鐘啟明 吳昊 單熠博 趙鯤鵬
摘要:為準(zhǔn)確模擬堰塞壩的形成過程,在物質(zhì)點(diǎn)方法中引入了滑動(dòng)速度依賴型的摩擦系數(shù)模型,實(shí)現(xiàn)了滑面接觸算法的求解,并與試驗(yàn)結(jié)果對(duì)比驗(yàn)證方法的可靠性。在此基礎(chǔ)上,反演了白格滑坡堰塞壩的形成過程,探討了滑床底摩擦對(duì)堰塞壩成壩模式的影響規(guī)律。研究結(jié)果表明:白格滑坡堰塞壩形成過程可分為滑坡體加速運(yùn)動(dòng)、河谷制動(dòng)和堆積成壩三階段。白格滑坡速度最大達(dá)到45 m/s且最大速度位于滑坡體后緣,而滑坡體前緣受到河床底部摩擦影響,速度不穩(wěn)定,變化幅度大且比滑坡體后緣早20 s制動(dòng)。不同滑面接觸模式?jīng)Q定了滑坡最終堆積成壩的狀態(tài):若采用滑動(dòng)速度依賴型的摩擦系數(shù)模型模擬,則能夠真實(shí)反映白格滑坡堰塞壩堆積狀態(tài);采用滑面的峰值摩擦系數(shù)計(jì)算,則導(dǎo)致計(jì)算的白格滑坡運(yùn)動(dòng)距離減小了32%,不能形成完全堵塞金沙江的堰塞壩;而采用殘余摩擦系數(shù)計(jì)算,則導(dǎo)致計(jì)算的白格滑坡運(yùn)動(dòng)距離增大了12%。研究成果對(duì)加深堰塞壩成壩模式的認(rèn)識(shí)具有意義,對(duì)于滑坡堰塞壩鏈生災(zāi)害預(yù)測(cè)及防災(zāi)減災(zāi)應(yīng)急搶險(xiǎn)處置具有一定的參考價(jià)值。
關(guān)鍵詞:物質(zhì)點(diǎn)法; 數(shù)值模擬; 接觸模型; 摩擦系數(shù); 白格滑坡堰塞壩
中圖法分類號(hào): TV122.4
文獻(xiàn)標(biāo)志碼: A
DOI:10.16232/j.cnki.1001-4179.2024.04.004
0引 言
在地震、降雨和冰川融雪等外部營(yíng)力作用下河谷兩岸斜坡發(fā)生失穩(wěn)、大變形并運(yùn)動(dòng)堆積于谷底,形成自然的擋水體,即滑坡堰塞壩[1-3]。滑坡堰塞壩的形成可引發(fā)一連串的次生地質(zhì)災(zāi)害[4-6],如造成上游形成堰塞湖洪澇、下游潰壩洪水泥石流、河道失穩(wěn)、堰塞湖區(qū)二次滑坡并產(chǎn)生涌浪及其級(jí)聯(lián)災(zāi)害效應(yīng),這給公路、鐵路工程、管線工程、水電工程等的建設(shè)和運(yùn)營(yíng)帶來極大威脅,嚴(yán)重的,會(huì)對(duì)所在流域人民生命財(cái)產(chǎn)造成災(zāi)難性影響[7]。
滑坡堰塞壩的形成涉及復(fù)雜的多物理過程,特別是滑坡體與滑面的接觸作用,直接影響滑坡體的運(yùn)動(dòng)距離,決定了其后所形成的堰塞壩狀態(tài),如是否完全堵塞河谷、壩體長(zhǎng)度和高度等。數(shù)值模擬方法為研究這一復(fù)雜過程提供了高效的研究手段。目前數(shù)值方法主要分為基于網(wǎng)格的方法和無網(wǎng)格方法。網(wǎng)格方法,如有限單元法,在模擬滑坡等大位移、大變形、高速運(yùn)動(dòng)和碰撞等問題時(shí)存在網(wǎng)格畸變問題,故難以再現(xiàn)滑坡堰塞壩形成過程這類復(fù)雜的物理過程[8]。相比之下,無網(wǎng)格方法解決這類問題優(yōu)勢(shì)更加明顯,如:以離散單元法(DEM)[9]為代表的無網(wǎng)格粒子類方法、光滑粒子流體動(dòng)力學(xué)方法(SPH)[10]、非連續(xù)變形分析方法(DDA)[11-12]等均得到了廣泛的應(yīng)用。其中,物質(zhì)點(diǎn)法(MPM)作為一種兼具歐拉和拉格朗日描述的計(jì)算方法,綜合了傳統(tǒng)網(wǎng)格類方法和無網(wǎng)格方法的優(yōu)勢(shì),近年來廣泛應(yīng)用于模擬滑坡失穩(wěn)大變形運(yùn)動(dòng)等復(fù)雜力學(xué)問題上[13-16]。然而,考慮滑動(dòng)面摩擦系數(shù)隨著滑坡體速度變化的物質(zhì)點(diǎn)計(jì)算方法目前研究尚不足。
本文針對(duì)滑坡堰塞壩形成過程,在MPM方法中實(shí)現(xiàn)了滑面接觸算法的求解,發(fā)展了滑動(dòng)速度依賴型的摩擦系數(shù)模型,通過兩個(gè)典型的物理模擬試驗(yàn)驗(yàn)證了方法的準(zhǔn)確性,在此基礎(chǔ)上,模擬了2018年第一次白格堰塞壩形成過程,并探討了不同滑面接觸摩擦系數(shù)條件下的堰塞壩成壩堆積狀態(tài),進(jìn)一步豐富了對(duì)滑坡堰塞壩形成機(jī)制的認(rèn)識(shí)。
1物質(zhì)點(diǎn)法原理
MPM方法結(jié)合了固定的歐拉網(wǎng)格和移動(dòng)的材料點(diǎn)(拉格朗日粒子)的優(yōu)點(diǎn),將材料視為連續(xù)體,并將其離散化為材料點(diǎn)[17]。粒子的狀態(tài),包括質(zhì)量、位置、動(dòng)量和變形梯度,通過歐拉網(wǎng)格進(jìn)行更新,在此網(wǎng)格上計(jì)算粒子的運(yùn)動(dòng)。本文采用顯式MPM算法,其步驟如下:在每個(gè)時(shí)間步的開始,將材料點(diǎn)的信息使用常見的形狀函數(shù)傳遞到網(wǎng)格節(jié)點(diǎn);然后,求解控制方程以獲得節(jié)點(diǎn)加速度,通過這些加速度計(jì)算當(dāng)前時(shí)間材料點(diǎn)的加速度、速度和位移;最后,在歐拉網(wǎng)格中更新材料點(diǎn)的位置,以準(zhǔn)備計(jì)算下一個(gè)時(shí)間步。
本文采用單點(diǎn)模式模擬干顆粒崩滑體的運(yùn)動(dòng)過程,不考慮水相對(duì)土體運(yùn)動(dòng)過程的影響,土體被視為單一介質(zhì),并通過一組材料點(diǎn)進(jìn)行離散化,每個(gè)材料點(diǎn)代表固體和流體相[18]。
1.1平衡方程
由物質(zhì)點(diǎn)求解顆粒的運(yùn)動(dòng),整個(gè)系統(tǒng)滿足質(zhì)量和動(dòng)量平衡方程。
1.2本構(gòu)模型
對(duì)于土體材料,本文采用具有莫爾-庫(kù)侖屈服準(zhǔn)則的彈塑性本構(gòu)模型。有效應(yīng)力表達(dá)式為
1.3接觸模型
本文MPM算法采用如下思路:首先,對(duì)每個(gè)物體基于動(dòng)量方程分別求解其速度,稱之為下一時(shí)間步的預(yù)測(cè)速度;然后,將接觸對(duì)象視作整體,基于動(dòng)量方程求解耦合體的整體速度和受力;最后,通過耦合體受力關(guān)系,根據(jù)接觸關(guān)系判斷,在此基礎(chǔ)上確定是否對(duì)每個(gè)接觸對(duì)象的預(yù)測(cè)速度進(jìn)行校正。
若物體的接觸關(guān)系是黏結(jié)接觸,則不需要對(duì)速度預(yù)測(cè)值進(jìn)行修正;若物體的接觸關(guān)系是滑移接觸,則需要對(duì)速度預(yù)測(cè)值進(jìn)行校正。下一時(shí)間步的校正速度按式(9)
2模型驗(yàn)證
2.1顆粒柱崩塌試驗(yàn)驗(yàn)證
本節(jié)采用Lube等[20]開展的顆粒柱坍塌物理模擬試驗(yàn),驗(yàn)證基于莫爾庫(kù)倫強(qiáng)度準(zhǔn)則的MPM模擬得到的顆粒柱坍塌速度和位移。顆粒柱初始堆積的長(zhǎng)度和高度均為1 m,顆粒摩擦角為31°,黏聚力為零。試驗(yàn)開始前,滑坡體右側(cè)被閘門限制移動(dòng),當(dāng)打開閘門后,滑坡體開始坍塌、滑動(dòng)。數(shù)值模擬的設(shè)置與物理模擬試驗(yàn)相同,MPM的網(wǎng)格尺寸為0.2 m。圖1為MPM計(jì)算得到的顆粒柱坍塌演化過程。Fern和Soga[21]開展了同樣的數(shù)值模擬研究,并在MPM模型的右上角設(shè)置了一個(gè)監(jiān)測(cè)點(diǎn)記錄顆粒柱崩塌的速度和位移。圖2對(duì)比了本文計(jì)算得到的顆粒柱坍塌速度和位移結(jié)果與Fern和Soga[21]的數(shù)值模擬結(jié)果??梢钥闯?,本文模擬得到的監(jiān)測(cè)點(diǎn)速度和位移變化趨勢(shì)與前人結(jié)果一致。0.5 s時(shí)刻,監(jiān)測(cè)點(diǎn)滑動(dòng)達(dá)到最大速度2.53 m/s,與前人結(jié)果相比誤差在5%以內(nèi)。但本文模擬得到的監(jiān)測(cè)點(diǎn)運(yùn)動(dòng)時(shí)間略大于前人結(jié)果,監(jiān)測(cè)點(diǎn)最大位移達(dá)到1.5 m,相較于前人結(jié)果高了7%??傮w來說,顆粒柱崩塌試驗(yàn)結(jié)果定量誤差在10%以內(nèi),驗(yàn)證了數(shù)值模擬結(jié)果的合理性。
2.2考慮底部摩擦作用的滑坡試驗(yàn)驗(yàn)證
本節(jié)采用Mangeney等[22]開展的滑坡侵蝕基底試驗(yàn),驗(yàn)證考慮底部摩擦作用下滑坡演化模擬結(jié)果。試驗(yàn)槽長(zhǎng)3 m,高1.2 m,整體呈22°傾角;滑坡體初始堆積高度為0.14 m,長(zhǎng)度為0.2 m,滑坡底部有一層厚度為0.004 6 m的可侵蝕層鋪滿整個(gè)試驗(yàn)槽;試驗(yàn)槽、滑坡體和底部可侵蝕層寬度均為0.1 m。試驗(yàn)開始前,滑坡體右側(cè)被閘門限制移動(dòng),當(dāng)打開閘門后,滑坡體開始坍塌、滑動(dòng)。
本節(jié)采用物質(zhì)點(diǎn)法模擬再現(xiàn)了上述試驗(yàn),分析不同時(shí)刻滑坡的滑動(dòng)過程以及滑坡體在底部摩擦作用下的運(yùn)動(dòng)距離?;麦w采用莫爾庫(kù)倫強(qiáng)度準(zhǔn)則。材料性質(zhì)如下:彈性模量2.0×104 kPa,泊松比0.3,顆粒密度滑坡體的高度最初沿水槽壁方向?yàn)?.14 m;在重力作用下,滑坡體滑移,水槽壁方向的高度降低,沿水槽方向運(yùn)動(dòng)距離增加。在t=0.32 s時(shí),本文數(shù)值模擬得到的滑坡體沿水槽壁方向的高度為0.10 m,低于試驗(yàn)結(jié)果16%,本文數(shù)值模擬得到的滑坡體沿著斜坡滑動(dòng)距離為0.55 m,高于試驗(yàn)結(jié)果10%;在t=0.64 s時(shí),數(shù)值模擬得到的滑坡體沿水槽壁方向高度降至約0.07 m,低于試驗(yàn)結(jié)果20%,數(shù)值模擬得到的滑坡體沿著斜坡滑動(dòng)了0.9 m,基本與試驗(yàn)結(jié)果相同??傮w來看,數(shù)值模擬計(jì)算得到的沿試驗(yàn)槽高度方向的位置低于試驗(yàn)結(jié)果20%以內(nèi),分析主要原因是試驗(yàn)槽側(cè)壁與滑坡體之間存在一定的摩擦作用力,而數(shù)值模擬分析忽略了側(cè)壁位置處的接觸關(guān)系。但滑坡體整體的運(yùn)動(dòng)距離和斷面與Mangeney等[22]試驗(yàn)結(jié)果相符,證明了該方法適用于模擬考慮底部摩擦作用的滑坡演化過程。
3白格滑坡堰塞壩案例與數(shù)值模型
2018年10月10日22:06,西藏自治區(qū)昌都市江達(dá)縣波羅鄉(xiāng)白格村和四川省甘孜藏族自治州白玉縣交界處(31°04′56.41″ N,98°42′17.98″ E)的金沙江河道右岸發(fā)生大規(guī)模山體滑坡(后文簡(jiǎn)稱為“10.10”白格滑坡),堵塞金沙江干流河道,形成白格堰塞壩[23-24]。
“10.10”白格滑坡發(fā)生時(shí),金沙江江水面高程約為2 880 m,滑坡后緣高程約3 680 m,前緣高程約2 900m,高差達(dá)780 m。白格滑坡滑動(dòng)面傾角在海拔3 400 m以上為25°~38°,平均約為31°,在海拔3 400 m以下較陡,坡度范圍為34°~50°,平均約為39°?;挛镔|(zhì)主要為巖石和礫石,巖石主要有片麻巖和蛇紋巖兩種類型,兩者具有不同程度的風(fēng)化[25]。根據(jù)現(xiàn)場(chǎng)調(diào)查[26],金沙江白格滑坡及堰塞壩典型縱斷面如圖5所示,白格滑坡體的主要物理力學(xué)參數(shù)列于表1[27],其中參與計(jì)算的基巖參數(shù)按照工程類比法選定[15]。
白格滑坡堰塞壩形成過程的物質(zhì)點(diǎn)法數(shù)值計(jì)算模型如圖6所示。采用三角形網(wǎng)格,基巖網(wǎng)格尺寸為60 m,滑坡體網(wǎng)格為20 m,共生成了8 186個(gè)網(wǎng)格和4 202個(gè)節(jié)點(diǎn)。白格滑坡體與基巖之間的摩擦作用是本文研究的一個(gè)重要方面。Hu等[28]試驗(yàn)研究發(fā)現(xiàn),當(dāng)滑坡體剪切速度超過1 m/s時(shí),滑面的摩擦系數(shù)非常低,甚至能達(dá)到0.05。因此在本研究中,參考前人對(duì)大光包滑坡的研究成果[15],如圖6所示定義了兩個(gè)滑床接觸表面。接觸表面A位于滑坡體下方,而接觸表面B是原始的山體表面,由于滑坡體滑移,該表面摩擦由峰值摩擦系數(shù)迅速降低為殘余的摩擦系數(shù)。本研究中,為使滑坡體觸發(fā)移動(dòng),參考前人方法[29],取滑坡體內(nèi)摩擦角的70%作為接觸表面A的殘余摩擦系數(shù)(即0.4);而接觸表面B的摩擦系數(shù)根據(jù)基巖摩擦系數(shù)設(shè)定為初始值0.6。Li等[15]研究表明,滑坡體啟動(dòng)速度增加至2 m/s后,基巖接觸面摩擦系數(shù)降低,本文參考前人研究取25%的初始值作為接觸表面B的殘余摩擦系數(shù)(即0.15)。如圖6所示,分別在白格滑坡體的前緣、中部和后緣設(shè)置了一個(gè)速度監(jiān)測(cè)點(diǎn),以分析在滑坡演化過程中的速度變化規(guī)律。數(shù)值計(jì)算時(shí)間采用顯示積分,時(shí)間步長(zhǎng)為0.001 s,共計(jì)算70 s。
4計(jì)算結(jié)果分析
白格滑坡堰塞壩形成過程的速度場(chǎng)演化如圖7所示,圖中虛線表示白格堰塞壩實(shí)際斷面。白格堰塞壩形成過程大約經(jīng)歷70 s,可分為3個(gè)基本階段:t=0~20 s是滑坡體加速運(yùn)動(dòng)階段;t=20~30 s,滑坡體運(yùn)動(dòng)至河谷中,由于河谷具有較高的粗糙度以及對(duì)岸岸坡的空間限制,滑坡體進(jìn)入河谷制動(dòng)階段;t=30~70 s,此階段,滑坡體前緣運(yùn)動(dòng)至最遠(yuǎn)距離,后緣滑坡體逐漸堆積于前緣滑坡體上,速度逐漸減為零,滑坡體在此階段堆積成壩。t=70 s時(shí),數(shù)值模擬得到的白格堰塞壩最終斷面與實(shí)際白格堰塞壩斷面對(duì)比,可以發(fā)現(xiàn)數(shù)值模擬得到的滑坡體運(yùn)動(dòng)至河谷最遠(yuǎn)端的距離,即堰塞壩長(zhǎng)度,與實(shí)際情況較為一致,但數(shù)值模擬得到的白格堰塞壩高度高于實(shí)際值。這主要是由于本文采用的是二維的物質(zhì)點(diǎn)法模擬,而滑坡體運(yùn)動(dòng)實(shí)際是三維的,在堆積成壩階段,滑坡體由于碰撞對(duì)岸斜坡,會(huì)向著河谷上下游展寬,目前二維的數(shù)值模擬無法考慮這一情況。此外,白格滑坡堰塞壩的形成實(shí)際上存在滑坡體沖向?qū)Π豆午P對(duì)岸崩坡積體后崩回過程,但這一過程涉及新的物質(zhì)加入運(yùn)動(dòng),需要在數(shù)值分析的質(zhì)量守恒方程和動(dòng)量方程中加以考慮,而本文模型尚未考慮這一過程,這也是計(jì)算結(jié)果存在差異的原因之一。
白格滑坡體前緣、中間及后緣位置處速度特征如圖8所示,最大速度約45 m/s,出現(xiàn)在滑坡體后緣,這一結(jié)果基本與Li等[30]基于離散元模擬得到的白格滑坡最大滑速50 m/s吻合?;麦w前緣受到底部摩擦影響,速度變化幅度較大;而滑坡體后緣及中間速度基本呈現(xiàn)三個(gè)階段,即快速增大后維持一段較快的運(yùn)動(dòng)速度,最后逐漸減小。受滑坡體前緣牽引與后緣擠壓作用,滑坡體中間位置在滑坡體加速運(yùn)動(dòng)階段的速度增長(zhǎng)幅度最大。滑坡體前緣與中部速度在t=50 s前降為零,而滑坡體后緣速度在此后20 s逐漸降低。Hu等[31]基于計(jì)算流體動(dòng)力學(xué)研究也揭示出白格滑坡體運(yùn)動(dòng)41 s后抵達(dá)對(duì)岸山體,與本文模擬得到的滑坡體前緣50 s后停止運(yùn)動(dòng)的認(rèn)識(shí)基本一致。
進(jìn)一步對(duì)比分析不同滑面接觸模式下白格滑坡最終堆積成壩狀態(tài)。分別采用了峰值摩擦系數(shù)0.4和殘余摩擦系數(shù)0.15模擬白格滑坡成壩過程,計(jì)算結(jié)果如圖9所示。圖9(a)是考慮速度狀態(tài)相關(guān)的滑面接觸模式下白格滑坡最終堆積成壩狀態(tài),圖9(b)是滑面接觸為峰值摩擦系數(shù)的白格滑坡最終堆積成壩狀態(tài),圖9(c)是滑面接觸為殘余摩擦系數(shù)的白格滑坡最終堆積成壩狀態(tài)。
由圖可知,若采用考慮速度狀態(tài)相關(guān)的滑面接觸模式計(jì)算,白格滑坡運(yùn)動(dòng)至水平距離2 129.4 m后停止,最大運(yùn)動(dòng)距離為841.5 m,這與實(shí)際情況基本一致;若采用滑面接觸為峰值摩擦系數(shù)計(jì)算,白格滑坡運(yùn)動(dòng)至水平距離1 858.2 m后停止,最大運(yùn)動(dòng)距離為570.3 m,與圖9(a)計(jì)算結(jié)果相比,減小了32%;若采用滑面接觸為殘余摩擦系數(shù)計(jì)算,白格滑坡運(yùn)動(dòng)至水平距離2 231.5 m后停止,最大運(yùn)動(dòng)距離為943.6 m,與圖9(a)計(jì)算結(jié)果對(duì)比,增大了12%。故精確考慮速度狀態(tài)相關(guān)的滑面接觸模式,能更加精確地計(jì)算滑坡體的運(yùn)動(dòng)狀態(tài)以及模擬其堵江成壩的模式。
5結(jié) 論
本文在MPM方法中實(shí)現(xiàn)了滑面接觸算法的求解,提出了與滑動(dòng)速度相關(guān)的摩擦系數(shù)模型,在此基礎(chǔ)上反演了白格滑坡堰塞壩形成過程,得到如下結(jié)論:
(1) 通過顆粒柱崩塌試驗(yàn)和考慮底部摩擦作用的滑坡試驗(yàn),驗(yàn)證了所提出的數(shù)值模型的正確性,MPM方法對(duì)滑坡大變形產(chǎn)生的位移和速度的計(jì)算均與試驗(yàn)結(jié)果一致。
(2) 白格滑坡堰塞壩形成過程可分為三個(gè)階段,即滑坡體加速運(yùn)動(dòng)階段、河谷制動(dòng)階段和堆積成壩階段?;麦w速度最大達(dá)到45 m/s且位于滑坡體后緣,而滑坡體前緣受到底部摩擦影響,速度不穩(wěn)定,變化幅度大比滑坡體后緣早20 s制動(dòng)。
(3) 不同滑面接觸模式?jīng)Q定了滑坡最終堆積成壩狀態(tài)。若采用考慮速度狀態(tài)相關(guān)的滑面接觸模式模擬,則能夠真實(shí)反映白格滑坡堰塞壩堆積狀態(tài);采用滑面接觸為峰值摩擦系數(shù)計(jì)算,則計(jì)算的白格滑坡運(yùn)動(dòng)距離減小了32%,不能形成完全堵塞金沙江的堰塞壩;采用滑面接觸為殘余摩擦系數(shù)計(jì)算,則導(dǎo)致計(jì)算的白格滑坡運(yùn)動(dòng)距離增大了12%。
本文研究還存在一些局限性,未來值得進(jìn)一步深入研究。如本研究采用的是二維物質(zhì)點(diǎn)法,而溝梁相間真實(shí)地形條件下考慮滑坡體基底侵蝕與碰撞刮產(chǎn)增容機(jī)制的三維物質(zhì)點(diǎn)法值得進(jìn)一步研究。
參考文獻(xiàn):
[1]石振明,張公鼎,彭銘,等.非均質(zhì)結(jié)構(gòu)堰塞壩潰決機(jī)理模型試驗(yàn)研究[J].工程科學(xué)與技術(shù),2023,55(1):129-140.
[2]蔡耀軍,楊興國(guó),張利民,等.堰塞湖風(fēng)險(xiǎn)評(píng)估快速檢測(cè)與應(yīng)急搶險(xiǎn)技術(shù)和裝備研發(fā)研究構(gòu)想與成果展望[J].工程科學(xué)與技術(shù),2020,52(2):10-18.
[3]吳昊,年廷凱,單治鋼.滑坡堵江成壩的形成演進(jìn)機(jī)制及危險(xiǎn)性預(yù)測(cè)方法研究進(jìn)展[J].巖石力學(xué)與工程學(xué)報(bào),2023,42(增1):3192-3205.
[4]ZHONG Q,WANG L,CHEN S,et al.Breaches of embankment and landslide dams-State of the art review[J].Earth-Science Reviews,2021,216:103597.
[5]崔鵬,郭劍.溝谷災(zāi)害鏈演化模式與風(fēng)險(xiǎn)防控對(duì)策[J].工程科學(xué)與技術(shù),2021,53(3):5-18.
[6]鐘啟明,錢亞俊,單熠博.崩滑堰塞湖的形成—孕災(zāi)—致災(zāi)機(jī)理與模擬方法[J].人民長(zhǎng)江,2021,52(2):90-99.
[7]吳昊.滑坡堵江成壩過程模擬及危險(xiǎn)性預(yù)測(cè)方法研究[D].大連:大連理工大學(xué),2021.
[8]杜文杰,盛謙,楊興洪,等.基于兩相雙質(zhì)點(diǎn) MPM 的滑坡堵江災(zāi)害鏈生全過程分析[J].工程科學(xué)與技術(shù),2022,54(3):36-45.
[9]LI D,NIAN T,WU H,et al.A predictive model for the geometry of landslide dams in V-shaped valleys[J].Bulletin of Engineering Geology and the Environment,2020,79:4595-4608.
[10]WU H,NIAN T,SHAN Z,et al.Rapid prediction models for 3D geometry of landslide dam considering the damming process[J].Journal of Mountain Science,2023,20:928-942.
[11]ZHANG Y,WANG J,XU Q,et al.DDA validation of the mobility of earthquake-induced landslides[J].Engineering Geology,2015,194:38-51.
[12]NIAN T,ZHANG Y,WU H,et al.Runout simulation of seismic landslides using discontinuous deformation analysis (DDA) with state-dependent shear strength model[J].Canadian Geotechnical Journal,2020,57:1183-1196.
[13]ZHAO K L,QIU L C,LIU Y.Two-layer two-phase material point method simulation of granular landslides and generated tsunami waves[J].Physics of Fluids,2022,34:123312.
[14]ZHAO K L,QIU L C,LIU Y.Numerical study of water wave generation by granular-liquid mixture collapse using two-phase material point method[J].Applied Ocean Research,2023,137:103608.
[15]LI X,TANG X,ZHAO S,et al.MPM evaluation of the dynamic runout process of the giant Daguangbao landslide[J].Landslides,2020,18:1509-1518.
[16]ZHU Y,ISHIKAWA T,ZHANG Y,et al.A FEM-MPM hybrid coupled framework based on local shear strength method for simulating rainfall/runoff-induced landslide runout[J].Landslides,2022,19:2021-2032.
[17]SOGA K,ALONSO E,YERRO A,et al.Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method[J].Géotechnique,2016,66:248-273.
[18]TRONCONE A,PUGLIESE L,CONTE E.Analysis of an excavation-induced landslide in stiff clay using the material point method[J].Engineering Geology,2022,296:106479.
[19]ABE K,SOGAOGA K,BANDARA S.Material point method for coupled hydromechanical problems[J].Journal of Geotechnical Geoenvironmental Engineering,2014,140:04013033.
[20]LUBE G,HUPPERT H E,SPARKS R S J,et al.Collapses of two-dimensional granular columns[J].Physical Review E,2005,72:041301.
[21]FERN E J,SOGA K.The role of constitutive models in MPM simulations of granular column collapses[J].Acta Geotechnica,2016,11:659-678.
[22]MANGENEY A,ROCHE O,HUNGR O,et al.Erosion and mobility in granular collapse over sloping beds[J].Journal of Geophysical Research Earth Surface,2010,115(F3).
[23]FAN X,YANG F,SIVA S S,et al.Prediction of a multi-hazard chain by an integrated numerical simulation approach:the Baige landslide,Jinsha River,China[J].Landslides,2019,17:147-164.
[24]ZHONG Q,CHEN S,WANG L,et al.Back analysis of breaching process ofBaige landslide dam[J].Landslides,2020,17:1681-1692.
[25]蔡耀軍,欒約生,楊啟貴,等.金沙江白格堰塞體結(jié)構(gòu)形態(tài)與潰決特征研究[J].人民長(zhǎng)江,2019,50(3):15-22.
[26]陳祖煜,張強(qiáng),侯精明,等.金沙江 “10·10” 白格堰塞湖潰壩洪水反演分析[J].人民長(zhǎng)江,2019,50(5):1-4.
[27]陳祖煜,陳生水,王琳,等.金沙江上游 “11.03” 白格堰塞湖潰決洪水反演分析[J].中國(guó)科學(xué):技術(shù)科學(xué),2020,50:763-774.
[28]HU W,HUANG R,MCSAVENEY M,et al.Superheated steam,hot CO2 and dynamic recrystallization from frictional heat jointly lubricated a giant landslide:Field and experimental evidence[J].Earth and Planetary Science Letters,2019,510:85-93.
[29]WANG J,WANG S,SU A,et al.Simulating landslide-induced tsunamis in the Yangtze River at the Three Gorges in China[J].ActaGeotechnica,2021,16:2487-2503.
[30]LI D,NIAN T,TIONG RLK,et al.River blockage and impulse wave evolution of the Baige landslide in October 2018:Insights from coupled DEM-CFD analyses[J].Engineering Geology,2023,321:107169.
[31]HU Y,YU Z,ZHOU J.Numerical simulation of landslide-generated waves during the 11 October 2018Baige landslide at the Jinsha River[J].Landslides,2020,17:2317-2328.
(編輯:鄭 毅)