魏敏敏 趙仁育
摘要: 通過引入循環(huán)純phantom態(tài)射的概念, 給出循環(huán)純phantom態(tài)射的一些等價刻畫, 證明每個R-模都有核為循環(huán)純內(nèi)射模的滿的循環(huán)純phantom覆蓋, 并討論循環(huán)純phantom預(yù)覆蓋在環(huán)變換下的傳遞性.
關(guān)鍵詞: 循環(huán)純; 循環(huán)純phantom態(tài)射; 預(yù)覆蓋
中圖分類號: O153.3文獻標(biāo)志碼: A文章編號: 1671-5489(2024)02-0249-07
Cyclic Pure Phantom Morphisms
WEI Minmin, ZHAO Renyu
(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
Abstract: By introducing the notion of cyclic pure phantom morphisms, we gave? some equivalent characterizations of cyclic pure phantom morphisms,? proved that every R-module had an epic cyclic pure phantom cover with the kernel cyclic pure injective modules, and discussed the transitivity of cyclic pure phantom precover under change of rings.
Keywords: cyclic pure; cyclic pure phantom morphism; precover
Phantom態(tài)射起源于拓撲學(xué)中關(guān)于CW-復(fù)形間的態(tài)射研究. 文獻[1]在三角范疇中引入了phantom態(tài)射的概念, 文獻[2-5]將phantom態(tài)射理論推廣到了有限群環(huán)的穩(wěn)定模范疇中; 文獻[6]將phantom態(tài)射的概念拓展到任意結(jié)合環(huán)R上的R-模范疇中. 如果對每個(有限表示)左R-模A, Abel群同態(tài)Tor1(f,A): Tor1(M,A)→Tor1(N,A)是零同態(tài), 則一個右R-模同態(tài)f: M→N稱為phantom態(tài)射. Phantom態(tài)射可視為是平坦模的態(tài)射, 由于其在理想逼近理論[7]中具有重要作用, 因此近年來得到廣泛關(guān)注[8-12].
Phantom態(tài)射與純性有密切的關(guān)系. 作為純性的推廣, 文獻[13]引入了循環(huán)純的概念; 文獻[14-15]研究了循環(huán)純內(nèi)射模和循環(huán)純投射模; 文獻[16]研究了循環(huán)純平坦模. 受上述研究結(jié)果的啟發(fā), 本文引入并研究循環(huán)純phantom態(tài)射.
1 預(yù)備知識
本文中R是有單位元的結(jié)合環(huán), 所涉及的模均為酉模. 用Mod-R表示右R-模范疇. 將HomR(M,N)和MRN分別簡記為Hom(M,N)和MN; 將Ext1R(M,N)和TorR1(M,N)分別簡記為Ext1(M,N)和Tor1(M,N). 用Mor-R表示所有右R-模同態(tài)的范疇, 即其中的對象是所有的右R-同態(tài)f: M→N, 對象f: M1→N1到對象g: M2→N2的態(tài)射是一對右R-同態(tài)(α1,α2), 使得下圖可交換:
如果P1和P2是投射右R-模且P是可裂單態(tài)射, 則Mor-R中的對象P: P1→P2稱為投射對象. 對偶地, 如果E1和E2是內(nèi)射右R-模且E是可裂滿態(tài)射, 則Mor-R中的對象E: E1→E2稱為內(nèi)射對象[9,17].
參考文獻
[1]NEEMAN A. The Brown Representability Theorem and Phantomless Triangulated Categories [J]. Journal of Algebra, 1992, 151(1): 118-155.
[2]BENSON D J. Phantom Maps and Purity in Modular Representation Theory. Ⅲ [J]. Journal of Algebra, 2002, 248(2): 747-754.
[3]BENSON D J, GNACADJA G P. Phantom Maps and Purity in Modular Representation Theory. Ⅰ [J]. Fundamenta Mathematicae, 1999, 162(1/2): 37-91.
[4]BENSON D J, GNACADJA G P. Phantom Maps and Purity in Modular Representation Theory. Ⅱ [J]. Algebras and Representation Theory, 2001, 4(4): 395-404.
[5]GNACADJA G P. Phantom Maps in the Stable Module Category [J]. Journal of Algebra, 1998, 201(2): 686-702.
[6]HERZOG I. The Phantom Cover of a Module [J]. Advances in Mathematics, 2007, 215(1): 220-249.
[7]FU X H, GUIL ASENSIO P A, HERZOG I, et al. Ideal Approximation Theory [J]. Advances in Mathematics, 2013, 244: 750-790.
[8]MAO L X. Precovers and Preenvelopes by Phantom and Ext-Phantom Morphisms [J]. Communications in Algebra, 2016, 44(4): 1704-1721.
[9]MAO L X. RD-Phantom and RD-Ext-Phantom Morphisms [J]. Filomat, 2018, 32(8): 2883-2895.
[10]MAO L X. Neat-Phantom and Clean-Cophantom Morphisms [J]. Journal of Algebra and Its Applications, 2021, 20(9): 2150172-1-2150172-24.
[11]MAO L X. Higher Phantom Morphisms with Respect to a Subfunctor of Ext [J]. Algebras and Representation Theory, 2019, 22(2): 407-424.
[12]張春霞, 唐強玲. (n,d)-phantom與(n,d)-Ext-phantom態(tài)射 [J]. 山東大學(xué)學(xué)報(理學(xué)版), 2023, 58(2): 79-87. (ZHANG C X, TANG Q L. On (n,d)-Phantom and (n,d)-Ext-Phantom Morphisms [J]. Journal of Shandong University (Natural Science), 2023, 58(2): 79-87.)
[13]HOCHSTER M. Cyclic Purity versus Purity in Excellent Noetherian Rings [J]. Transactions of the American Mathematical Society, 1977, 231(2): 463-488.
[14]DIVAANI-AAZAR K, ESMKHANI M A, TOUSI M. A Criterion for Rings Which Are Locally Valuation Rings [J]. Colloquium Mathematicum, 2009, 116(2): 153-164.
[15]DIVAANI-AAZAR K, ESMKHANI M A, TOUSI M. Some Criteria of Cyclically Pure Injective Modules [J]. Journal of Algebra, 2006, 304(1): 367-381.
[16]MAO L X. Modules with Respect to Cyclic Purity [J]. Mathematica Scandinavica, 2011, 108(2): 177-197.
[17]ESTRADA S, GUIL ASENSIO P A, OZBEK F. Covering Ideals of Morphisms and Module Representations of the Quiver A2[J]. Journal of Pure and Applied Algebra, 2014, 218(10): 1953-1963.
[18]ENOEHS E E, OYONARTE L. Covers, Envelopes and Cotorsion Theories [M]. New York: Nova Science Publishers, 2002: 1-113.
[19]CRIVEI S, PREST M, TORRECILLAS B. Covers in Finitely Accessible Categories [J]. Proceedings of the American Mathematical Society, 2010, 138(4): 1213-1221.
[20]ROTMAN J J. An Introduction to Homological Algebra [M]. New York: Academic Press, 1979: 1-376.
[21]XUE W M. On Almost Excellent Extensions [J]. Algebra Colloquium, 1996, 3(2): 125-134.
(責(zé)任編輯: 趙立芹)
收稿日期: 2023-06-12.
第一作者簡介: 魏敏敏(1999—), 女, 漢族, 碩士研究生, 從事環(huán)的同調(diào)理論的研究, E-mail: 18419376042@163.com.
通信作者簡介: 趙仁育(1977—), 男, 漢族, 博士, 教授, 從事環(huán)的同調(diào)理論的研究, E-mail: zhaory@nwnu.edu.cn.
基金項目: 國家自然科學(xué)基金(批準(zhǔn)號: 11861055; 12061061).