from endothelial progenitor cells ameliorate myocardial infarction by targeting the p53/JMY signaling pathway[J].Oxidative Medicine and Cellular Longevity,2021,2021:5529430.

[51] HUANG Y L,CHEN L F,F(xiàn)ENG Z M,et al.EPC-derived exosomal miR-1246 and miR-1290 regulate phenotypic changes of fibroblasts to endothelial cells to exert protective effects on myocardial infarction by targeting ELF5 and SP1[J].Frontiers in Cell and Developmental Biology,2021,9:647763.

[52] KE X,YANG D H,LIANG J W,et al.Human endothelial progenitor cell-derived exosomes increase proliferation and angiogenesis in cardiac fibroblasts by promoting the mesenchymal-endothelial transition and reducing high mobility group box 1 protein B1 expression[J].DNA and Cell Biology,2017,36(11):1018-1028.

[53] 劉顏,劉孟楠,楊廷富,等.中藥防治心肌纖維化的研究進(jìn)展[J].中藥藥理與臨床,2023,39(2):101-109.

[54] 韋玉娜,莫雪梅,王強(qiáng),等.黃芪桂枝五物湯合生脈飲治療糖尿病心肌病心臟功能的臨床療效[J].中國實驗方劑學(xué)雜志,2021,27(19):104-109.

[55] REN C Z,ZHAO X K,LIU K,et al.Research progress of natural medicine Astragalus mongholicus Bunge in treatment of myocardial fibrosis[J].Journal of Ethnopharmacology,2023,305:116128.

[56] XIONG W,BAI X,XIAO H,et al.Effects of Astragaloside Ⅳ on exosome secretion and its microRNA-126 expression in human endothelial progenitor cells[J].Chinese Journal of Burns,2020,36(12):1183-1190.

[57] DENG K L,DAI Z,YANG P,et al.LPS-induced macrophage exosomes promote the activation of hepatic stellate cells and the intervention study of total astragalus saponins combined with glycyrrhizic acid[J].Anatomical Record,2023,306(12):3097-3105.

[58] HOU J G,YUN Y,CUI C H,et al.Ginsenoside Rh2 mitigates doxorubicin-induced cardiotoxicity by inhibiting apoptotic and inflammatory damage and weakening pathological remodelling in breast cancer-bearing mice[J].Cell Proliferation,2022,55(6):e13246.

[59] QI Z W,YAN Z P,WANG Y Y,et al.Ginsenoside Rh2 inhibits NLRP3 inflammasome activation and improves exosomes to alleviate hypoxia-induced myocardial injury[J].Frontiers in Immunology,2022,13:883946.

(收稿日期:2023-05-04)

(本文編輯薛妮)

猜你喜歡
外泌體綜述干細(xì)胞
干細(xì)胞:“小細(xì)胞”造就“大健康”
外泌體miRNA在肝細(xì)胞癌中的研究進(jìn)展
間充質(zhì)干細(xì)胞外泌體在口腔組織再生中的研究進(jìn)展
循環(huán)外泌體在心血管疾病中作用的研究進(jìn)展
造血干細(xì)胞移植與捐獻(xiàn)
外泌體在腫瘤中的研究進(jìn)展
SEBS改性瀝青綜述
石油瀝青(2018年6期)2018-12-29 12:07:04
NBA新賽季綜述
NBA特刊(2018年21期)2018-11-24 02:47:52
干細(xì)胞產(chǎn)業(yè)的春天來了?
JOURNAL OF FUNCTIONAL POLYMERS
任丘市| 石阡县| 德化县| 潮安县| 浏阳市| 四子王旗| 资源县| 馆陶县| 东海县| 南宁市| 双江| 鸡西市| 江陵县| 洱源县| 白山市| 辽中县| 盱眙县| 平阴县| 莱州市| 安徽省| 郎溪县| 红安县| 穆棱市| 肥西县| 农安县| 巴林左旗| 常熟市| 德令哈市| 南丹县| 鲜城| 肥东县| 南江县| 前郭尔| 芒康县| 长兴县| 墨玉县| 高青县| 平昌县| 海口市| 宿州市| 巴彦淖尔市|