周艦. 冀北大囫圇古元古代花崗巖地球化學(xué)特征、巖石成因及其構(gòu)造意義.吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2024,54(3):828839. doi:10.13278/j.cnki.jjuese.20220243.
Zhou Jian. Geochemistry, Petrogenesis and Tectonic Significance of the Paleoproterozoic Granites in Dahulun, North Hebei Province. Journal of Jilin University (Earth Science Edition) ,2024,54(3):828839. doi:10.13278/j.cnki.jjuese.20220243.
摘要:冀北西部陸塊東北緣局部地區(qū)發(fā)現(xiàn)古元古代花崗巖體,由于缺少系統(tǒng)研究,其地球化學(xué)特征及地質(zhì)意義尚不清晰。本文對(duì)冀北大囫圇古元古代花崗巖的鋯石UPb年代學(xué)、元素地球化學(xué)和SrNdPb同位素進(jìn)行了系統(tǒng)研究。結(jié)果顯示:兩個(gè)花崗巖樣品的鋯石UPb年齡為(1 855±7)Ma和(1 844±8)Ma。巖石高硅(w(SiO2)為71.58%~74.01%)、高鉀(w(K2O)為6.44%~7.07%,K2O/Na2O為3.68~4.20),高鋁飽和指數(shù)(A/CNK為1.12~1.27),為鉀質(zhì)強(qiáng)過鋁質(zhì)巖石;花崗巖富集輕稀土和大離子親石元素,虧損重稀土和高場(chǎng)強(qiáng)元素,結(jié)合高TFeO/(TFeO+MgO)值(0.74~0.80)和高10000 Ga/Al值(3.36~3.55)及較高的鋯石飽和溫度(840~873 ℃),確定其具有A2型花崗巖特征,暗示其形成于碰撞造山后伸展構(gòu)造體制?;◢弾r樣品具有較高的Sr初始值((87Sr/86Sr)i為0.713 0~0.716 2)、負(fù)的εNd(t)值(-8.0~-7.6),Nd二階段模式年齡TDM2為2.96~2.94 Ga,(206Pb/204Pb)t、(207Pb/204Pb)t、(208Pb/204Pb)t值分別為14.976~15.178、15.192~15.228和35.413~36.626。綜合研究表明,大囫圇鉀質(zhì)強(qiáng)過鋁質(zhì)花崗巖巖漿源自約2.95 Ga的中太古代下地殼物質(zhì)部分熔融,形成于華北克拉通東部陸塊和西部陸塊碰撞造山后的伸展構(gòu)造環(huán)境。
關(guān)鍵詞:大囫圇花崗巖;古元古代;鋯石UPb年代學(xué);地球化學(xué);冀北
doi:10.13278/j.cnki.jjuese.20220243
中圖分類號(hào):P595
文獻(xiàn)標(biāo)志碼:A
收稿日期:20220831
作者簡介:周艦(1989—), 男, 工程師,主要從事鈾礦地質(zhì)研究與勘查方面的研究, E-mail:1045620827@qq.com
基金項(xiàng)目:中國核工業(yè)地質(zhì)局鈾礦調(diào)查項(xiàng)目(202001)
Supported by the Project of China National Nuclear Corporation (202001)
Geochemistry, Petrogenesis and Tectonic Significance of the Paleoproterozoic Granites in Dahulun, North Hebei Province
Zhou Jian
No.243 Geological Party, CNNC, Chifeng 024000, Inner Mongolia,China
Abstract:
Paleoproterozoic granites were discovered in localized areas of the northeastern margin of the landmass in the western part of north Hebei Province. However, systematically studies on their geochemical characteristics and geological significance are still unclear. Zircon UPb geochronology, geochemistry, and SrNdPb isotopes analysis on the Paleoproterozoic granites in the Dahulun area, north Hebei Province, have been systematically studied. Two granite samples have been dated to (1 855±7) Ma and (1 844±8) Ma, and? are rich in silicon (w(SiO2)=71.58%74.01%) and potassium (w (K2O)=6.44%7.07%), with K2O/Na2O ratios from 3.68 to 4.20 and A/CNK values from 1.12 to 1.27, displaying characteristics of strongly peraluminous, relatively potassic granites. They are enriched in light rare earth elements and large ion lithophilic elements, depletion in heavy rare earth elements and high field strength elements. Additionally, they show high TFeO/(TFeO+MgO) (0.740.80), and 10000×Ga/Al ratios (3.363.55) and high zircon saturation temperature (840873 ℃), which are typical characteristics of A2-type granite in a post-collisional extensional setting. All sample have high initial 87Sr/86Sr values of 0.713 00.716 2 and negative εNd(t) values of -8.0 to -7.6, with two-stage model ages (TDM2) ranging from 2.96 to 2.94 Ga. The (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t ratios were 14.97615.178, 15.19215.228 and 35.41336.626, respectively. The comprehensive study shows that the Dahulun granitic magma originated from the partial melting of the ~2.95 Ga Mesoarchean lower crust and was produced in an extensional tectonic setting following the collision between the Eastern and Western blocks of the North China Craton.
Key words:
Dahulun granite; paleoproterozoic; zircon UPb geochronology; geochemistry; northern Hebei Province
0? 引言
華北克拉通是全球上最古老的克拉通之一,經(jīng)歷了約3.8 Ga的漫長演化過程,記錄了幾乎地球早期發(fā)展的所有重大事件[13],其構(gòu)造單元?jiǎng)澐趾颓昂浼o(jì)演化歷史一直是該地區(qū)研究的熱點(diǎn)問題[48]。Zhao等[8]將華北克拉通分為東部陸塊、西部陸塊及二者之間的中央造山帶,又在東部、西部陸塊中進(jìn)一步劃分出膠遼吉帶和孔茲巖帶,并基于巖石學(xué)、巖石地球化學(xué)和同位素年代學(xué),以及區(qū)域變質(zhì)作用過程中壓力、溫度隨時(shí)間變化的態(tài)勢(shì)和軌跡的研究,認(rèn)為東、西陸塊在約1.85 Ga發(fā)生碰撞拼合形成中央造山帶[4,78],并最終形成穩(wěn)定統(tǒng)一的華北克拉通,其可能與全球Columbia超大陸的匯聚事件相關(guān)[4,79]。本文旨在通過對(duì)位于西部陸塊東北緣的古元古代大囫圇花崗巖的年代學(xué)、巖石地球化學(xué)和SrNdPb同位素研究,精確厘定其形成時(shí)代,約束巖石成因及其形成的大地構(gòu)造背景,為探討華北克拉通古元古代晚期構(gòu)造演化提供巖漿巖證據(jù)。
1? 地質(zhì)背景及樣品特征
研究區(qū)位于河北省張北縣—沽源縣之間,地處華北克拉通北緣西部陸塊東北緣(圖1a),研究區(qū)出露的地層主要為下白堊統(tǒng)張家口組一段的流紋質(zhì)火山碎屑巖和二段的粗面巖、安山巖,侵入巖主要為古元古代變質(zhì)黑云母二長花崗巖和變質(zhì)正長花崗巖,及與張家口組火山巖同期的石英正長斑巖①,整體上研究區(qū)約45%被第四系覆蓋(圖1b)。
樣品采自張北縣大囫圇鎮(zhèn)東北約5.5 km處(圖1b),地理坐標(biāo)41°22′32"N,115°14′25"E附近,該花崗巖被下白堊統(tǒng)張家口組火山巖不整合覆蓋。河北省區(qū)域地質(zhì)礦產(chǎn)調(diào)查研究所①認(rèn)為該花崗巖經(jīng)歷了變質(zhì)作用改造,稱之為變質(zhì)花崗巖。但本文野外和顯微鏡下觀察認(rèn)為所研究的花崗巖基本沒有發(fā)生變質(zhì)(圖2),巖性為黑云母正長花崗巖,巖石呈淡紅色,細(xì)粒半自形粒狀結(jié)構(gòu),塊狀構(gòu)造,主要由鉀長石(40%~45%)、石英(30%~35%)、斜長石(15%~20%)和黑云母(<5%)組成,礦物蝕變微弱。
①河北省區(qū)域地質(zhì)礦產(chǎn)調(diào)查研究所.中華人民共和國1∶50 000地質(zhì)圖(大囫圇幅(K50E016005)、羊囫圇幅(K50E016006)).北京:全國地質(zhì)資料館,2003.
2? 分析方法
鋯石UPb同位素測(cè)年在中國地質(zhì)調(diào)查局天津地質(zhì)調(diào)查中心實(shí)驗(yàn)室采用LAICPMS方法完成,激光束斑直徑為29 μm,剝蝕頻率為7 Hz。UPb同位素定年和微量元素質(zhì)量分?jǐn)?shù)處理時(shí)采用91500鋯石標(biāo)樣和SRM 610玻璃標(biāo)樣作外標(biāo),分別
進(jìn)行同位素和微量元素分餾校正,測(cè)試數(shù)據(jù)采用ICPMSDataCal軟件[11]和GLITTER軟件進(jìn)行處理,普通Pb校正采用Anderson[12]的方法,年齡計(jì)
1. 第四系;2. 張家口組二段;3. 張家口組一段;4. 古元古代變質(zhì)黑云母二長花崗巖;5. 古元古代變質(zhì)正長花崗巖;6. 早白堊世
石英正長斑巖;7. 安山巖;8. 粗面巖;9. 流紋質(zhì)角礫凝灰?guī)r;10. 黑云母二長花崗巖;11. 正長花崗巖;12. 石英正長斑巖;13. 整合及角度不整合界線;14. 正斷層、逆斷層、實(shí)測(cè)及推測(cè)性質(zhì)不明斷層;15. 樣品位置及編號(hào);16. 地名。a據(jù)文獻(xiàn)[10]修編;b據(jù)腳注①修編。
算及諧和圖繪制采用Isoplot程序[13]完成。
大囫圇花崗巖樣品地球化學(xué)成分分析由核工業(yè)二○八大隊(duì)分析測(cè)試中心完成。先將巖石樣品粗碎至厘米級(jí),再選取無蝕變或弱蝕變的新鮮樣品粉碎至200目。主量元素分析采用X射線熒光光譜(XRF)方法,數(shù)據(jù)誤差優(yōu)于±1%,其中FeO、H2O+、S、CO2等質(zhì)量分?jǐn)?shù)采用化學(xué)方法分析;微量元素分析采用等離子體質(zhì)譜(ICPMS)方法,所測(cè)數(shù)據(jù)誤差優(yōu)于±5%,部分揮發(fā)性元素及質(zhì)量分?jǐn)?shù)極低元素的分析誤差優(yōu)于±10%。
①河北省區(qū)域地質(zhì)礦產(chǎn)調(diào)查研究所.中華人民共和國1∶50 000地質(zhì)圖(大囫圇幅(K50E016005)、羊囫圇幅(K50E016006)).北京:全國地質(zhì)資料館,2003.
全巖SrNdPb同位素分析在中國地質(zhì)調(diào)查局天津地質(zhì)調(diào)查中心實(shí)驗(yàn)室完成。其中,全巖SrNdPb同位素利用Triton型熱電離質(zhì)譜儀(TIMS)
測(cè)定,Sr、Nd和Pb同位素比值利用88Sr/86Sr=8.375209和146Nd/144Nd=0.7219分別對(duì)Sr和Nd進(jìn)行質(zhì)量分餾校正。鉛同位素測(cè)量采用硅膠發(fā)射劑和錸金屬帶,利用鉛標(biāo)準(zhǔn)物質(zhì)NBS981監(jiān)控儀器狀態(tài),實(shí)驗(yàn)過程以國際標(biāo)準(zhǔn)巖石樣品BCR2(玄武巖)監(jiān)測(cè)分離流程。
3? 分析結(jié)果
3.1? 鋯石UPb定年
本次對(duì)大囫圇花崗巖DHL1、DHL2的2個(gè)樣品進(jìn)行了鋯石UPb同位素測(cè)試,所測(cè)鋯石均呈自形—半自形柱狀,震蕩環(huán)帶清晰(圖3),屬于巖漿結(jié)晶鋯石[14]。測(cè)試分析結(jié)果如圖4和表1所示。對(duì)DHL1和DHL2兩個(gè)樣品各分析了29粒鋯石,去除普通Pb質(zhì)量分?jǐn)?shù)高和Pb丟失嚴(yán)重的測(cè)點(diǎn)數(shù)據(jù)后,樣品DHL1有16個(gè)鋯石顆粒測(cè)試數(shù)據(jù)可用,其207Pb/206Pb表面年齡主要變化于1 884~1 832 Ma之間,大多數(shù)位于諧和線右側(cè),加權(quán)平均年齡為(1 855±7)Ma,MSWD=1.10;樣品DHL2有14個(gè)鋯石測(cè)點(diǎn)數(shù)據(jù)可用,其207Pb/206Pb表面年齡主要介于1 863~1 825 Ma之間,測(cè)點(diǎn)也基本位于諧和線右側(cè),加權(quán)平均年齡為(1 844±8)Ma,MSWD=0.63。本次測(cè)年結(jié)果表明大囫圇花崗巖形成于1.85~1.84 Ga的古元古代晚期。
3.2? 地球化學(xué)特征
大囫圇花崗巖的主量、微量和稀土元素分析結(jié)果列于表2。
3.2.1? 主量元素
大囫圇花崗巖的w(SiO2)較高,為71.58%~74.01%,極為富鉀,w(K2O)為6.44%~7.07%,貧鈉,w(Na2O)為1.61%~1.75%,K2O/Na2O=3.68~4.20,屬鉀質(zhì)花崗巖;巖石的w(MgO)、w(CaO)低,分別為0.23%~0.27%和0.97%~1.27%;
w(Al2O3)
中等,為14.05%~14.82%,鋁飽和指數(shù)
A/CNK=1.12~1.27,屬于強(qiáng)過鋁質(zhì)巖石(A/CNK>1.1);在CIPW標(biāo)準(zhǔn)礦物AnAbOr花崗巖分類圖解上樣品均位于花崗巖區(qū)(圖5),與巖相學(xué)觀察到的結(jié)論吻合。在w(K2O)? w(SiO2)圖解上樣品均位于鉀玄巖系列區(qū)(圖6)。綜上,大囫圇花崗巖為鉀質(zhì)強(qiáng)過鋁質(zhì)花崗巖。
3.2.2? 稀土和微量元素
大囫圇花崗巖的稀土總量w(∑REE)為154.30×10-6~202.36×10-6,明顯富集輕稀土虧損重稀土,LREE/HREE=11.27~12.69,輕重稀土元素分餾程度較強(qiáng),(La/Yb)N=14.01~17.84,基本無銪異常(δEu=0.81~1.03)。稀土元素球粒隕石標(biāo)準(zhǔn)化配分曲線為較平滑的右傾型(圖7a)。從微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖中(圖7b)可以看出大囫圇花崗巖富集K、Rb、La、Zr、Hf、Th等元素,較強(qiáng)烈虧損Nb、Ta、P、Ti等高場(chǎng)強(qiáng)元素。
3.3? SrNdPb同位素
大囫圇花崗巖4件全巖樣品的SrNdPb同位素分析結(jié)果列于表3。從表3中可知,花崗巖的初始Sr值較高(87Sr/86Sr)i為0.713 0~0.716 2,平均值為0.715 8,顯示出變質(zhì)沉積泥質(zhì)巖石部分熔融成因的特征,這與A/CNK>1.1所指示的源區(qū)特征一致;143Nd/144Nd值為0.511 195~0.511 333,εNd(t)值為-8.0~-7.6,對(duì)應(yīng)的Nd二階段模式年齡TDM2為2.96~2.94 Ga,這些特征表明其源區(qū)巖石是形成于約2.95 Ga的古老地殼。樣品全巖(206Pb/204Pb)t= 14.976~15.178,(207Pb/204Pb)t=15.192~15.228,(208Pb/204Pb)t=35.413~36.626,也顯示出巖漿來自下地殼的特征。
4? 討論
4.1? 巖石成因類型
由前述可知,大囫圇花崗巖是形成于1.85~1.84 Ga的鉀質(zhì)強(qiáng)過鋁質(zhì)巖石,其較高的TFeO/MgO(2.88~4.11)、TFeO/(TFeO+MgO)(0.74~0.80)、10000Ga/Al(3.36~3.55)值和較高的鋯石飽和溫度(840~873 ℃,溫度計(jì)算方法見文獻(xiàn)[1617]),顯示出A型花崗巖特征[18](圖8),較強(qiáng)烈虧損Nb、Ta、P和Ti元素。但幾乎無銪異常(δEu=0.81~1.03)的地球化學(xué)特征又與典型的A型花崗巖有很大區(qū)別。已有研究表明[1922],分布在華北克拉通恒山、尚義、小秦嶺和魯山地區(qū)以及青藏部分地區(qū)的鉀質(zhì)花崗巖也具有類似特征。有關(guān)該類型花崗巖的成因主要為:鉀質(zhì)花崗巖來源于以TTG片麻巖為代表的晚太古代陸殼物質(zhì)[19] 、幔源巖漿分離結(jié)晶并且同化混染早期奧長花崗巖[21]以及受到地殼物質(zhì)混染[20,22]。
4.2? 巖漿源區(qū)性質(zhì)
目前,有關(guān)鋁質(zhì)A型花崗巖的成因有較多爭(zhēng)議,Anderson等[23]認(rèn)為鋁質(zhì)A型花崗巖起源于低fH2O(水逸度)、高fO2(氧逸度)的過鋁質(zhì)下地殼變質(zhì)沉積巖的部分熔融;Creaser 等[24]提出英云閃長質(zhì)到花崗閃長質(zhì)成分的地殼巖漿源巖經(jīng)部分熔融
Tn. 英云閃長巖;Gd. 花崗閃長巖;MG. 二長花崗巖;Tr. 奧長花崗巖;Gr. 花崗巖。底圖數(shù)據(jù)據(jù)文獻(xiàn)[15]。
作用可以派生出偏鋁質(zhì)A型花崗巖;King等[25]認(rèn)
為鋁質(zhì)A型花崗巖起源于具正常含水量的長英質(zhì)下地殼的部分熔融,其源區(qū)應(yīng)是經(jīng)過地幔流體交代的飽滿型源區(qū),富集堿金屬和高場(chǎng)強(qiáng)元素,最理想的源區(qū)巖石應(yīng)是飽滿型長英質(zhì)麻粒巖;Poitrasson等[26]也主張鋁質(zhì)A型花崗巖起源于下部地殼物質(zhì)的部分熔融,但他們認(rèn)為下地殼源區(qū)的成分主要是鎂鐵質(zhì)的。
大囫圇花崗巖的高硅高鉀、富集輕稀土和虧損重稀土元素的特征,以及樣品的Ti/Zr值為1.50~1.77(地殼Ti/Zr<30)[27],Nd/Th值為2.84~3.67(幔源巖石Nd/Th>15)[28],暗示巖漿應(yīng)來自地殼物質(zhì)部分熔融。在εNd(t)t 圖解(圖9a)上大囫圇鉀質(zhì)花崗巖樣品均落在新太古代地殼演化區(qū),在208Pb/204Pb206Pb/204Pb圖解(圖9b)中樣品點(diǎn)落于下地殼區(qū)域,以及Nd二階段模式年齡為2.96~2.94 Ga,這表明大囫圇古元古代晚期鉀質(zhì)花崗巖源自約2.95 Ga中太古代下地殼巖石的部分熔融,綜合巖石較高的(87Sr/86Sr)i值(0.713 0~0.716 2)和A/CNK值(1.12~1.27),其源巖應(yīng)以下地殼高級(jí)變質(zhì)沉積巖為主[29]。
4.3? 大囫圇花崗巖形成的構(gòu)造環(huán)境
大囫圇花崗巖高鉀和A型花崗巖特征暗示其與伸展構(gòu)造背景密切相關(guān),應(yīng)形成于造山后或非造山構(gòu)造環(huán)境[3031]。Eby [32]基于不同A型花崗巖在微量元素組成特征上的差異將其進(jìn)一步劃分為A1和A2型,前者通常形成于非造山的大陸裂谷或大陸板內(nèi)構(gòu)造環(huán)境,后者通常形成于造山后的構(gòu)造環(huán)境,并為地殼部分熔融的成因。相關(guān)判別圖解顯示大囫圇鉀質(zhì)花崗巖屬于A2型(圖8b),且位于后碰撞區(qū)域(圖10),表明其形成于造山后的伸展構(gòu)造背景。
ORG. 大洋中脊花崗巖;WPG. 板內(nèi)花崗巖;VAG. 火山弧花崗巖;SynCOLG. 同碰撞花崗巖;PostCOLG. 后碰撞花崗巖。
已有大量研究證實(shí),華北克拉通東部陸塊和西部陸塊在古元古代末期約1.85 Ga發(fā)生陸陸碰撞拼合[3337],隨后形成一系列造山后伸展背景的巖漿巖,包括1.80~1.75 Ga熊耳群雙峰式火山巖[3839]和1.68~1.62 Ga長城系火山沉積建造[31],以及與它們同期的基性巖墻群和1.72~1.60 Ga的斜長巖環(huán)斑花崗巖、堿性巖堿性花崗巖等非造山巖漿活動(dòng)。本文所研究的大囫圇鉀質(zhì)花崗巖形成于約1.84 Ga,這表明華北克拉通西部陸塊東北緣碰撞造山后的伸展作用可能從1.84 Ga就已經(jīng)開始[4041]。
5? 結(jié)論
1)大囫圇花崗巖形成于約1.85~1.84 Ga的古元古代晚期。
2)大囫圇花崗巖屬于鉀質(zhì)強(qiáng)過鋁質(zhì)巖石,具A2型花崗巖特征,巖漿源于中太古代下地殼高級(jí)變質(zhì)沉積巖的部分熔融。
3)大囫圇鉀質(zhì)花崗巖形成于華北克拉通東部陸塊和西部陸塊碰撞造山后的伸展構(gòu)造環(huán)境。
參考文獻(xiàn)(References):
[1]? 翟明國.華北克拉通的形成演化與成礦作用[J].礦床地質(zhì),2010,29(1):2436.
Zhai Mingguo.Tectonic Evolution and Metallogenesis of North China Craton[J]. Mineral Deposits, 2010, 29(1): 2436.
[2]? Zhai M G,Santosh M. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview[J]. Gondwana Research, 2011, 20(1): 625.
[3]? Zhai M G,Santosh M. Metallogeny of the North China Craton: Link with Secular Changes in the Evolving Earth[J]. Gondwana Research, 2013, 24(1): 275297.
[4]? Zhao G C,Wilde S A,Cawood P A, et al. Archean Blocks and Their Boundaries in the North China Craton: Lithological,Geochemical,Structural and PT Path Constraints and Tectonic Evolution[J]. Precambrian Research,2001,107(1/2): 4573.
[5]? Kusky T M,Li J H. Paleoproterozoic Tectonic Evolution of the North China Craton[J]. Journal of Asian Earth Sciences,2003,22(4): 383397.
[6]? 趙國春.華北克拉通基底主要構(gòu)造單元變質(zhì)作用演化及其若干問題討論[J].巖石學(xué)報(bào),2009,25(8):17721792.
Zhao Guochun. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton: Key Issues and Discussion[J]. Acta Petrologica Sinica, 2009,25(8):17721792.
[7]? 趙國春,孫敏, Wilde S A.華北克拉通基底構(gòu)造單元特征及早元古代拼合[J].中國科學(xué)(D輯:地球科學(xué)), 2002,32(7):538549.
Zhao Guochun, Sun Min, Wilde S A. The Basement Structural Units of the North China Craton are Pieced Together in the Early Proterozoic[J]. Science in China(Series D: Earth Science), 2002,32(7): 538549.
[8]? Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited[J]. Precambrian Research,2005,136(2): 177202.
[9]? 李三忠,趙國春,孫敏.華北克拉通早元古代拼合與Columbia超大陸形成研究進(jìn)展[J].科學(xué)通報(bào), 2016, 61(9): 919925.
Li Sanzhong, Zhao Guochun, Sun Min. Paleoproterozoic Amalgamation of the North China Craton and the Assembly of the Columbia Supercontinent[J]. Chin Sci Bull, 2016, 61(9): 919925.
[10]? Liu C H, Zhao G C, Liu F L, et al. Coexistence of A and IType Granites in the Lüliang Complex: Tectonic Implications for the Middle Paleoproterozoic Trans-North China Orogen, North China Craton[J]. Lithos, 2021, 380/381:105875.
[11]? Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon UPb Isotope and Trace Element Analyses by LAICPMS[J].Chin Sci Bull, 2010, 55: 15351546.
[12]? Andersen T. Correction of Common Lead in UPb Analyses that Do not Report 204Pb[J].Chemical Geology,2002,192(1/2):5979.
[13]? Ludwig K R. User s Manual for Isoplot 3.1:A Geolocronological Toolkit for Microsoft Excel[J].Berkeley Geochronology Center Special Publication,2003,4:2532.
[14]? Belousova E A, Griffin W L, OReilly S Y,et al. Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology,2002,143(5):602622.
[15]? Oconnor J T. A Classification for Quartz-Rich Igneous Rocks Based on Feldspar Ratio[J]. U S Geol Surv Prof, 1965, 525: 7984.
[16]? Watson E B, Harrison T M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types[J]. Earth and Planetary Science Letters, 1983, 64(2): 295304.
[17]? Miller C F, McDowell S M, Mapes R W. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance[J]. Geology, 2003, 31(6): 529532.
[18]? Whalen J B, Currie K L, Chappell B W. AType Granites:Geochemical Characteristics[J].Contributions to Mineralogy and Petrology,1987,95: 420436.
[19]? 趙瑞幅,郭敬輝,彭澎,等.恒山地區(qū)古元古代2.1 Ga地殼重熔事件:鉀質(zhì)花崗巖鋯石UPb定年及HfNd同位素研究[J].巖石學(xué)報(bào),2011,27(6):16071623.
Zhao Ruifu, Guo Jinghui, Peng Peng, et al. 2.1 Ga Crustal Remelting Event in Hengshan Complex: Evidence from Zircon UPb Dating and HfNd Isotopic Study on Potassic Granites[J]. Acta Petrologica Sinica,2011,27(6):16071623.
[20]? 侯增謙,曲曉明,楊竹森,等.青藏高原碰撞造山帶:Ⅲ:后碰撞伸展成礦作用[J].礦床地質(zhì),2006,25(6):629651.
Hou Zengqian, Qu Xiaoming, Yang Zhusen, et al. Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ:Mineralization in Post-Collisional Extension Setting[J]. Mineral Deposits,2006,25(6):629651.
[21]? 李孟江,陳衍景,張莉.華北克拉通北緣晚古生代尚義鉀質(zhì)花崗巖的成因分析:來自巖石地球化學(xué)的證據(jù)[J].地球化學(xué),2012,41(3):227239.
Li Mengjiang, Chen Yanjing, Zhang Li. Genesis of Late Paleozoic Shangyi Potassic Granite in the Northern Margin of the North China Craton: Petrochemistry Evidence[J]. Geochimica,2012,41(3):227239.
[22]? 賈曉亮.小秦嶺和魯山地區(qū)太華雜巖的研究:對(duì)華北南緣基底演化的意義[D].西安:西北大學(xué),2016.
Jia Xiaoliang. Research for Taihua Complex in Xiaoqinling and Lushan Areas:Implications for the Evolution of the Crystalline Basement in Southern North China Craton[D]. Xian: Northwest University, 2016.
[23]? Anderson J L, Thomas W M.Proterozoic Anorogenic Two-Mica Granites:Silver Plume and St Vrain Batholiths[J]. Geology, 1985, 13: 177180.
[24]? Creaser R A, Price R C, Wormald R J. AType Granites Revisited: Assessment of a Residual-Source Model[J]. Geology, 1991, 19: 163166.
[25]? King P L, White A J R, Chappell B W, et al.Characterization and Origin of Aluminous AType Granites from the Lachlan Fold Belt, Southeastern Australia[J]. J Petrol, 1997, 38(3): 371391.
[26]? Poitrasson F, Duthou J L, Pin C. The Relationship Between Petrology and Nd Isotopes as Evidences for Contrasting Anorogenic Granite Genesis:Example of the Corsican Province(SE France)[J]. J Petrol, 1995, 36:
12511274.
[27]? Taylor S R, Mclennan S M.The Continental Crust: Its Composition and Evolution[J].The Journal of Geology, 1985, 94(4):5772.
[28]? McDonough W F, Sun S S. The Composition of the Earth[J]. Chemical Geology, 1995, 120: 223253.
[29]? 李光速,杜慶祥,韓作振,等.吉林省延邊地區(qū)中酸性巖漿巖年齡、成因及其構(gòu)造意義[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2022,52(4):11751194.
Li Guangsu, Du Qingxiang, Han Zuozhen, et al. Zircon U – Pb Geochronology, Geochemistry and Hf Isotopic Composition of the Middle Jurassic Granodiorite in South Jilin Province[J]. Journal of Jilin University
(Earth Science Edition), 2022,52(4):11751194.
[30]? 師江朋,楊德彬,霍騰飛,等.華北克拉通南緣A型花崗巖的年代學(xué)和NdHf同位素組成:對(duì)古元古代晚期伸展事件的制約[J].巖石學(xué)報(bào),2017,33(10):30423056.
Shi Jiangpeng, Yang Debin, Huo Tengfei, et al. The Geochronology and NdHf Isotope Compositions of AType Granites on the Southern Margin of North China Craton: Constraints on the Late Paleoproterozoic Extensional Events[J]. Acta Petrologica Sinica, 2017, 33(10): 30423056.
[31]? Frost C D, Rimü O T, DallAgnol R. IGCP Project 510: AType Granites and Related Rocks Through Time[J]. Lithos, 2007,97 (1/2): 713.
[32]? Eby G N. Chemical Subdivision of the AType Granitoids: Petrogenetic and Tectonic Implications[J]. Geology, 1992, 20(7): 641644.
[33]? 翟明國,胡波,彭澎,等.華北中—新元古代的巖漿作用與多期裂谷事件[J].地學(xué)前緣,2014,21(1):100119.
Zhai Mingguo, Hu Bo, Peng Peng, et al. Meso-Neoproterozoic Magmatic Eventsand Multi-Stage Rifting in the NCC[J]. Earth Science Frontiers, 2014, 21(1): 100119.
[34]? Lu S N, Zhao G C, Wang H C, et al. Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review[J]. Precambrian Research, 2008,160(1/2):7793.
[35]? Zhao G C, Wilde S A, Sun M, et al. SHRIMP UPb Zircon Ages of Granitoid Rocks in the Lüliang Complex:Implications for the Accretion and Evolution of the Trans-North China Orogen[J]. Precambrian Research, 2008, 160(3/4): 213226.
[36]? Zhao G C, Cawood P A, Li S Z, et al. Amalgamation of the North China Craton: Key Issues and Discussion[J]. Precambrian Research, 2012, 222/223: 5576.
[37]? Zhai M G, Santosh M, Zhang L C. Precambrian Geology and Tectonic Evolution of the North China Craton[J]. Gondwana Research, 2011,20(1):15.
[38]? 趙太平,陳福坤,翟明國,等.河北大廟斜長巖雜巖體鋯石UPb年齡及其地質(zhì)意義[J].巖石學(xué)報(bào),2004,20(3):685690.
Zhao Taiping, Chen Fukun, Zhai Minguo,et al. Single Zircon UPb Ages and Their Geological of the Damiao Anorthosite Complex, Hebei Province,China[J]. Acta Petrologica Sinica, 2004,20(3): 685690.
[39]? Zhao G C,Cawood P A,Wilde S A, et al. Review of Global 2.11.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent[J]. Earth-Science Reviews,2002,59: 125162.
[40]? 郭西運(yùn),李猛興.大興安嶺南段晚石炭世敖侖巖體成因及其對(duì)古亞洲洋演化的啟示[J].地質(zhì)通報(bào),2022, 41(7):11911201.
Guo Xiyun, Li Mengxing. Petrogenesis of the Late Carboniferous Aolun Granitein the Southern Da Xing an Mountains and Its Insight into the Evolution of the Paleo-Asia Ocean[J]. Geological Bulletin of China,2022, 41(7): 11911201.
[41]? 施璐,唐振,鄭常青,等.大興安嶺中部柴河地區(qū)晚侏羅世花崗質(zhì)巖石成因及構(gòu)造意義[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2020,50(1):112128.
Shi Lu, Tang Zhen, Zheng Changqing, et al. Genesis and Tectonic Significance of Late Jurassic Granitoids in Chaihe Region, Central Great Xing an Range, NE China[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(1): 112128.