国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

電站含不同裝機(jī)容量機(jī)組導(dǎo)葉關(guān)閉規(guī)律

2024-06-05 00:00:00王沁怡劉熠黃衛(wèi)張健陳楠陳勝
關(guān)鍵詞:裝機(jī)容量

摘要: 擴(kuò)建小容量生態(tài)機(jī)組是保證已建電站下游所需生態(tài)用水的有效方式之一.對于需要擴(kuò)建機(jī)組的水電站,增設(shè)機(jī)組和原設(shè)機(jī)組選取的導(dǎo)葉關(guān)閉規(guī)律是否協(xié)調(diào)對于調(diào)節(jié)保證參數(shù)有著重要意義.基于特征線法建立了過渡過程仿真模型,探究設(shè)有不同裝機(jī)容量機(jī)組水電站的導(dǎo)葉關(guān)閉規(guī)律組合,開展了新增生態(tài)小機(jī)組前后對電站調(diào)保參數(shù)影響的對比分析,并揭示了電站中機(jī)組裝機(jī)容量對蝸殼壓力的影響機(jī)理.結(jié)果表明:電站中原機(jī)組若沿用增設(shè)生態(tài)機(jī)組前的關(guān)閉規(guī)律,會(huì)導(dǎo)致蝸殼壓力超出控制標(biāo)準(zhǔn),因此應(yīng)適當(dāng)延長導(dǎo)葉關(guān)閉時(shí)間;機(jī)組裝機(jī)容量越大, 機(jī)組轉(zhuǎn)速越小,蝸殼壓力越大;電站設(shè)置不同裝機(jī)容量(AABB)機(jī)組時(shí),裝機(jī)容量較小的機(jī)組A可直接采用電站全為該容量的方案(AAAA)的關(guān)閉規(guī)律,裝機(jī)容量較大的機(jī)組B可參考電站全用較大裝機(jī)方案(BBBB)的關(guān)閉規(guī)律.研究成果可為同類型水電站的導(dǎo)葉關(guān)閉規(guī)律選取提供參考.

關(guān)鍵詞: 導(dǎo)葉關(guān)閉規(guī)律;過渡過程;裝機(jī)容量;調(diào)保參數(shù);生態(tài)機(jī)組

中圖分類號(hào): S277.9 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1674-8530(2024)05-0491-06

DOI:10.3969/j.issn.1674-8530.22.0289

王沁怡,劉熠,黃衛(wèi),等.電站含不同裝機(jī)容量機(jī)組導(dǎo)葉關(guān)閉規(guī)律[J].排灌機(jī)械工程學(xué)報(bào),2024,42(5):491-496,540.

WANG Qinyi, LIU Yi, HUANG Wei,et al. Closing rules of turbines guide vane in hydropower plants with different installed capacity [J].Journal of drainage and irrigation machinery engineering(JDIME),2024,42(5):491-496,540.(in Chinese)

Closing rules of turbines guide vane in hydropower plants

with different installed capacity

WANG Qinyi1, LIU Yi1, HUANG Wei2, ZHANG Jian1, CHEN Nan1, CHEN Sheng1*

(1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. Sinohydro Bureau 12 Co., Ltd., Hangzhou, Zhejiang 310030, China)

Abstract: One of the most efficient ways to ensure the ecological water required downstream of hydropower plants is the expansion of modest capacity eco-turbines. For the purpose of regulating and ensuring parameters in hydropower plants that require the expansion of turbines, the coordinated guide vane closing law for capacity enhancement and original turbine selection is crucial. A transition process numerical simulation model was created based on the characteristics line method" to" investigate the combination of the best guide vane closing laws for hydropower plants with various installed capacities of turbines. A comparative analysis was conducted on the impact of adding new ecological small units on the maintenance parameters of the power plant, and the mechanism of the influence of the capacity of the assembled units in the power plant on the volute pressure was revealed. The results indicate that the volute pressure will exceed the control requirement if the plant′s original turbine adheres to the closing rule before adding eco-turbines, therefore, the guide vane closing time should be prolonged correspondingly. The larger the installed capacity of the unit, the lower the unit speed, and the greater the volute pressure. When different installed capacity (AABB) turbines are installed in a hydropower plant, turbine A with the smaller installed capacity can adopt the guide vane closing law of the scheme (AAAA) in which the hydropower plant is equipped with the full capacity turbine, and turbine B with the larger installed capacity can refer to the guide vane closing law of the scheme (BBBB) in which the hydropower plant is equipped with the full capacity turbine. The research results can provide refe-rence for the selection of guide vane closing law of the same type hydropower stations.

Key words: guide vane closing law;transient process;installed capacity;bartender parameter;ecological hydraulic turbine

為保障河流生態(tài)功能、避免生態(tài)環(huán)境惡化,生態(tài)流量維護(hù)著河流所需的自凈擴(kuò)散能力[1].中國各地陸續(xù)要求水電站在枯水期有可足量泄放生態(tài)流量的泄流設(shè)施,但早期許多水利樞紐工程項(xiàng)目在建設(shè)初期尚未設(shè)置生態(tài)流量設(shè)施[2-3],生態(tài)流量難以保障.因此,電站在經(jīng)過技術(shù)論證后可在原設(shè)計(jì)上新增裝機(jī)容量較小的生態(tài)機(jī)組[4],利用生態(tài)機(jī)組不間斷下泄的生態(tài)流量進(jìn)行發(fā)電.生態(tài)機(jī)組既能通過不間斷下泄保障下游所需生態(tài)流量,又能充分利用下泄流量發(fā)電,具有明顯的經(jīng)濟(jì)效益和工程應(yīng)用價(jià)值[5].對于擴(kuò)建生態(tài)機(jī)組的水電站,原機(jī)組若仍沿用原來的導(dǎo)葉關(guān)閉規(guī)律可能不能滿足調(diào)保計(jì)算要求,從而威脅水電站的安全穩(wěn)定運(yùn)行.因此,如何協(xié)調(diào)選取電站原有機(jī)組和新設(shè)機(jī)組導(dǎo)葉關(guān)閉規(guī)律以保證在控制工況中機(jī)組轉(zhuǎn)速和水錘壓力滿足調(diào)節(jié)要求[6-9],是增設(shè)小容量機(jī)組以及含不同容量機(jī)組的水電站設(shè)計(jì)中面臨的關(guān)鍵問題.眾多學(xué)者為改善過渡過程對機(jī)組導(dǎo)葉關(guān)閉規(guī)律選取進(jìn)行了大量的研究.羅紅俊等[10]建立了相同容量雙機(jī)電站模型,運(yùn)用MOASA優(yōu)化關(guān)閉規(guī)律,仿真結(jié)果說明了導(dǎo)葉采用多段式關(guān)閉規(guī)律可以有效改善水力過渡過程;CHALISE等[11]建立了非線性優(yōu)化模型,運(yùn)用Bentley Hammer軟件找到導(dǎo)葉兩段折線關(guān)閉規(guī)律的參數(shù);CUI等[12]對調(diào)保參數(shù)提出了新的非線性評估函數(shù),使得不同情況下調(diào)保參數(shù)的安全裕度均衡分布;張美琴等[13]指出,抽蓄電站均為相同容量機(jī)組時(shí),關(guān)閉規(guī)律受相繼甩工況尾水管最小壓力影響;儲(chǔ)善鵬等[14]針對抽蓄電站相同容量機(jī)組相繼甩工況,提出了一種求解最優(yōu)關(guān)閉規(guī)律的方法;李敏等[15]針對水錘壓力與機(jī)組轉(zhuǎn)速極值出現(xiàn)在不同工況的電站,推薦采用先快后慢的分段式導(dǎo)葉關(guān)閉規(guī)律;張超等[16]改變機(jī)組轉(zhuǎn)動(dòng)慣量,提出導(dǎo)葉采用直線關(guān)閉規(guī)律時(shí),機(jī)組轉(zhuǎn)動(dòng)慣量存在臨界最小值.

以上文獻(xiàn)可以看出,已有研究主要針對電站機(jī)組均為相同裝機(jī)容量的情況,對于擴(kuò)建機(jī)組等原因?qū)е码娬景煌萘繖C(jī)組的系統(tǒng),導(dǎo)葉關(guān)閉規(guī)律研究較少.由于實(shí)際工程中為追求操作簡便,導(dǎo)葉仍采取一段直線式關(guān)閉規(guī)律為主.文中基于特征線法,建立水電站過渡過程仿真模型,針對某含擴(kuò)建生態(tài)機(jī)組的電站,分析擴(kuò)建機(jī)組前后電站選取滿足調(diào)保計(jì)算要求的導(dǎo)葉一段直線關(guān)閉規(guī)律的速率變化,研究不同和相同容量的水輪機(jī)組合對蝸殼壓力、機(jī)組轉(zhuǎn)速影響規(guī)律,針對含不同容量機(jī)組的電站,提出導(dǎo)葉關(guān)閉規(guī)律組合的建議.

2 工程實(shí)例與分析

2.1 原電站資料

國內(nèi)某電站在不添加設(shè)置生態(tài)小機(jī)組前,由2臺(tái)35 MW機(jī)組構(gòu)成,機(jī)組額定流量為51.62 m3/s,額定轉(zhuǎn)速為250 r/min.引水主管道長596.30 m,水庫正常蓄水位2 465 m,死水位2 410 m.

基于特征線法的相關(guān)原理建立該電站的過渡過程仿真模型,由于該電站尾水管長度較短,故僅考慮蝸殼末端最大壓力、機(jī)組轉(zhuǎn)速最大上升率的控制工況進(jìn)行研究,具體工況見表1,表中hup,hlow為上,下游水位.

各調(diào)保參數(shù)控制標(biāo)準(zhǔn):① 蝸殼最大壓力HD2小于153 m;② 機(jī)組最大轉(zhuǎn)速上升率θD1小于50%.

原電站2臺(tái)35 MW機(jī)組采用的是斜率k=8 s-1一段直線關(guān)閉規(guī)律.由表2可知,采用2臺(tái)35 MW機(jī)組方案時(shí)選取8 s-1一段直線關(guān)閉規(guī)律時(shí),控制工況下機(jī)組轉(zhuǎn)速最大上升率為44.72%,蝸殼末端最大壓力為148.30 m,均符合控制要求,且裕度較為均衡.

2.2 新增機(jī)組后資料

電站新增生態(tài)機(jī)組后,引水系統(tǒng)采用“一洞四機(jī)”聯(lián)合供水,共布設(shè)2臺(tái)大機(jī)組、2臺(tái)生態(tài)小機(jī)組,尾水系統(tǒng)采用單洞單機(jī)的布置形式,如圖3所示.生態(tài)機(jī)組額定流量為22.33 m3/s,額定轉(zhuǎn)速為375 r/min,單機(jī)容量為15 MW.當(dāng)生態(tài)機(jī)組取以上的流量、轉(zhuǎn)速以及裝機(jī)容量時(shí),該2種機(jī)組在額定工況下單位流量、單位轉(zhuǎn)速、開度十分接近,如圖4所示.

因此在額定流量工況時(shí)導(dǎo)葉開度變化相似,在甩負(fù)荷過渡過程時(shí)域計(jì)算以及機(jī)組在特性曲線上的運(yùn)動(dòng)軌跡會(huì)較為接近,說明新增機(jī)組參數(shù)選取具有一定合理性.

2.3 不同機(jī)組裝機(jī)容量組合的導(dǎo)葉組合關(guān)閉規(guī)律

建立“一洞四機(jī)”數(shù)值模型,考慮電站設(shè)置不同裝機(jī)容量的機(jī)組時(shí),導(dǎo)葉關(guān)閉規(guī)律對調(diào)保極值的影響,并分析裝機(jī)容量不同對導(dǎo)葉關(guān)閉規(guī)律組合的機(jī)理與規(guī)律.

基于控制變量的原理,不改變輸水系統(tǒng)的長度、主管段內(nèi)流速以及各裝機(jī)容量所對應(yīng)的支管流速,僅改變機(jī)組裝機(jī)容量及其組合(分別為4臺(tái)15 MW機(jī)組、2臺(tái)15 MW機(jī)組和2臺(tái)35 MW機(jī)組、4臺(tái)35 MW機(jī)組),選取4臺(tái)機(jī)組中較危險(xiǎn)的1#小機(jī)組和3#大機(jī)組在不同導(dǎo)葉關(guān)閉規(guī)律γ′組合方式下進(jìn)行過渡過程計(jì)算(見表3),從而判斷裝機(jī)容量對機(jī)組導(dǎo)葉關(guān)閉規(guī)律組合的影響.

1) 4臺(tái)機(jī)組15 MW裝機(jī)容量.探究4臺(tái)機(jī)組裝機(jī)容量均選用15 MW方案時(shí)對機(jī)組導(dǎo)葉關(guān)閉規(guī)律組合的影響,計(jì)算結(jié)果如表4.

由表4機(jī)組轉(zhuǎn)速最大上升率可知,當(dāng)4臺(tái)機(jī)組均取15 MW且采用相同關(guān)閉規(guī)律時(shí),1#,2#機(jī)組與3#,4#大機(jī)組的最大相對轉(zhuǎn)速十分接近.但當(dāng)4臺(tái)機(jī)組采用12 s-1直線關(guān)閉規(guī)律組合時(shí),1#機(jī)組轉(zhuǎn)速最大上升率51.55%,3#機(jī)組轉(zhuǎn)速最大上升率50.62%,均超過轉(zhuǎn)速最大上升率控制值50%.因此,從轉(zhuǎn)速上升率的角度,推薦4臺(tái)裝機(jī)容量為15 MW機(jī)組關(guān)閉規(guī)律選取C4組合.圖5為15 MW D2工況導(dǎo)葉關(guān)閉規(guī)律兩機(jī)組水流速度變化率dv/dt結(jié)果.

由表4及圖5,當(dāng)機(jī)組關(guān)閉規(guī)律采用C3或C4組合時(shí),1#機(jī)組與3#機(jī)組的蝸殼末端最大壓力相對接近,且機(jī)組C3組合下的導(dǎo)葉關(guān)閉規(guī)律時(shí)蝸殼最大壓力極值相差較小.當(dāng)3#,4#機(jī)組維持12 s-1一段直線關(guān)閉規(guī)律,隨著1#,2#機(jī)組直線關(guān)閉規(guī)律的增加,4臺(tái)機(jī)組的蝸殼末端最大壓力均逐漸下降,1#機(jī)組下降值略大于3#機(jī)組,反之亦然.這是因?yàn)闄C(jī)組導(dǎo)葉關(guān)閉規(guī)律發(fā)生改變,不僅會(huì)顯著影響對應(yīng)管道水體中dv/dt變化過程,也會(huì)影響導(dǎo)葉關(guān)閉規(guī)律未發(fā)生改變的管道水體的dv/dt極值.

綜上,當(dāng)4臺(tái)機(jī)組均取15 MW時(shí),采用C4組合,機(jī)組蝸殼最大壓力為152.59 m,機(jī)組轉(zhuǎn)速最大上升率為45.99%,均在控制范圍之內(nèi).

2) 4臺(tái)機(jī)組35 MW裝機(jī)容量.探究4臺(tái)機(jī)組裝機(jī)容量均選用35 MW方案時(shí),對機(jī)組導(dǎo)葉關(guān)閉規(guī)律組合的影響,計(jì)算結(jié)果如表5.

由表5機(jī)組轉(zhuǎn)速最大上升率可知,4臺(tái)機(jī)組均取35 MW時(shí),機(jī)組關(guān)閉規(guī)律采用C3或C4組合時(shí),1#機(jī)組與3#機(jī)組的轉(zhuǎn)速最大上升率十分接近,采用C3組合時(shí)轉(zhuǎn)速最大上升率更小,2種方案轉(zhuǎn)速最大上升率均符合小于50%的控制要求.

圖6為35 MW下D2工況導(dǎo)葉關(guān)閉規(guī)律兩機(jī)組水流速度變化率dv/dt結(jié)果.

由表5及圖6,導(dǎo)葉關(guān)閉規(guī)律采用C3,C4組合時(shí),1#機(jī)組與3#機(jī)組的蝸殼末端最大壓力相對接近.但當(dāng)采用C4組合,1#機(jī)組蝸殼末端最大壓力為159.38 m,3#機(jī)組蝸殼末端最大壓力154.74 m,不滿足蝸殼末端最大壓力控制值要求.當(dāng)3#,4#機(jī)組維持12 s-1直線關(guān)閉規(guī)律,1#,2#機(jī)組導(dǎo)葉關(guān)閉時(shí)間逐漸增加,4臺(tái)機(jī)組的蝸殼末端最大壓力均逐漸下降,1#機(jī)組蝸殼末端最大壓力變化量大于3#機(jī)組,反之亦然.這是因?yàn)閷?dǎo)葉關(guān)閉規(guī)律發(fā)生改變的機(jī)組,也會(huì)影響導(dǎo)葉關(guān)閉規(guī)律未發(fā)生改變機(jī)組的管道水體內(nèi)dv/dt變化,但是前者dv/dt的極值影響更大.

因此,當(dāng)4臺(tái)機(jī)組均取35 MW時(shí),采用C3組合,機(jī)組蝸殼最大壓力、機(jī)組轉(zhuǎn)速最大上升率,均在控制范圍之內(nèi).結(jié)合4臺(tái)機(jī)組15 MW裝機(jī)容量組合結(jié)果,可以說明水電站機(jī)組裝機(jī)容量相同時(shí),裝機(jī)容量越大,機(jī)組轉(zhuǎn)速極值越小,蝸殼壓力極值越大.

3) 15和35 MW裝機(jī)容量組合.原工程實(shí)例中2臺(tái)小機(jī)組與2臺(tái)大機(jī)組的裝機(jī)容量分別為15,35 MW.采用裝機(jī)容量不同的機(jī)組組合,探求采用上述裝機(jī)容量方案時(shí),導(dǎo)葉關(guān)閉規(guī)律組合對調(diào)保極值的影響,計(jì)算結(jié)果如表6所示.

由表6結(jié)果可知,對于轉(zhuǎn)速最大上升率,機(jī)組導(dǎo)葉關(guān)閉規(guī)律采用相同時(shí),裝機(jī)容量較小的1#機(jī)組的最大相對轉(zhuǎn)速總是較大.當(dāng)4臺(tái)機(jī)組同時(shí)取8 s-1直線關(guān)閉規(guī)律時(shí),1#小機(jī)組的最大轉(zhuǎn)速上升率44.91%,遠(yuǎn)大于3#大機(jī)組;當(dāng)同時(shí)取12 s-1直線關(guān)閉規(guī)律時(shí),1#小機(jī)組的最大轉(zhuǎn)速上升率50.66%,遠(yuǎn)大于3#大機(jī)組.為了盡可能減小裝機(jī)容量不同對機(jī)組轉(zhuǎn)速極值差異的影響,應(yīng)盡量增加較大裝機(jī)容量機(jī)組導(dǎo)葉關(guān)閉規(guī)律,或降低較小裝機(jī)容量機(jī)組的導(dǎo)葉關(guān)閉規(guī)律.當(dāng)采用C5組合時(shí),小機(jī)組最大轉(zhuǎn)速上升率為42.12%,大機(jī)組最大轉(zhuǎn)速上升率為41.50%,轉(zhuǎn)速極值非常接近,為0.62%.圖7為15和35 MW D2工況導(dǎo)葉關(guān)閉規(guī)律兩機(jī)組水流速度變化率dv/dt結(jié)果.

由表6及圖7可知,35 MW機(jī)組若沿用電站擴(kuò)建前的8 s-1導(dǎo)葉關(guān)閉規(guī)律時(shí)(見表2),蝸殼末端最大壓力將超過控制標(biāo)準(zhǔn),說明對于增設(shè)生態(tài)小機(jī)組的水電站,原設(shè)機(jī)組沿用電站擴(kuò)建前的關(guān)閉規(guī)律,不能滿足調(diào)保要求.導(dǎo)葉關(guān)閉規(guī)律發(fā)生改變的機(jī)組也會(huì)影響導(dǎo)葉關(guān)閉規(guī)律未發(fā)生改變機(jī)組的管道水體內(nèi)原先dv/dt時(shí)程.由圖7可知,裝機(jī)容量較大的機(jī)組,同一組合方案甩負(fù)荷時(shí)dv/dt極值越大,蝸殼壓力極值越大.當(dāng)大小機(jī)組關(guān)閉規(guī)律選取C5組合時(shí),1#小機(jī)組與3#大機(jī)組的蝸殼末端最大壓力差值最小,為0.47 m.

因此,當(dāng)容量較小機(jī)組采用8 s-1直線關(guān)閉規(guī)律,容量較大機(jī)組采用10 s-1直線關(guān)閉規(guī)律時(shí),蝸殼末端最大壓力與機(jī)組轉(zhuǎn)速最大上升率均能滿足相應(yīng)的控制標(biāo)準(zhǔn),且裕度較為均衡,具有較好的統(tǒng)一性和魯棒性.

3 結(jié) 論

1) 當(dāng)電站的所有機(jī)組裝機(jī)容量相同(AAAA)時(shí),裝機(jī)容量越大,機(jī)組轉(zhuǎn)速極值越小,蝸殼壓力極值越大.

2) 當(dāng)電站新增生態(tài)機(jī)組后,原機(jī)組沿用之前的導(dǎo)葉關(guān)閉規(guī)律會(huì)導(dǎo)致蝸殼末端最大壓力超過控制標(biāo)準(zhǔn),因此需要對電站原機(jī)組導(dǎo)葉關(guān)閉規(guī)律進(jìn)行調(diào)整.

3) 當(dāng)電站包含不同裝機(jī)容量機(jī)組(AABB)時(shí),其中裝機(jī)容量較小機(jī)組(AA)可直接采用電站全為該較小裝機(jī)容量機(jī)組方案(AAAA)時(shí)的關(guān)閉規(guī)律;裝機(jī)容量較大機(jī)組(BB)可適當(dāng)縮短電站全為該較大裝機(jī)容量機(jī)組時(shí)(BBBB)的關(guān)閉規(guī)律.其原因在于機(jī)組裝機(jī)容量越大,甩負(fù)荷時(shí)水體流速變化率越大.

參考文獻(xiàn)(References)

[1] XU Wenting, SHEN Qian, WANG Xuelei, et al. Sen-sing images for assessing the minimum ecological flux by automatically extracting river surface width [J]. Remote sensing, 2022, 12(18): 12182899.

[2] 鐘正,熊俊,胡碧輝.江西省小水電站生態(tài)流量現(xiàn)狀及監(jiān)管對策分析[J].江西水利科技,2019,45(6):460-464.

ZHONG Zheng, XIONG Jun, HU Bihui. Current situation of ecological discharge of small hydropower stations in Jiangxi Province and its supervision countermeasures [J]. Jiangxi hydraulic science and technology, 2019, 45 (6):460-464. (in Chinese)

[3] PRAKASAM C, SARAVANAN R. Ecological flow assessment using hydrological method and validation through GIS application[J]. Groundwater for sustainable development, 2022, 19:100841.

[4] WEI Na, XIE Jiancang, LU Kunming, et al. Dynamic simulation of ecological flow based on the variable interval analysis method[J]. Sustainability, 2022, 14: 14137988.

[5] 劉慶濤,蔡思宇,沈紅霞.生態(tài)流量監(jiān)管“四預(yù)”業(yè)務(wù)應(yīng)用探索[J].水利信息化,2022(4):17-23.

LIU Qingtao, CAI Siyu, SHEN Hongxia. Business application exploration of ecological flow supervision ″four pre-planning″[J]. Water resources informatization, 2022(4):17-23. (in Chinese)

[6] PETITET M, PERROT M, MATHIEU S, et al. Impact of gate closure time on the efficiency of power systems balancing[J]. Energy policy, 2019,129:562-573.

[7] REZGHI A, RIASI A, TAZRAEI P. Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position[J]. Renewable energy,2020,148:478-491.

[8] 路夢瑤, 田雨, 劉小蓮. 長距離有壓輸水系統(tǒng)事故停泵水錘防護(hù)措施研究[J].水利水電技術(shù), 2022, 53(S2): 243-248.

LU Mengyao, TIAN Yu, LIU Xiaolian. Study on protective measures of water hammer caused by accidental pump shutdown in long-distance pressurized water conveyance system[J]. Water resources and hydropower engineering, 2022, 53(S2): 243-248.(in Chinese)

[9] 胡曉東,李卓龍,周福建,等.基于水擊波波形的波速反演方法試驗(yàn)研究[J]. 水利水電技術(shù),2022,53(5): 106-118.

HU Xiaodong,LI Zhuolong,ZHOU Fujian,et al.Water hammer waveform-based experimental study on wave velocity inversion method[J]. Water resources and hydropower engineering,2022,53(5): 106-118.(in Chinese)

[10] 羅紅俊,張官祥,金學(xué)銘,等. 水輪發(fā)電機(jī)組甩負(fù)荷工況多目標(biāo)優(yōu)化研究[J].水電能源科學(xué),2021,39(12):172-176.

LUO Hongjun, ZHANG Guanxiang, JIN Xueming, et al. Research on multi-objective optimization of load dumping condition of hydro-generator set [J]. Journal of hydropower energy science, 2021, 39 (12):172-176. (in Chinese)

[11] CHALISE S,POUDEL L. Optimization of closure law of guide vanes for an operational hydropower plant of Nepal[J]. International journal of engineering and manage-ment research, 2019, 9(5):73-79.

[12] CUI H C,F(xiàn)AN H G,CHEN N X. Optimization of wicket-gate closing law considering different cases[C]//Proceedings of the 26th IAHR Symposium on Hydraulic Machinery and Systems,2012:1277-1284.

[13] 張美琴,佟德利,張樹邦,等. 超高水頭水泵水輪機(jī)甩負(fù)荷導(dǎo)葉關(guān)閉規(guī)律分析[J]. 水電能源科學(xué),2020,38(5):139-143.

ZHANG Meiqin, TONG Deli, ZHANG Shubang, et al. Analysis of closing law of guide vane of load rejection for ultra-high head reversible unit[J]. Water resources and power, 2020, 38(5):139-143. (in Chinese)

[14] 儲(chǔ)善鵬,張健,陳勝,等.機(jī)組導(dǎo)葉關(guān)閉規(guī)律對相繼甩 工況的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2019,37(1):31-37.

CHU Shanpeng, ZHANG Jian, CHEN Sheng, et al. Influence of closure law of wicket gate on successive load rejection condition[J]. Journal of drainage and irrigation machinery engineering, 2019, 37(1): 31-37. (in Chinese)

[15] 李敏,張健,俞曉東.水輪機(jī)導(dǎo)葉“先快后慢”關(guān)閉規(guī)律適用性研究[J].水力發(fā)電學(xué)報(bào),2019,38(3):101-107.

LI Min, ZHANG Jian, YU Xiaodong.Application of quick-then-slow closing rule for turbine wicket gates[J]. Journal of hydroelectric engineering, 2019, 38(3): 101-107. (in Chinese)

[16] 張超,陳建國,孫心洲.特大型機(jī)組飛輪力矩GD2與導(dǎo)葉關(guān)閉規(guī)律的關(guān)系研究[J].電網(wǎng)與清潔能源,2021,37(8):98-101.

ZHANG Chao, CHEN Jianguo, SUN Xinzhou. Study on the relationship between flywheel moment GD2 and guide vane closing law of oversize unit [J]. Power system and clean energy, 2021, 37(8):98-101. (in Chinese)

(責(zé)任編輯 談國鵬)

收稿日期: 2022-11-18; 修回日期: 2023-05-01; 網(wǎng)絡(luò)出版時(shí)間: 2024-04-25

網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20240423.0950.010

基金項(xiàng)目: 國家自然科學(xué)基金資助項(xiàng)目(51879087,52179062);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)(B210202015)

第一作者簡介: 王沁怡(1999—),女,江西南昌人,博士研究生(wangqinyi@hhu.edu.cn),主要從事水電站及泵站水力過渡過程研究.

通信作者簡介: 陳勝(1987—),男,江蘇揚(yáng)州人,副教授(chensheng@hhu.edu.cn),主要從事水電站及泵站水力過渡過程研究.

猜你喜歡
裝機(jī)容量
2億千瓦
國際能源署:至2030年非洲水電總裝機(jī)容量需增加4000萬kW
法國太陽能裝機(jī)容量超過15吉瓦
新能源科技(2022年9期)2022-10-27 07:43:34
我國光伏發(fā)電并網(wǎng)裝機(jī)容量突破3億千瓦 分布式發(fā)展成為新亮點(diǎn)
2020年并網(wǎng)太陽能發(fā)電裝機(jī)容量25343萬千瓦,增長24.1%
01 我國建成世界最大清潔發(fā)電體系:水電、風(fēng)電、光伏世界第一
我國核電裝機(jī)容量突破5000萬千瓦
2019年一季度我國光伏發(fā)電建設(shè)運(yùn)行情況
太陽能(2019年6期)2019-07-19 01:25:18
我國光伏裝機(jī)容量世界第一
我國可再生能源發(fā)電裝機(jī)容量突破4億kW
赫章县| 兴海县| 乌什县| 吐鲁番市| 锦屏县| 宝山区| 鲁甸县| 阿拉善左旗| 交口县| 雅江县| 酒泉市| 南阳市| 织金县| 綦江县| 军事| 河西区| 灯塔市| 镶黄旗| 广南县| 长垣县| 都昌县| 襄樊市| 尉氏县| 灵石县| 吴忠市| 婺源县| 芦溪县| 乌鲁木齐市| 阆中市| 闽侯县| 永清县| 福州市| 施甸县| 那曲县| 太谷县| 闽清县| 石棉县| 双柏县| 清镇市| 会理县| 思南县|